Helen Couclelis (1/2)

"Is the world ultimately made up of discrete, indivisible elementary particles, or is it a continuum with different properties at different locations? This question, already debated by the ancients Greeks, remains one of the major unanswered problems in the philosophy of physics."
"somehow boundaries are intrinsic to the notion of atom, whereas in the case of extensive entities they are contingent. In other words, the notion of boundary a priori sits better with the atom view of things (and vector GIS) than the plenum view (and raster GIS), whereas the real geographic world forces us to consider both discrete and extensive entities".

Important Distinction

- Closed boundaries / undetermined boundaries
- Distinguish
 - discrete objects with fuzzy boundaries
 - continuous objects with no boundaries

Objective of a FO system

- Conceptual model allowing the user to view the world as consisting of both continuous fields and discretized objects, whereas everything is discretized at implementation level.
Field Orientation for Spatial Continuous Phenomena

Issues

- Declaration
- Acquisition
- Estimation by interpolation / extrapolation
- Computation of values, gradients, integrals, average, etc.
- Queries
- Mixing objects and fields

2 - Concepts

- Properties - Continuity
- Scalar and vector fields
- Cross-sections
- Dimensions
- Samples
- Constraints
- Estimation

Temperature as a field

Scalar and Vector fields

(a) Spatial distribution of some temperature measure points
(b) What is temperature at points A and B?
(c) Temperature as a field
Several fields in the same region

Cross-section of a field

Different kinds of fields

Laplace equation

<table>
<thead>
<tr>
<th>Dimension / type</th>
<th>Scalar</th>
<th>Vector</th>
</tr>
</thead>
</table>
| 2D | $h = f(x,y)$ | $h_x = f_x(x,y)$
| | | $h_y = f_y(x,y)$ |
| 3D | $h = f(x,y,z)$ | $h_x = f_x(x,y,z)$
| | | $h_y = f_y(x,y,z)$
| | | $h_z = f_z(x,y,z)$ |
| 3D + time | $h = f(x,y,z,t)$ | $h_x = f_x(x,y,z,t)$
| | | $h_y = f_y(x,y,z,t)$
| | | $h_z = f_z(x,y,z,t)$ |

$$\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial z^2} + \frac{\partial^2 F}{\partial t^2} = 0$$
A Finite Differences Approximation

• In 2D:

\[Z_{ij} = \frac{(Z_{i-1,j} + Z_{i+1,j} + Z_{i,j-1} + Z_{i,j+1})}{4}, \]

• where \(Z_{ij} \) is the value in cell \(ij \)

Continuity versus differentiability

Different models of scalar fields

Samples

• Impossible to know completely a field
• Measures in some points
 – along a grid
 – along iso-curves
 – random → Triangulated Irregular Networks
Constraints

- **Statistical constraints**
 - Sometimes integrals or averages are known
- **Morphological constraints**
 - huge discontinuity (cliffs, etc.)

Estimation

- **Estimation everywhere at any time**
- **Based on the values at the vicinity**
 - interpolation procedures
 - extrapolation procedures
- **Functions**
 - linear
 - splines
 - etc.

3 - Designing GIS Applications

- Involves dealing with different kind of data
- Spatial data must be combined with non-spatial data
- Even, different kinds of spatial data must be combined (discrete and continuous)
- Multiple algorithms and representations are needed

How can we keep the design clear and evolvable?

Designing GIS Applications

- We should apply good and proven design practices
- We should try to record our design decisions
- We should maximize decoupling of components
- We should focus on architecture prior the implementation

Patterns to the rescue
Design Patterns

- express proven techniques that can be used in new systems
- help to choose design alternatives that make the system easy to evolve
- improve documentation and maintenance

Elements of a pattern

- **Pattern name**
- **Problem** describes when the pattern can be applied
- **Solution** describes the elements that make up the design, their relationships, responsibilities and collaborations
- **Consequences** are the results and trade-offs of applying the pattern

Using DP in GIS

Decoupling geographic from conceptual features

- **Conceptual model**
 - Identification of conceptual features and relationships
 - Definition of conceptual classes

- **Geographic model**
 - Identification of which conceptual classes have spatial characteristics
 - Definition of spatial classes by using the “Decorator” design pattern

Defining spatial characteristics of discrete objects

- **Class**
 - Conceptual attributes
 - GeoClass
 - Spatial attributes

 - Specification of signatures and implementation of conceptual behavior
 - Specification of non-spatial behavior and implementation of spatial behavior

The “Decorator” pattern allows us “to add responsibilities to individual objects dynamically and transparently”. It is a more flexible alternative than subclassing for extending functionality.
Subclassing vs. Decorating

Static Solution
If we add an image to a created object, we have to delete it and create it again.

