

Prof. R. Laurini NSA/University of Lyon KSI Fellow UDMS Vice-President

Geospatial Knowledge for Territorial Intelligence

- 1 Territorial Intelligence
- 2 Generalities about Geographic Knowledge
- 3 Generic Geographic knowledge
 - 3.1 Mutation of topological relations
 - 3.2 Gazetteers and toponyms/placenames
 - 3.3 About raster
- 4 Conclusions

Geographic relations

- In addition to spatial relations
 - Tessellations for administrative objects
 - Networks
 - Ribbon relations
 - Geographic ontologies with Geo Relations
 - Gazetteers

1 – Territorial Intelligence

- Business intelligence applied to territories
 - Cities (→smart cities)
 - Regions, Countries
- Links with urban, regional and environmental
 - Planning
 - Management
- Objective: Sustainable development

• Such as

A new family of concepts **Territorial Intelligence Territorial Intelligence** - competitive intelligence, - strategic economic intelligence, (Territory - distributed intelligence, **Collective Human Intelligence** - social intelligence, or collective, • emphasizing organized and systematic + Artificial Intelligence) collection, analysis and dissemination of information for the purpose of → Sustainable development)

2 – Generalities about GK

Definitions

development.

- Feature = geographic entity existing in the real word
- Geographic object = computer representation of a feature
- Rule = mathematical inference
- Not only logics, but also space/geometry

AI + Computational Geometry

- Necessity to include
 - Computational geometry
 - Topology
 - Spatial analysis
 - Operation research
 - Linguistics
 - Etc.
- Earth rotundity

Generic and specific knowledge

- Specific knowledge
 - Devoted to a particular place in the world
 - F.i. Antarctica, near Equator, etc.
 - Mountains, seashore
- Generic knowledge
 - Valid everywhere
 - Links with acquisition devices
 - Links with maths and linguistics

Application knowledge

- Knowledge rules valid in one domain
 - Urban planning
 - Environmental planning
 - Transportation, logistics
 - Etc.

Geographic Ontologies

- Organizations of geo features
- Relations « is_a », « has_a », « whole_part »
- Necessity of spatial relations

- Geographic knowledge valid everywhere
- Linked to
 - Maths
 - Linguistics
 - Acquisition devices
- Only three types
 - Mutation of topological relations
 - Gazetteers and toponyms
 - About raster reasoning

3.1 – Mutation of topological relations

- Granularity of interest
- Independence from scale
- Ex. Road along a coast
 - Touches
 - Disjoint
- According to scales, topological relations can vary

Visual acuity

- According to scale, objects are present or not.
- Cities: area, then point, then nothing
- River: ribbon, then line, then nothing
- Threshold for visual acuity
 - 0.1 mm (object no more visible)
 - 1 mm (ribbon is transformed into a line)

Scale

Ex. From OVERLAPS to TOUCHES

 $\forall O^{1}, O^{2} \in \text{GeObject}, (\forall \sigma \in \text{Scale})$ $\land (O_{\sigma}^{1} = 2Dmap(O^{1}, \sigma)) \land (O_{\sigma}^{2} = 2Dmap(O^{2}, \sigma))$ $\land (Overlaps(O^{1}, O^{2})) \land (Area(O^{1} \cap O^{2}) < Area(\neg(O^{1} \cap O^{2})))$ $\Rightarrow Touches(O_{\sigma}^{1}, O_{\sigma}^{2}).$

In which *2Dmap* is a cartographic function

Other possible mutations

- Disjoint-to-Touches
- Overlaps-to-Covers
- Contains-to-Touches

3.2 – Gazetteers and toponyms

- Geographic information retrieval
- Multilingualism
- Concepts in different languages are different

- Set of languages: $\lambda \in \Lambda$
- Ontology of types: Ω = set of *Types* with relations between them
- Gazetteer: Γ = set of *Toponyms*
- Set of spatial relations
- Geometric Earth: Geoid

- $GKS = \{T, \lambda, \Omega, \Gamma, Og, \mathcal{R}\}$
 - T Inside Geoid
 - $-\lambda \in \Lambda$
 - $Og = \{ Og^1, \dots Og^n : n \in N \}$
- Ogⁱ = (idⁱ, geomⁱ, Typeⁱ, Toponymⁱ]
 - $Type^i \in \Omega$
 - Topony $m^i \in \Gamma$
- \Re set of relationships { $Og^{j} R Og^{j}$: $(i, j \le n) \land (i, j \in N)$ }
- R relation

3.3 – From raster representation

- Aerial photos / Satellite images
- Analysis
 - Pattern recognition
- Usage
 - Feature recognition
 - Updating

- Etc.
- Pictures only at lower level

Raster rules

- Identification of features, of their characteristics
- Updating geographic objects
- Analysis

4 – Visual representations

- Four types:
 - Natural Language (classic geography)
 - Mathematics (description logic, etc.)
 - XML dialects
 - Visual

3.4 General characteristics

- Geographic knowledge reasoning
 - Independence from scale
 - Independence from data acquisition techniques
 - Independence from languages
 - Easy integration of
 - Spatial analysis
 - Network analysis

Elementary knowledge (1/2)

- Facts
 - Italy.population= 60 000 000
 - Touches (Italy, Switzerland)
- Flow
 - Bi-directional flow
 - Flow (Dublin, Limerick) = 4000
 - Flow (Limerick, Dublin) = 3500
 - Converging flows
 - Diverging flows

Elementary knowledge (2/2)

- Clusters
 - UK= Union (England, Scotland, Wales, NorthenIreland, etc)
- Co-location relation
 - Co-location (CityHall, Church)

5 - Conclusion (1/2)

- Importance of geographic knowledge
- Several layers
 - Generic layers
 - Specific layers
 - Application layers
- First steps to geographic reasoning

Conclusions (2/2)

- Other minor contributions
 - Ribbon
 - Ribbon topology
 - Homology relations
 - Generalization of topological relations
 - Visual knowledge representation

Main recent references

- LAURINI R. (2014a) "A Conceptual Framework for Geographic Knowledge Engineering", Journal of Visual Languages and Computing (2014), Volume 25, pp.2-19,
- LAURINI R. (2014b) "Fundamentals of Geographic Knowledge Engineering for Territorial Intelligence" in the book "Knowledge Engineering: Principles, Methods and Applications" To be published by for NovaPublishers.
- LAURINI R. (2014c) "Geographic Ontologies, Gazetteers and Multilingualism" submitted to the journal Future Internet
- LEJDEL B., LAURINI R (2014) "*Ribbons and Generalizing Topological Relations*" submitted to the "Inter'I Journal of Geographic Information Sciences"

To download this talk:

http://liris.insa-lyon.fr/robert.laurini/ftp/GKS.zip

For any contact: Robert.Laurini@insa-lyon.fr

Thanks for your attention!