1

Introduction to image databases

- 6.1 Generalities
- 6.2 Retrieval based on key-words
- 6.3 Retrieval based on content
- 6.4 Physical structuring of image databases
- 6.5 Example: Image Rover
- 6.6 Conclusions

6.1 – Generalities

- Several types
 - Collections of fixed images
 - Very big rasters
 - Raster maps
 - Aerial photos
 - Satellite images
 - Video Sequences, films

High and low level characteristics

- High Level Characteristics
 - nature and semantics of objects present on image, and their relations
 - example : a boat on the sea at sunset
- Low Level Characteristics
 - pixels, colors, textures, etc.
 - example : images with 40 % of light blue.

Retrieval

- Based on key-words (typically a user gives a list of key-words)
- Based on content (user gives an imageexample (query by example)
 - colors
 - shapes
 - textures
 - spatial relations

Interrogation of image bases

- Retrieval based on key-words
- Retrieval based on content
- Retrieval based on colors
- Retrieval based on shapes

6.2 – Retrieval based on key-words

- Each image is described by a list of keywords (operation named indexing)
- Generally from 3 to 10 key-words given by the author or by an expert
- Those key-words are regrouped in a thesaurus with 3 relations
 - synonymy
 - genericity / specificity

Annotations

- Additional Information
- Retrieval of key-words characterizing MM documents
- Lists of objects, persons, etc.
- Origin of the document (author, device, date, etc.)
- Generally made visually
- Seldom named "manual indexing"

Reformulation

- R:culture and cauliflower and Australia
- Transformation of the query based on thesaurus
- R': (culture except civilization)and cauliflower or vegetable)and(Australia or Oceania)

6.3.1 – Retrieval based on colors

- Containing a color in a certain proportion
- Similarity of colors in the whole image
- Similarity of only a part
- Based on an object having some particular color
- etc.

$$D_{H}(I_{Q}, I_{D}) = \sum_{j=1}^{n} |H(I_{Q}, j) - H(I_{D}, j)|$$
$$D_{H}(I_{Q}, I_{D}) = \sqrt{\sum_{j=1}^{n} (H(I_{Q}, j) - H(I_{D}, j))^{2}}$$

- Comparison by test (χ^2 type)
- But weak performances

db.ics.uci.edu/pages/demos/index.shtml.

- Stanford university
- 200 000 images
- Similarity

6.3.2 – Retrieval based on shape

- The user gives, for instance gives a shape manually draught (template)
- Comparison with other images
- Linear deformations
 - translations
 - rotations
 - scaling
- Other transformations (warping)

Snakes – Active Contours

- Original shape is deformed to reach gradually some other shape
- Objectives
 - To follow edges the best possible
 - To minimize deformation energy

Shape deformation

• Intrinsic equation of the curve

$$\vec{\phi}(s) = \vec{\tau}(s)\vec{\theta}(s)$$

• Measure of deformation

$$M = \int_{0}^{1} \left[\nabla I \left(\vec{\phi} \left(s \right) \right) \right]^{2} ds$$

Jungert operators (2/2)			
A[B	Min(A) = Min (B) Length(A) < Length(B)	A B	
A]B	Max(A) = Max (B) Length(A) < Length(B)	A B	
A∖B	Min(A) < Min (B) Length(A) ≤ Length(B)	A B	
A/B	Max(A) > Max (B) Length(A) ≤ Length(B)	A B	

Jungert operators (1/2)			
A <b< th=""><th>center(A) < center(B)</th><th>A B</th></b<>	center(A) < center(B)	A B	
A=B	center(A) = center(B)	AB	
A B	Side by side	A B	
A%B	$\begin{split} & \text{Min}(A) > \text{Min} (B) \\ & \text{Max}(A) < \text{Max} (B) \\ & \text{Length}(A) < \text{Length}(B) \end{split}$	A	

- Image
 - A set of encoded pixels
 - A set of descriptors (= parameters)
 - Possibly some recognized pictorial objects
- Image Databases
 - Zillions of images (usually same format)
 - An access system based on descriptors
- Big raster
 - A unique very big image (several billions of pixels)
 - Stored position of some pictorial objects

- Boston University, MA.
- Demo

http://www.cs.bu.edu/groups/ivc/ImageRov er/demo.html.

- Semantic Associations
- Color Associations
- Orientation Associations

Demos

- http://wang.ist.psu.edu/IMAGE/
- <u>http://www.terraserver.microsoft.com/defau</u> <u>lt.aspx</u>
- http://earth.google.com