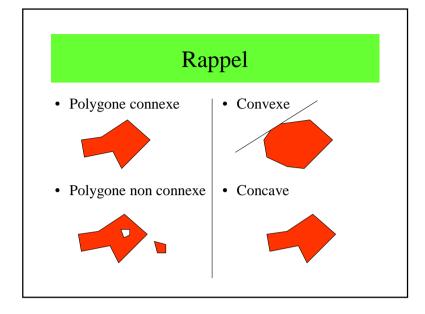
Chapitre II

Introduction à la géométrie algorithmique euclidienne

Géométrie algorithmique euclidienne

- 1 Systèmes de coordonnées clipping
- 2 Transformations élémentaires 2D
- 3 Eléments de géométrie algorithmique
- 4 Modélisation des objets spatiaux
- 5 Relations topologiques
- 6 Conclusions



1 – Systèmes de coordonnées

- Deux systèmes de coordonnées
 - espace réel
 - généralement continu
 - unités : km, m, millimètre, Euro, litres, etc.
 - espace de visualisation (périphérique, écran
 - généralement discret
 - unités : pixels + couleurs

Nécessité de transformations

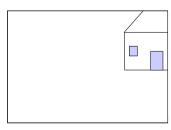
- espace réel → espace de visualisation
 - transformations linéaires
- Notions clés :
 - fenêtre
 - clipping
 - aliasing

Fenêtres et clôtures

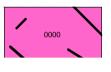
- Définitions normalisées
 - Fenêtre (monde réel) : window
 - Clôture (monde de visualisation) : viewport
- Usage majoritaire de la notion de fenêtre

Clipping

• Clipping : parmi les objets du monde réel, ne garder que ceux (entiers ou en partie) que l'on peut voir depuis cette fenêtre Clipping d'un objet par une fenêtre rectangulaire



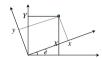
Clipping d'un segment avec l'algorithme de **COHEN-SUTHERLAND**



2 – Transformations linéaires 2D

- Point : x_p , y_p
- Translation X = x + a

$$Y = y + b$$



 Rotation $X = x \times \cos(\theta) + y \times \sin(\theta)$

$$Y = -x \times \sin(\theta) + y \times \cos(\theta)$$

X = ax• Changement d'échelle

$$Y = by$$

Présentation générale

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} X_T \\ Y_T \end{bmatrix}$$
Cette matrice intègre :
- rotation

Translation

- symétrie
- changement d'échelle

Remarques générales

- Les transformations géométriques sont toutes traitées par des combinaisons d'additions et de multiplications de matrices
- Serait-il possible de n'avoir que des multiplications? Oui si l'on parle en coordonnées homogènes

3 – Eléments de géométrie algorithmique

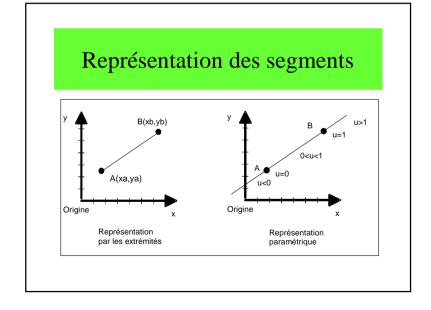
- 3.1. Opérations sur les points, les lignes et les segments
- 3.2. Opérations sur les polygones
- 3.3. Enveloppe convexe
- 3.4. Triangulation de Delaunay
- 3.5. Courbes de Bézier

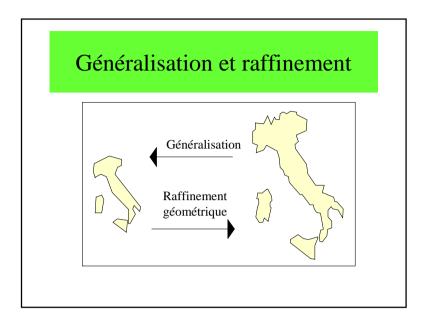
3.1. Opérations sur les points, les lignes et les segments

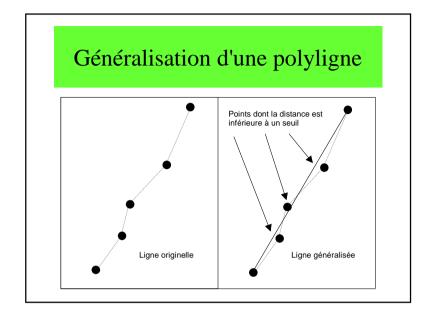
- Intersection de lignes et de segments
- Généralisation de polylignes.