Dynamic solution
Different characteristics can be added to individual objects.

Continuous fields
To obtain modularity we have to improve the manipulation of:

Estimation Method
Sample

Continuous fields: a better design solution
Continuous fields: a better design solution

Goals of the architecture

- An external model which is continuous
- A discrete internal model

External and Internal Models

Final Architecture
4 - Continuous Fields and Objects

A vector object can take values from a continuous field

Continuous Fields

When an instance is created, the client must know the continuous field and the city

Continuous fields as attributes of objects

Region Zone field or subfield as an attribute

Continuous fields as attributes of objects
5 - Operations

Unary operations: They work over the values of a continuous field. The average of the values of the field, the selection of a subfield are some examples.

They are implemented as methods of the class ContinuousField

Binary operations: They combine information from two fields. Operations are based on the union, intersection, and the difference of fields, and a function may be applied to values to obtain the result.

They are implemented in a separate hierarchy

Binary operations

We have to take into account to define the output field:

- The sample of the output field
- The domain of the output field
- The values of the phenomenon in the new field
- The estimation method of the new field
- The compatibilization of the input representations
- The representation of the new field

The sample of the output field

Union:
- all acquired points of both fields
- estimation of not acquired points
- application of an operation to obtain the final value

Intersection:
- all acquired points that belongs to both fields
- application of an operation to obtain the final value

difference:
- only those points that were acquired in the first field and do not exist in the second fields

The domain of the output field

We have defined two criteria to define the output domain:

- Finding the convex hull by taking the output sample
- Performing the union, intersection or difference of the convex hull of the input fields.
The hierarchy of operations

Example

- Several fields for the same place
- Description of the fields
- Some operators
- Extensions of SQL

Definition of the previous field

Field TEMPERATURE ("temperature","temperature", 3, ([0.0,450.0], [-51.5, 378.384]), [9.10,11.12], /* four sample points */
(#sample1, #sample2, #sample3, #sample4), /* two statistical constraints */
(#id_stat_mean_1, #id_stat_std_deviation_2))

......

estimate { TEMPERATURE }
Description of a city

City Elasty-City
{
 town_area : Location
 temperature : Temp
 TEMPERATURE (town_hall_loc),
 town_population : POPULATION (town_area)
Method assign_temperature(temp,town_area)
temperature = temp.getValue(town_area);
}

Other operators

add_sample (F, #id_sample)
add_mean (F, #id_stat_mean)
add_discontinuity (F, #id_discontinuity)
rem_sample (F, #id_sample)
rem_mean (F, #id_stat_mean)
rem_discontinuity (F, #id_discontinuity)

Field-Oriented SQL: FO-SQL
(Ouatik, 1999)

- What is the value and the gradient of temperature for a point \(p_0(x_0, y_0, z_0) \) at \(t_0 \)?

```sql
select X.attribute_value, X.gradient
from X in TEMP
where ( #id_point=p_0 ) and ( t=t_0 )
```

Another query in FO-SQL

- What is the integral of a field RAIN in a zone at a precise date \(t_0 \)?

```sql
select X.integral
from X in RAIN
where ( #id_Geographic_area=area ) and ( t=t_0 )
```
6 - Indexing:
2D Field information to store

- Sensor information (Sensors)
- Sampled data information (Measures)
- Estimated data (EstimatedValues)

Relation between the external and internal levels

Structuring continuous field data

Field-oriented Database (FODB)
- Cache for the more recently estimated field (Temporary stored and rapidly accessible)
- Database for the recent measures (Permanent stored and rapidly accessible)
- Database for the oldest measures (Permanent archived)

Operating with field-oriented databases

- Basic operations
- Internal operations

7 - Conclusions

Our object-oriented architecture allows:

To define a framework in order to reuse basic structures in geographic applications

To reach a good level of design and documentation (as applications follow closely the architecture style)

To define continuous information in a structured and homogeneous way and combine it with discrete information.

Further works

- Manipulation of other representations
- Implementation of new reference systems
- Implementation of new operations
- 3D fields
- Definition of the query language

Thanks for your attention!

http://lisi.insa-lyon.fr/~laurini
http://www-lifia.info.unlp.edu.ar/~gordillo
http://www-lifia.info.unlp.edu.ar/~catty