

Contents

- 1 - What is an ontology?
- 2 - Ontology-based interoperability
- 3 - XML
- 4 - Spatial ontologies
- 5 - Ontological engineering
- 6 - TOWNTOLOGY project
- 7 - Conclusions

1.1 - Definition

- Ovгоऽ = Being ; Λ o $\gamma 1 \alpha=$ discourse
- Def1: theory of objects of and their relations
- Def2: theory concerning entities, and especially entities in languages
- Def3: An ontology is an explicit specification of a conceptualization (Gruber)

Definition

- Ontology (capital "o"):
- a philosophical discipline.
- An ontology (lowercase "o"):
- specific artifact designed with the purpose of expressing the intended meaning of a vocabulary

Definition

- Nicola Guarino : "An ontology is an engineering artifact, constituted by a specific vocabulary used to describe a certain reality, plus a set of explicit assumptions regarding the intended meaning of the vocabulary words" (Guarino, 1998)

What an Ontology is NOT!!!

- A semantic network
- A formal description of a vocabulary
- According to Gruniger et al., ontologies can provide the following:
- Communication between humans and machines,
- Structuring and organizing the virtual libraries, and the receptacles of the plans,
- Reasoning by inference, particularly in very large databases
- not a collection of facts arising from a specific situation
- not a model of an application domain
- not a database schema
- not a knowledge base
- not a taxonomy
- not a vocabulary or dictionary
- not a semantic net

Why ontologies?

- Data integration
- Semantic integration of n databases
- without the great " 0 " would require $n * n$ integration attempts
- with the great " o " would require n attempts
- Data annotation
- full-fledged ontology not required
- since main purpose is fixed unique reference point in the for of controlled vocabulary

Declarative semantics

- Describe a representation (for instance with first order logics) of an agreed conceptualization of the real world
- Need the agreement of all stakeholders on all aspects (past, current or future) on all observations, facts, rules, etc.
- Assume the existence of confidence and of an authority

Ontology = Conceptualization

- Basic idea : Replace the domain of semantic interpretation
(= conceptualization) by an ontology
- => redefine an ontology as a math object

Ontology = Conceptualization

Domain or application ontologies

- Very long description in extension, few rules
- Providing all possible or plausible facts
- Organization by domains, contexts or application
-Where to find a list of terms?
- Is there an authority able to define a "chair"?
- Building an ontology is similar to data conceptual modelling
- At application/domain level, an ontology can include constraints, rules and derived rules
- No storing problem

Different classifications (Kavouras)

Ontology	Category_type
CORINE Land Cover	Peat bog
	Water course
	Water body
Wog	
	Canal
	Lake/pond
	Salt marsh
	Salt pan
	Watercourse
	Body of water
	Bog
	Canal
	Lake
	Pond
	Salt pan
	Watercourse
	Watercourse

Formal Ontological Analysis

- Theory of Parts
- Theory of Wholes
- Theory of Essence and Identity
- Theory of Dependence
- Theory of Qualities
- Theory of Composition and Constitution
- Theory of Participation
- Theory of Representation

A common ontology vocabulary
should be based on these theories!!

1.2 - Semantic networks

- Invented by Sowa
- Example

Example with only two relations

1.3 - Topic maps

- "Topic maps are used for describing knowledge structures and associating them with information resources. As such they constitute an enabling technology for knowledge management".
- http://www.ontopia.net/topicmaps/material s/tao.html
- Standard: ISO 13250

Topic maps

Topics

Topic types

Topic maps

Topic maps

Occurences

Occurrence types

Topic association

Topic association types

orkshon- Urban Ontoloaies bv R I aurini

Toponyms (Example)

> Associating place names with variant spellings and dates.

Toponyms (Example)

A spatial hierarchy of part of relationships for a set of hills in Scotland

orkshon• Urban Ontoloaies bv R I aurini

2 - Ontology-based interoperability

2.1-What is interoperability?