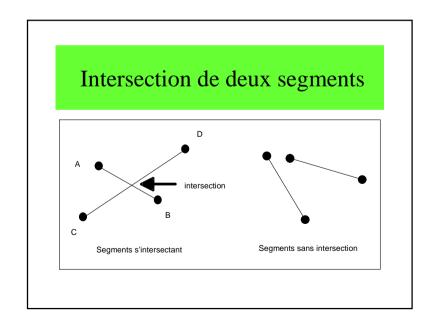
Représentation

- **Point**: x, y ou bien x, y, z, parfois, x, y, z, t
- **Segment**: ensemble des points situés sur une ligne et limités par deux extrémités ==> représentation en intension équation paramétrique (*u*):

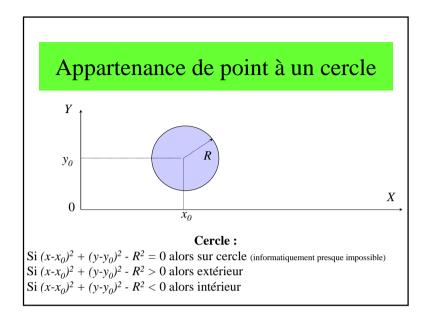


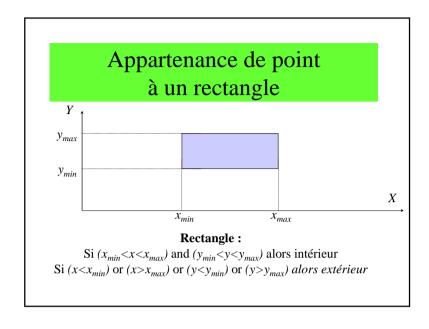






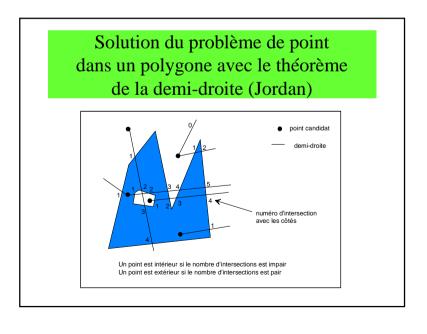
• exacte : -D: y = 3x+2 $-(x=0, y=5) \in D$ • approchée -(x=0.00001, y = 4.9999999) $-(x0, y0 \in D) \text{ si } |y-3x-2| < \varepsilon$

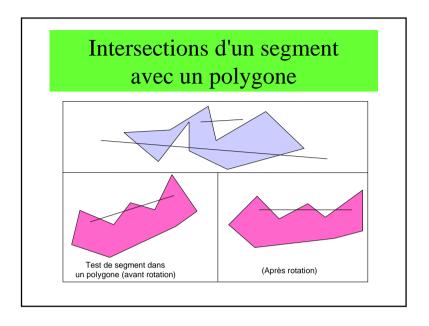




Appartenance d'un point à un polygone quelconque

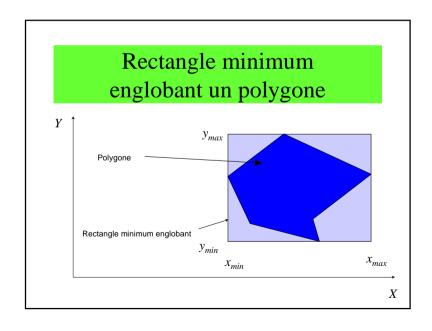
- Cas simple
 - rectangles avec cotés parallèles aux axes
- Cas courant $P=\{x, y\}$
 - polygone connexe
- Cas général
 - polygone avec trous et îles
 - solution : théorème de la demi-droite de Jordan

