Chapter V

Virtual 3D Cities

5.1 – Introduction

- 3D Visualization of cities
- Languages such as CityGML
- New projects covering the whole earth
 - Google Earth
 - Microsoft's Virtual Earth
- Global vision and local search
- Integration of data coming from different sources

Virtual 3D Cities

- 5.1 Introduction
- 5.2 CityGML
- 5.3 Google Earth
- 5.4 Virtual Earth
- 5.5 Conclusions

Components

- Modeling of buildings and human artifacts
- Modeling of terrains
- Modeling of urban furniture

Berlin

Potential applications

- Simulation of urban noise, air pollution
- Simulation of floods
- Simulation of natural and technological hazard consequences
- Comparison of real building heights and maximum authorized heights
- Visual impact of a new project
- Checking declaration for local taxes
- Etc.

Heidelberg

Others applications

- Geomarketing: visual impact of advertising
- Real estate agencies: give an idea of the vicinity
- Tourism: landmarks to visit
- Mobile phone: location of hotspots (intervisibility)
- Solar panels: optimal location
- Helicopters: places to land
- History and archaeology: modeling cities in previous centuries/millennia
- Etc.

CityGML objects

- Natural terrain
- Buildings, constructions,
- Bridges, tunnels, walls
- Excavations, streets, transports, railways,
- Water bodies, vegetation
- Traffic lights
- Urban furniture

Visual Information Systems

Levels of details

- LoD0 Regional Model
 - 2.5D Terrain Model
- LoD1 City/Model of the site
 - Block model w/o roofs
- LoD2 City/Model of the site
 - Texture of roofs and façades
- LoD3 City/Model of the site
 - Detailled architectural Model
- LoD4 Inside Model
 - Navigation within the building

Visual Information Systems

 (\ldots)

Texture and resolution

Pr. Robert Laurini

5.3 – Google Earth

- « Organize the world's information and make it universally accessible and useful »
- Keyhole → Google
- Global infrastructure to organize information
- Google book search: places mentioned in books

 (\ldots)

Google Maps/Earth

- http://maps.google.com/help/maps/streetview/index.html
- http://www.youtube.com/watch?v=MGfozDZDSI8
- http://www.youtube.com/watch?v=fHkXYaRP0ls

5.3 – Microsoft's Virtual Earth

- « Mind-expanding »
- Vexcel → Microsoft
- Global infrastructur for geo-referenced applications
- Orthorectified aerial photos (pixel = 15cm)
- Bird's eye
- Buildings with textures
- Augmented reality

Microsoft

- Virtual Earth:
 - http://maps.live.com/
 - http://www.metacafe.com/fplayer/496241/flying_in_vir tual_earth.swf
 - http://www.metacafe.com/watch/511066/boston_virtual _real_estate_viewing/
- Demo
 - http://imaginewindowslive.com/minisites/livemaps/default.aspx

Comparison

• http://www.metacafe.com/watch/496217/go ogle and virtual earth city by city/

Visual Information Systems

5.4 – Conclusions

- Importance of 3D visualization
- Existing 3D applications
- CityGML
- Use of photogrammetry
- Quest for realism