- "the ability of two or more systems or components to exchange information and to use the information that has been exchanged" (IEEE)

Ontology-based interoperability

- 2.1 - What is interoperability?
- 2.2 - Sharing an ontology
- 2.3 - Mediation

Interoperability between several GIS

- For each database, its own ontology (based on entity-relationship conceptual models)
- Creation of a domain ontology
- Traffic
- Electricity supply
- Etc.

Interoperability

- Discrepancies in data modelling
- Syntactic level
- Data structures
- OpenGIS
- Semantic level
- Discrepancies in representations
- Linguistic problems
- Ontology

Ontology-based Interoperability

Example of mediator (1)

- DB Content :
-DB1 : 1 entity « residents»
- DB2 : 2 entities « men» and « women »
- How to get
-DB1 : Men and women?
-DB2 : Residents?

Example in demography

Example of mediator (2)

- Solution: with mediators
- Exact mediators
- DB2.residents= DB2.men + DB2.women
- Approximate mediators
- DB1.men $=0.48 \times$ DB1. residents
- DB1. women $=0.52 \times$ DB1 . residents

Business Week, March 18, 2002

- "XML is only the first step to ensuring that computers can communicate freely. XML is an alphabet for computers and, as everyone who travels in Europe knows knowing the alphabet doesn't mean you can speak Italian of French"

$$
3-X M L
$$

-3.1 - What is XML?

- 3.2 - XML extensions for geodata
- 3.3 - Ontological languages

3.1 - What is XML?

- XML = Extensible Markup Language
- Generalization of HTML distinguishing contents and presentation
- Example:
- <parcel>
- <parcel_number> 457 LM 89
</parcel_number>
-
- </parcel>

Goals of XML

- XML shall be straightforwardly usable over the Internet.
- XML shall support a wide variety of applications.
- XML shall be compatible with SGML.
- It shall be easy to write programs which process XML documents.
- The number of optional features in XML is to be kept to the absolute minimum, ideally zero.
- XML documents should be human-legible and reasonably clear.
- The XML design should be prepared quickly.
- The design of XML shall be formal and concise.
- XML documents shall be easy to create.
- Terseness in XML markup is of minimal importance

Advantages

- human-legible contents
- unstructured contents
- mixing data and metadata
- allowing interoperability

Drawbacks

- very long description
- absence of indexing
- difficulties of encoding very large geographic databases.

XML $=$ Simpler SGML

- XML is a meta-language.
- A meta-language is a language that's used to define other languages. You can use XML for instance to define a language like WML.
- XML is a smaller version of SGML. It's easy to master and that's a major advantage compared to SGML which is a very complex meta-language.

Define your own tags

- In XML, you define your own tags.
- Examples <TUTORIAL> or <STOCKRATE>,
- This definition is stored in a DTD (Document Type Definition). You can define your own DTD or use an existing one.
- Defining a DTD actually means defining a XML language.
- An alternative for a DTD is Schema.

Tags

- XML tags are created like HTML tags. There's a start tag and a closing tag.
- <TAG>content</TAG>
- The closing tag uses a slash after the opening bracket, just like in HTML.
- The text between the brackets is called an element.

Syntax

- The following rules are used for using XML tags:
- Tags are case sensitive. The tag <TRAVEL> differs from the tags <Travel> and <travel>
- Starting tags always need a closing tag
- All tags must be nested properly
- Comments can be used like in HTML: <!-- Comments -->
- Between the starting tag and the end tag XML expects the content.
- <amount>135</amount> is a valid tag for an element amount that has the content 135

Elements

- Elements and children
- With XML tags you define the type of data. But often data is more complex. It can consist of several parts.
- To describe the element car you can define the tags <car>mercedes</car>. This model might look like this:
<car>
<brand>volvo</brand>
<type>v40</type>
<color>green</color>
</car>

The XML declaration

- The first line of an XML document is the XML declaration.
- It's a special kind of tag:
<?xml version="1.0"?>
- The version 1.0 is the actual version of XML.
- The XML declaration makes clear that we're talking XML and also which version is used. The version identification will become important after new versions of XML are used.