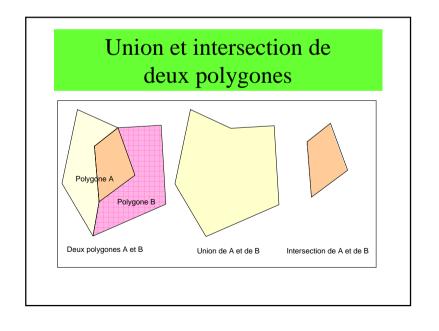


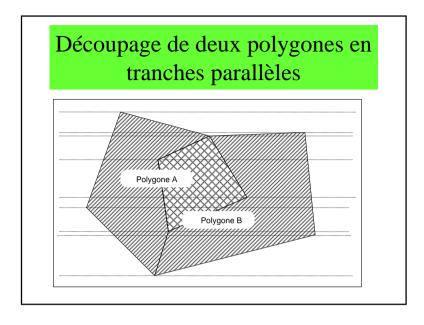


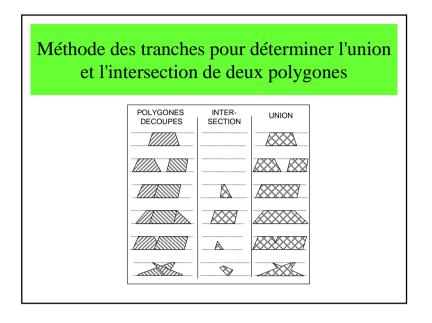
3.2. Opérations sur les polygones

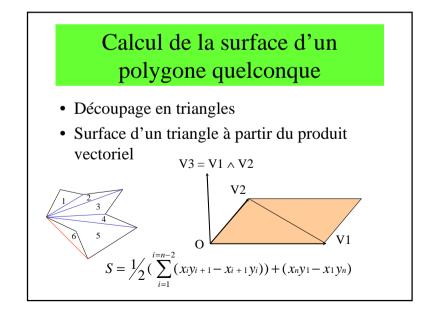
- Intersection segment et polygone
- Test d'appartenance d'un point à un polygone
- Union, intersection, différence de polygones
- Détermination de centroïde
- Calcul de surface
- Clipping de polygone
- Rubber-sheeting

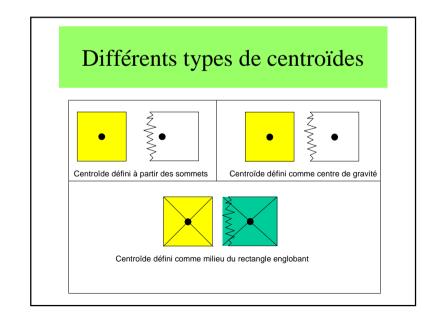


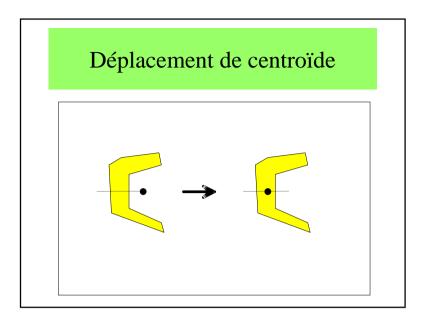


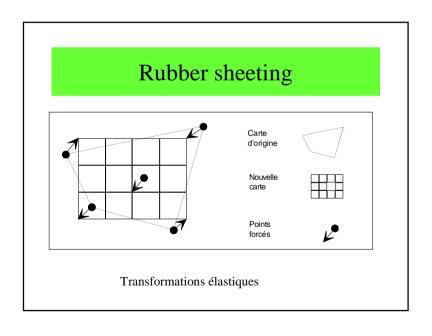












Calcul du barycentre

- Centroïde x_c , y_c
 - Comme centre de gravité des sommets

$$x_c = \frac{1}{2} \sum_i x_i \text{ et } y_c = \frac{1}{2} \sum_i y_i$$

- Comme centre de gravité des surfaces (barycentre)
 - découpage du polygone en triangles
 - calcul du barycentre de chaque triangle
 - calcul du barycentre global
- Comme milieu du rectangle englobant

$$x_c = \frac{1}{2}(x_{\text{max}} - x_{\text{min}}) \text{ et } y_c = \frac{1}{2}(y_{\text{max}} - y_{\text{min}})$$

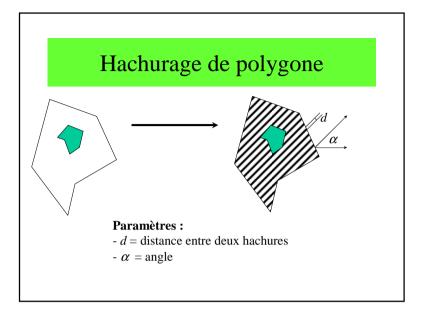
Formules de rubber-sheeting

• Rubber-sheeting linéaire

$$X = A \times x + B \times y + C$$
$$Y = D \times x + E \times y + F$$

• Rubber-sheeting bilinéaire

$$X = A \times xy + B \times x + C \times y + D$$
$$Y = E \times xy + F \times x + G \times y + H$$

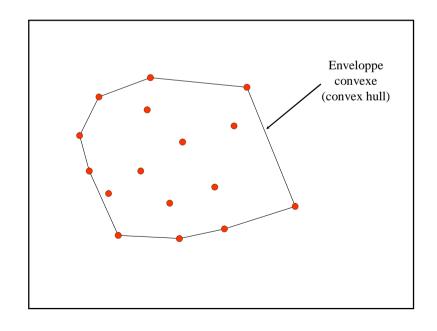


3.3 Enveloppe convexe

- Problème :
- Soit un semis de points $P_i(x_i, y_i)$:
- Objectif : déterminer le polygone convexe minimal tels que tous les points soient situés sur les bords ou à l'intérieur de ce polygone

Algorithme

- Rotation d'angle - α du polygone
- Calculer rectangle englobant $>y_{min}$
 - droite D $y := y_{min}$
- De y_{min} à y_{max} avec un pas d faire :
 - intersections de D avec côtés du polygone
 - tri des intersections
 - calcul des extrémités des hachures (rotation de $+\alpha$)
 - dessin de la hachure
 - -y:=y+d



Algorithme de Jarvis

- L'algorithme de Jarvis, appelé aussi parcours de Jarvis, calcule l'enveloppe convexe d'un ensemble E de points par la technique du paquet cadeau. Celle-ci simule l'enroulement de l'ensemble E par une ficelle.
- On attache d'abord l'extrémité de la ficelle au point P₀ le plus bas de l'ensemble des points. Ce point est celui de plus petite ordonnée (et de plus grande abscisse si plusieurs points ont l'ordonnée minimale).
- On trouve ensuite les autres sommets en "tournant" autour des données. Plus précisément, si on a trouvé les sommets jusqu'à P_i, P_{i+1} est le point tel que la droite P_iP_{i+1} laisse tous les autres points du même côté.

Voici l'algorithme de Jarvis en pseudo-langage:

```
trouver le point d'ordonnée minimale p_0 list <- \{p_0\} répéter pour tout p_j != p_i calculer l'angle (p_{j,l}p_i,p_jp_j) soit p_k le point qui minimise cet angle list <- \{p_k\} p_{j,l} = p_i, p_i = p_k; jusqu'à p_k=p_0
```

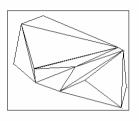
3.4 Triangulation de Delaunay

- Problème:
- Soit un semis de points $P_i(x_i, y_i)$:
- Objectif : déterminer les triangles entre ces points de sorte qu'aucun ne soit situé dans un autre triangle

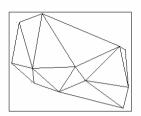
Autre définition

- Des triangles sont dits en triangulation de la surface qu'ils recouvrent:
 - 1- si l'intersection l'intérieur de deux triangles est vide quelque soit les deux triangles.
 - 2 si l'intersection de deux triangles est soit vide, soit une coté, soit un sommet cas "interdits":

Bonne et mauvaise triangulations



semis mal triangulé (les triangles sont allongés)



semis bien triangulé (triangles compacts)

Tessellation de Voronoi

• On appelle polygone de Voronoï associé au site Pi la région Vor(Pi) (chaque région étant l'ensemble de points (x,y) les plus proches à un point de P) telle que chaque point de P a pour plus proche site P_i .

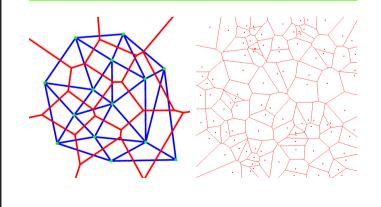
$$Vor(P_i) = \left\{ x \in R^2, d(x, P) \le d(x, P_j), \forall P_j \in P - P_i \right\}$$

Une tessellation de Voronoi est le dual de la triangulation de Delaunay

Exemple d'algorithme

- On maintient à jour une liste de triangles qui à tout instant forme une triangulation du rectangle. Celle-ci est formée au départ des 2 triangles obtenus en divisant le rectangle par une de ses diagonales.
- On prend les points un par un dans l'ordre de leur numéro. Deux cas possibles:
- Ou bien le nouveau point est interne à l'un des triangles T_k de la liste ou bien il est sur la frontière de 2 triangles T_i, T_i de la liste.
- Dans le premier cas, retirer T_k de la liste et rajouter à la liste les 3 triangles obtenus en divisant T_k par les droites joignant le point au 3 sommets de T_k.
- Dans le deuxième cas retirer T_i et T_i de la liste et rajouter les 4 triangles obtenus en divisant T_i par le nouveau point et le sommet opposé et de même pour T_i.

Tessellation de Voronoi



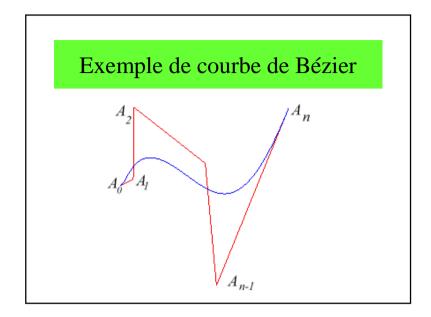
3.5 Courbes de Bézier

Soit une ligne brisée A₀A₁A₂......A_{n-1}A_n (appelée polygone de contrôle, les A_k étant les points de contrôle), la courbe de Bézier (polynomiale) associée est la courbe de paramétrisation ci-dessous

$$\overrightarrow{OM}(t) = \sum_{k=0}^{n} B_{n}^{k}(t) \overrightarrow{OA}_{k}$$

avec polynômes de Bernstein $B_n^k = C_n^k X^k (1-X)^{n-k}$

• la courbe passe par A_0 (pour t = 0) et A_n (pour t = 1), et la portion qui joint ces points est tracée dans l'enveloppe convexe des points de contrôle ; la tangente en A_0 est (A_0A_1) et celle en A_n $(A_{n-1}A_n)$.