Structure of an XML page

```
<?xml version="1.0"?>
<root>
    <element>
        <sub-element>
                content
            </sub-element>
            <sub-element>
                content
            </sub-element>
    </element>
</root>
```


A real XML page

<?xml version="1.0"?>
<sales>
<shop>
<number>
100
</number>
<manager>
Ray Bradbury
</manager>
</shop>
<product>
<name>
carrots
</name>
<totalprice>
10
</totalprice>
</product>
</sales>

Attributes

- Elements in XML can use attributes. The syntax is:
<element attribute-name = "attributevalue">....</element>
- The value of an attribute needs to be quoted, even if it contains only numbers.
- An example
-

<car color = "green">volvo</car>

Rules of well-formed XML doc

- it contains a root element
- all other elements are children of the root element
- all elements are correctly paired
- the element name in a start-tag and an end-tag are exactly the same
- attribute names are used only once within the same element

Defining the language

- To use XML you need a DTD (Document Type Definition).
- A DTD contains the rules for a particular type of XML-documents.
- Actually it's the DD that defines the language.

Defining elements

- A DTD describes elements. It uses the following syntax: The text <! ELEMENT, followed by the name of the element, followed by a description of the element.
- For instance:
<!ELEMENT brand (\#PCDATA)>
- This DTD description defines the XML tag <brand>.

Data

- The description (\#PCDATA) stands for parsed character data.
- It's the tag that is shown and also will be parsed (interpreted) by the program that reads the XML document.
- You can also define (\#CDATA), this stands for character data.
- CDATA will not be parsed or shown.

Sub-elements

- An element that contains sub elements is described thus:
<!ELEMENT car (brand, type) >
<!ELEMENT brand (\#PCDATA) >
<!ELEMENT type (\#PCDATA) >
- This means that the element car has two subtypes: brand and type. Each subtype can contain characters.

Number of sub elements

- If you use <!ELEMENT car (brand, type) >, the sub elements brand and type can occur once inside the element car. To change the number of possible occurrences the following indications can be used:
- + must occur at least one time but may occur more often
- * may occur more often but may also be omitted
- ? may occur once or not at all
- The indications are used behind the sub element name. For instance:
- <!ELEMENT animal (color+) >

Empty tags

- Besides a starting tag and a closing tag, you can use an empty tag. An empty tag does not have a closing tag.
- The syntax differs from HTML:
- <TAG/>

Showing the results

- Often it's not necessary to display the data in a XML document. It's for instance possible to store the data in a database right away.
- If you want to show the data, you can. XML itself is not capable of doing so.
- But XML documents can be made visible with the aid of a language that defines the presentation.
- XSL (eXtensible Stylesheet Language) is created for this purpose. But the presentation can also be defined with CSS (Cascading Style Sheets).

XML: What it can do?

- With XML you can :
- Define data structures
- Make these structures platform independent
- Process XML defined data automatically
- Define your own tags
- With XML you cannot
- Define how your data is shown. To show data, you need other techniques.

3.2 - XML and geodata

- SVG
- Scalable Vector Graphics (SVG)
- Only 2D data
- Animation is possible
- GML
- Geographic Markup Language
- OpenGIS
- LandXML
- Cadasters, engineering and land surveys works

Example of encoding

Example with GML

<desc>Parcel Lot \#4</desc>
<g>
<polyline points="741,-1951 700,-1913"/>
<polyline points="528,-1804 498,-1792"/>
<polyline points="498,-1792 724,-1657"/>
<polyline points="724,-1657 799,-1712"/>
<polyline points="7994,-1712 850,-1767"/>
<polyline points="850,-1767 741,-1951"/>
</g>