Paul de Casteljau et Pierre Bézier

• En réalité, courbes inventées par de Paul de Casteljau (ingénieur chez Citroën), mais connues sous le nom de Pierre Bézier (ingénieur chez Renault)

Introduction aux splines

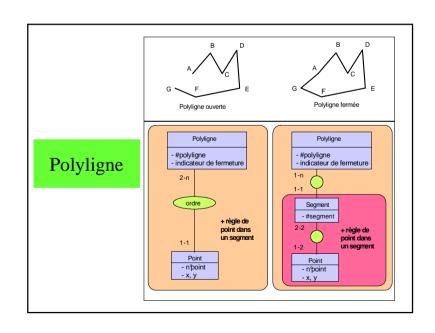
4 – Modélisation des objets spatiaux

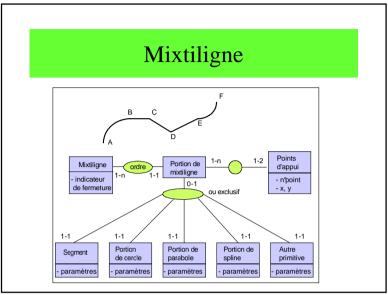
- 4.1 Modélisation des segments, des polylignes et des mixtilignes
- 4.2 Modélisation des polygones
- 4.3 Modélisation des graphes
- 4.4 Modélisation des terrains

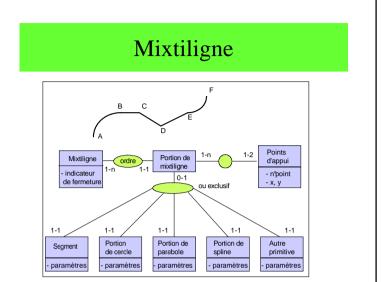
Modélisation d'un segment Y Règle de point dans un segment 1-1 Extrémités -#point, x, y

4.1 Modélisation des segments, des polylignes et des mixtilignes

- Représentation des segments
- Représentation des polylignes
- Représentation des mixtilignes



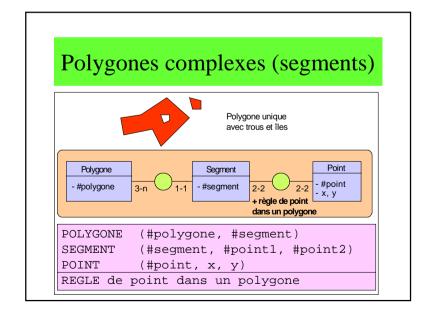


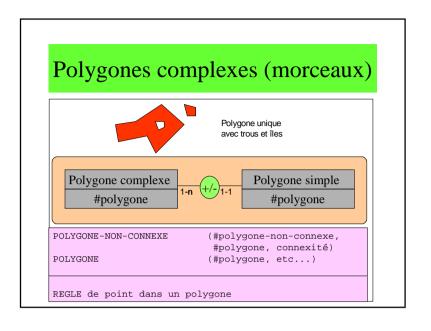


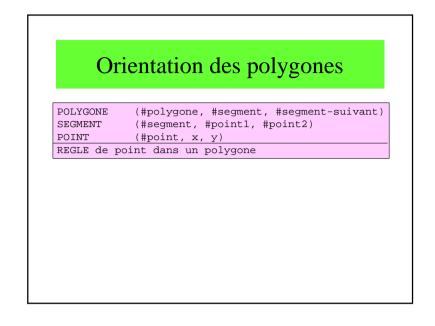
Polygones isolés Point Polygone ordre - #point - #polygone - x, y + règle de point dans un polygone POLYGONE (#polygone, #point, ordre) POINT (#point, x, y) REGLE de point dans un polygone

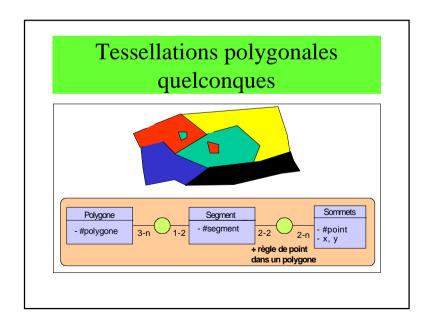
4.2 Modélisation des polygones

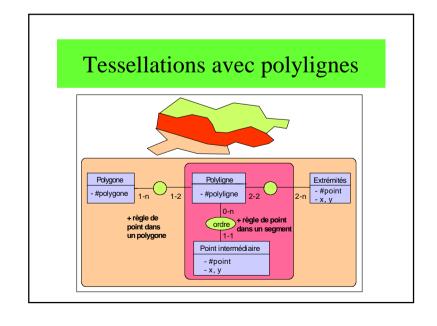
- Polygone simple isolé
- Polygones complexes isolés
- Tessellations irrégulières
- Polygones bordés par des polylignes
- Tessellation limitée par des mixtilignes
- Orientation des polygones dans une tessellation
- Organisation hiérarchique des territoires

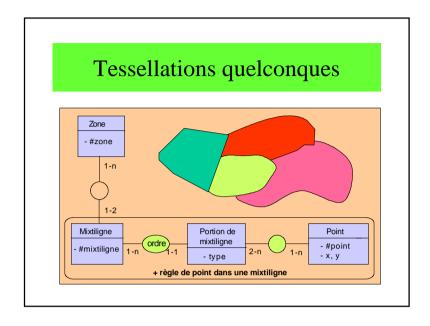


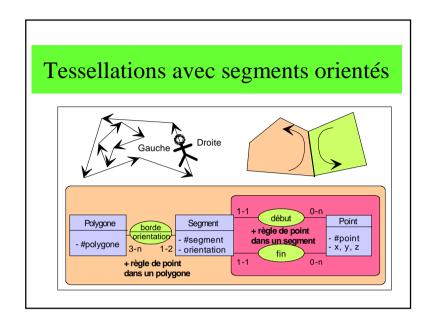


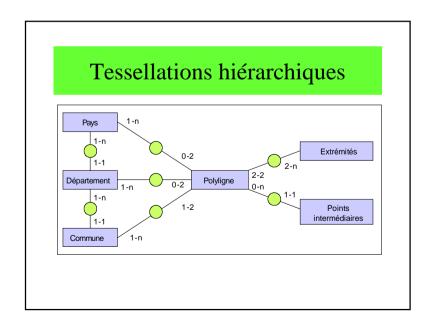






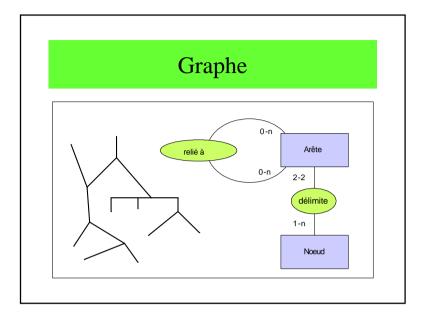


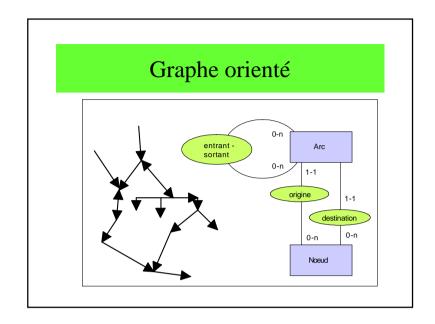




4.3 Modélisation des graphes

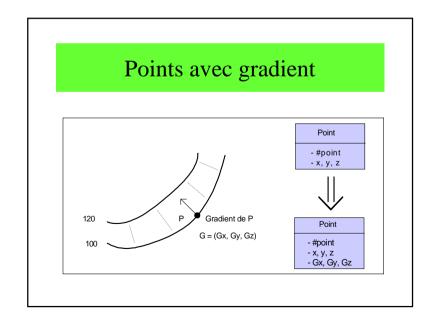
- Graphe non-orienté
- Graphe orienté

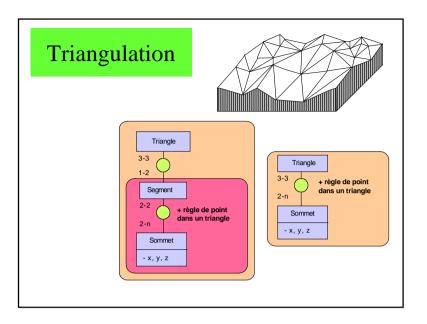


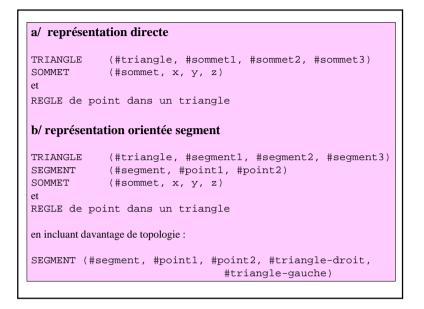


4.4 Modélisation des terrains

- Points avec gradients
- Tessellations triangulaires
- Grilles orthogonales (ou maillage)
- Courbes de niveau