Example with LandXML

```
<Parcel name="Lot #4" area="49292.93"
    <Center>1793.64 698.59</Center>
    <CoordGeom>
        Line leng\=55.05" dir="223.38">
```



```
                *) <End>1913.43 700.86</End>
            lolta""22.19" dirStart"113.38" dirEnd="291.18">
            </Curve>
            Start>1913.43 700.86</St
            ="31.89" dir="201.18">
            <Star>1804.42 528.36</Start> <End>1792.89 498.62</End>
            LLine>
            Line length="263.07" dir="328.96" >
            <Start>1792.89 498.62
            <LLine> 
            < <Start>1657.24 724.02</Start> <End>1712.83 799.94</End>
            </Line>
            ="74.24" dir="47.09" >
            <Star>1712.83 799.94</Starl> <End>1767.21 850.48</End>
            <LLine> length="214.38" dir="120.56" >
            <Starr>1767.21 850.48</Starl> <End>1951.79 741.45</End>
    <LLine>
</Parcel>
```


3.3 - Ontological languages

- KIF
- Extensions of XML
- SHOE
- XOL
- RDF e RDF(S)
- OIL
- DAML+OIL
-OWL

MicroKosmos

Ontological Languages

Ontology with OWL

Example with OWL

<owl:Class rdf:ID="Church">
<rdfs:subclassof rdf:resource="\#Building"/>
rdfs:subclassof
owl:Restriction
<owl:onProperty rdf:resource="\#hasFunction"/>
<owl:hasValue rdf:resource="\#Religion"/>
</owl:Restriction>
</rdfs: subclassof>
</owl:Class>
<owl:Class rdf:ID="Cathedral">
<rdfs:subClassof rdf:resource="\#Church"/>
</owl:Class>

4 - Spatial ontologies

4 - Spatial ontologies

- 4.1 - Theoretical bases
- 4.2 - Examples of alignment

4.1 - Theoretical bases

- http://www.spatial.maine.edu/~max/Using Ontologies.pdf

Figure 6 - The class lake in WordNet-SDTS ontology

Important relations between concepts

-Semantic properties/relations

1.	Hypernym	6.	Form/morphology
2.	Nature	7.	Location
3.	Use/purpose	8.	Condition/state
4.	Material/cover	9.	Time
5.	Has parts/is part of	10.	Surrounded by

- Semantic properties/relations

Relations between relations

- Relations among Relations

Theoretical basis of spatial ontologies

- Spatial objects
- classes
- description
- Spatial Relations
- topological
- directional
- distance
- mereological

Example of topological relations

(a)

(b)

(c)

(d)

(e)

(f)

4.2 - Example of alignment (1/3)

http://www.laser-scan.com/eurosdr/ontologies/pres/B4-Cogit_Presentation.pdf

Example of alignment (2/3)

Example of alignment (3/3)

5 - Ontological engineering

Collaborative design

- Using ontologies
- Interoperability
- Information retrieval
-Knowledge reasoning
- Ontology = vocabulary
- = semantic network

Ontological engineering

- How to build an ontology?
- Possible approaches
- Top-down
- Bottom-up
- Dictionaries
- Etc.
- How to find a consensus between actors?
- How to verify?

Ontological engineering

- 5.1 - Approaches
- 5.2 - Methodologies
- 5.3 - Comparison of some ontological engineering tools

Top-down approach

- Define high level concepts
- Build the semantic network from the top
- Add specific concepts from more generic ones
- Sometimes, difficulties to include real object

Bottom-up approach

- Start from real existing objects
- Aggregate into more generic objects
- Finally arrive to the top level concepts

Consensus

- Two actors have two visions of the worlds
- «Ad ognuno la sua verità »
- Solve conflicts
- When we have several definitions of the same concepts
- Define different concepts
- Keep all definitions until consensus

5.2 - Methodologies

METHONTOLOGY

- Specification
- Knowledge acquisition
- Conceptualization
- Integration
- Implementation
- Evaluation
- Documentation