Interpolation planaire pour estimer z

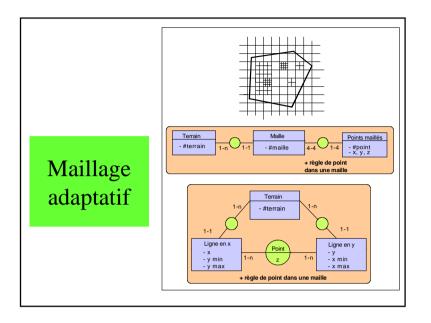
• Chaque triangle est situé dans un plan dont l'équation est :

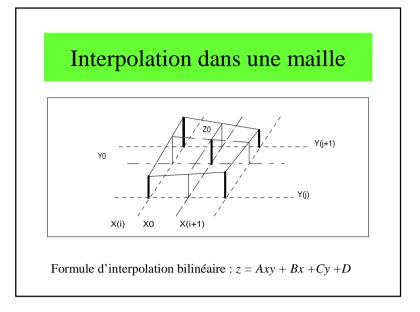
$$z=Ax+By+C$$

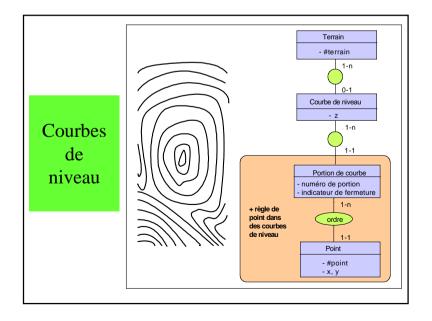
- Comment connaître les 3 paramètres A, B et C?
- Nous avons trois sommets donc :
 - 3 équations à 3 inconnues
 - Détermination de A, B et C

TRIANGLE (#triangle, #segment1, #segment2, #segment3, A, B, C)

Maillage simple Par exemple pas de 100 m

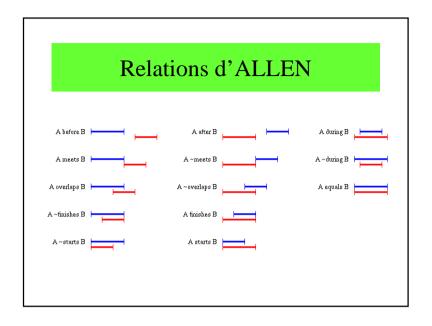


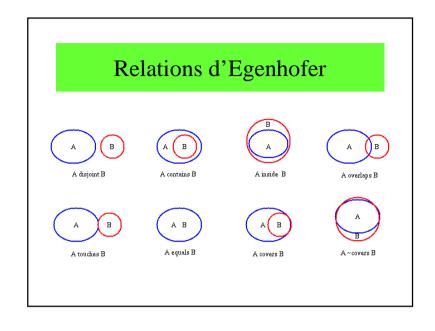


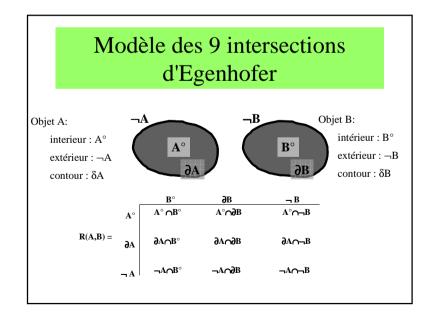


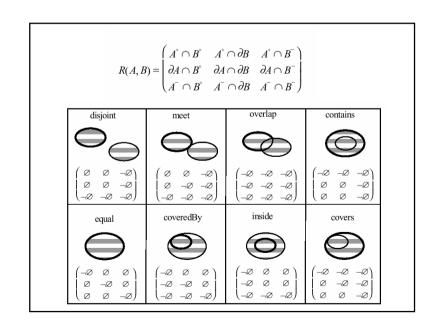
5 – Relations Topologiques

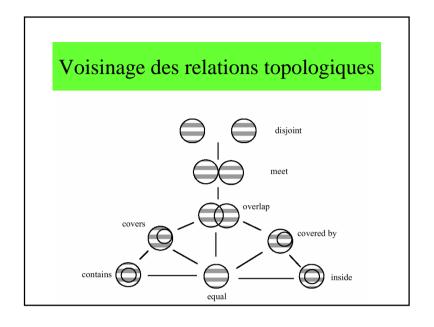
- Relations d'Allen entre intervalle de temps
- Relations d'Egenhofer entre objets 2D

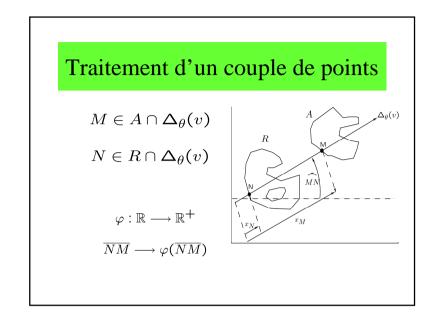


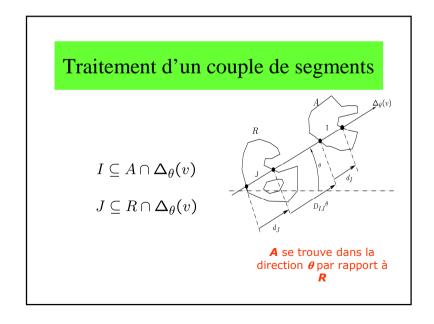


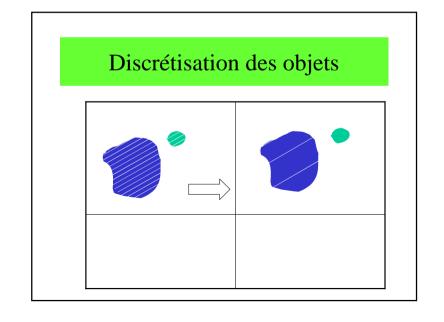


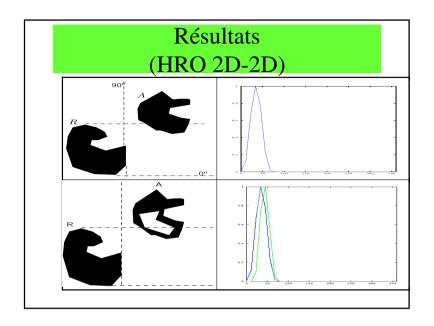


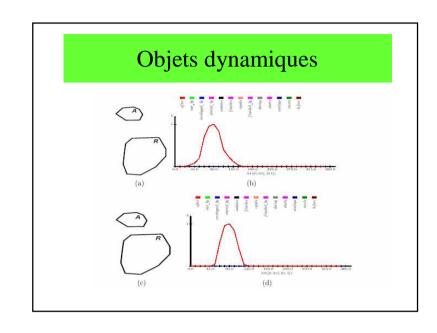


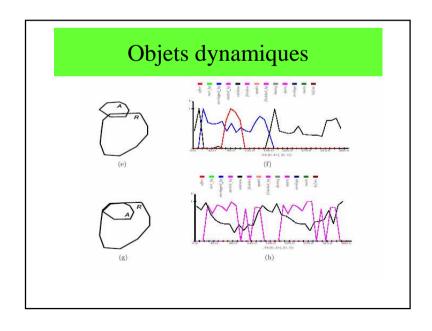


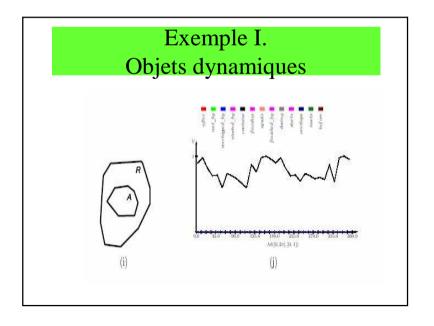


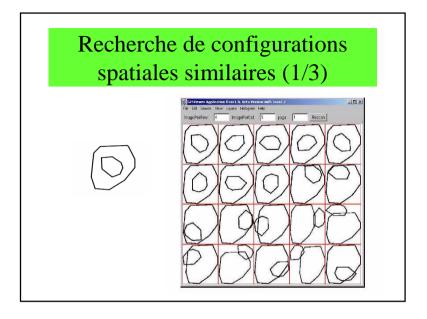


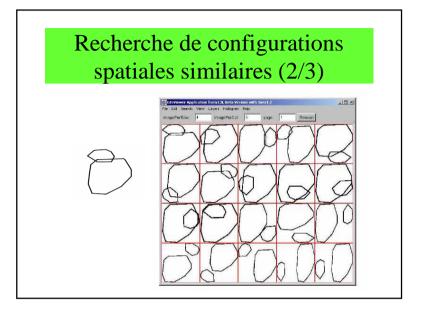


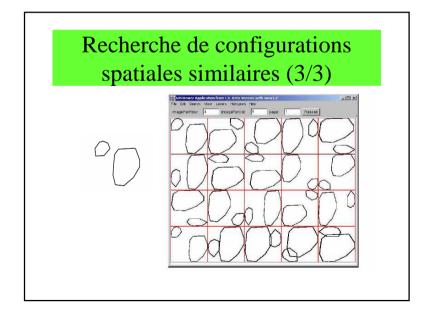












6 - Conclusions

- Importance de la géométrie euclidienne
- Nécessité de revoir les algorithmes afin d'améliorer leur efficacité
- Problème des structures de données
- Importance de la topologie dans le raisonnement géométrique