5.3 - Comparison of some ontological engineering tools

For details see http://www.swi.psy.uva.nl/wondertools/html/paper.htm
WonderTools? A comparative study of ontological engineering tools
A. J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa and V. R. Benjamins
Dept. of Social Science Informatics
University of Amsterdam
e-mail: \{duinevel, stoter, weiden, kenepa, richard\}@swi.psy.uva.nl

- Ontolingua, a web-based tool for making ontologies http://www.ksl.stanford.edu/software/ontolingua/
- WebOnto, also a web-based tool, but completely graphical http://kmi.open.ac.uk/projects/webonto/
- ProtégéWin, a Windows-based tool, also graphical http://www.smi.stanford.edu/projects/prot-nt/documentation/
- OntoSaurus, a web-based tool, looks much like Ontolingua but uses the Loom language http://www.isi.edu/natural-language/projects/SENSUS-demo.html
- ODE, a Windows-based tool, a combination of a graphical and text-based tool http://delicias.dia.fi.upm.es/webODE/
- KADS22, a graphical and text-based tool for building ontologies and reasoning strategies http://www.swi.psy.uva.nl/projects/kads22/help/intro/intro.htm

KDS22

Example: ProtégéWin

Ontosaurus

Terminology in ODE

Crieria	Ontåingua	Weborto	Protegewn	Oreossarus	ODE
1. Ceneral					
1.1 miterface clanty		*	*		
1.2 merface consitexy	+	,	+	+	+
1.3 gpeed of updating		0	+	-	+
14.0 overvew	0	*	+	.	
1.5 mex aing of commmens	+	*	+	+	0
1.6 idenatiability of changes	0	0	0	0	0
1.7 matility					
1.8 local intallation 1.9 help-rystem	No	No	Yes	Yes/mo	Yes
2. Ontology					
21 muliple zherriasce	Yes	Yes	Yes	Yes	Yes
22 decomposation types	$+$,	.	+	
231 consittency checkng	+	*	*	+	+
2.3 .2 kevel of checking	?	0	0	?	+
2.4 example catalogies	+	+	0	+	0
2.5 rewable extologites	+	+		+	
26 hich-lvel primitves	+	*		+	+
3. Cooperation					
3.2 ortologg lockng	+	:		+	
33 browning when locked	+	*	NA	+	Na
34 change reogzton					
3.2 empan faclites 36 mporf facilice	+			+	0
3.6 mport facilities	+			+	

orkshon• Urban Ontoloaies bv R I aurini

6 - TOWNTOLOGY project

TOWNTOLOGY project

- 6.1 - Advocacy for urban ontologies
- 6.2 - Principles of the Towntology project
- 6.3 - Visual interfaces
- 6.4 - COST project C21

6.1 - Advocacy for urban ontologies

- Vocabulary difficulties between actors in urban applications

- Creation of an ontology for cities and for urban planning
- Initial objective: 1000 terms

6.2 - Principles of the Towntology project

- Creating an ontology for urban planning
- First steps in Lyon (2002-2003)
- Street planning (French language)
- Starting from existing dictionaries
$-\cong 800$ concepts
- Second step (2003-2004)
- Setting a COST network
- Extension to other languages
- Public space description

Towntology principles

- Visual presentation
- Semantic network
- Hypertext structure
- Multiple definitions
- Origin and lineage of definitions
- Possibility of updating
- Photos and drawings

Towntology relations

- 9 relations:
- is made of
- is composed of
- is located in
- is used for
- is located on
- is a
- is a subset of
- depends on
- is a tool for

Excerpt of the ontology

MIX
Aggregates gravel, sand...) of variable size, mixed with lime and closely bound by a called bitumen binder bituminizes. The bituminous mix is used mainly in
carriageway surfacing. One distinguishes two main categories of bituminous mix - Hot-mix, used in courses and underlayers of coating in the structures of roadway. These products are implemented and compacted at a temperature varying between - Cold-mix gen
trenches generally used to stop the "potholes" or provisional repair of the trenches.

From: http://www.lequotidienauto.com

Example of textual

 and visual description

Beginning of the urban ontology

```
NHTOWOM
    CHEAOS \TMPSansports c/TME>
    <LANQUQOE Trancais \LANOUAGE
    <CUSTOOLIN,ChISTODhe BERTHEI//CUSTOOLAN>,
\<ches>>
    <RLLATION_TPE 1O-"100001" ORGINMTOR-"Christophe BERTHET INSERTION_DATE-"2004/06/21>
    \<RLLTIONNMME \UEPEnd de</RELATION_NQME.
    < <TEMMS/>
```



```
    \<RHLTON_PROPE
........
                Ne>dép
|/BCOM
```


Description of a concept

CONCEPT_NAME>ACCident de la route </CONCEPT_NAME>
CONCEPTTDOMAIN ID="200001" / >
<CONCEPT_DEFS>
<CONCEPT_DEF ORIGINATOR="Christophe BERTHET" INSERTION_DATE="2004/06/21"> <CONCEPT_DEF
<AUTHORS />
<REF>Glossaires - Promotion of Results in Transport Research and Learning</REF> </CONCEPT_DEF_SOURCE>
<CONCEPT_DEF_TEXT>Définition utilisée pour les statistiques dans la plupart des pays: il s^{\prime} agit d'une collision ayant lieu sur la voie publique et qui implique au moins un véhicule roulant. Sont considérés comme accidents de la route les accidents provoquant uniquement des dégâts matériels et les accidents occasionnant des blessures.
</CONCEPT_DEF>
</CONCEPT_DEFS>
<MULTIMEDIA
<CONCEPT>

Example: Land use plan

PLAND'OCCUPATION DES SOLS (P.O.S.
Document đ̛urbanisme opposable aux tiers quifixe les regles générales et les servitudes d'utbisation des
sols Composé de decumpents graphiques quil localsent des zones, đun réglement quif fixe le droit dos sols
applicable a chaque zone et dannexes techniques.
Dictionnaine de la voirfe

arkshon Urban Ontoloaies bv R I aurini

6.3 - Visual interfaces

- Portal for navigating and querying
- Portal for updating
- Portal for photo-based access

Visual interface (browser)

orkshon Urban Ontoloaies bv R I aurini

6.4 - COST working group C21

- University of Liege (key responsible)
- INSA de Lyon
- University of Basilicata
- Queen's University of Belfast
- University of Madrid
- University of Coimbra
- etc.

7 - Conclusions

Conclusions

- Importance of ontologies for
- interoperability
- language clarification
- cooperation between actors
- cooperation between computers
- information retrieval
- Necessity of creating urban ontologies
- Usage of XML

Bibliography

- Gómez-Pérez A., Fernandez-Lopez M., Corcho O. (2004) "Ontological Engineering", Springer Verlag 2004, 403 p.
- Laurini R. (2001) "Information Systems for Urban Planning, A Hypermedia Cooperative Approach", Taylor and Francis, Londres, 308 p. Janvier 2001
- Workshop on FUNDAMENTAL ISSUES IN SPATIAL AND GEOGRAPHIC ONTOLOGIES 23rd September 2003, COSIT, 24-28 September 2003, Ittingen, Switzerland,
http://www.comp.leeds.ac.uk/brandon/cosi t03ontologyl
- Workshop on Geo-Ontology Sponsored by Ordnance Survey 16th \& 17th September 2002 Ilkley, West Yorkshire, UK, http://www.comp.leeds.ac.uk/brandon/geoontology/

Recent conferences

- FOIS-2004 "International Conference on Formal Ontology in Information Systems" November 4-6, 2004, Torino (Italy) http://fois2004.di.unito.it/
- International Conference on the Ontology of Spacetime, 11-14th May, 2004, Concordia University, Montreal, Quebec http://alcor.concordia.ca/~scol/seminars/co nference/
- Joint EuroSDR/EuroGraphics workshop on Ontologies and Schema Translation SErvives. Paris, April 15-16, 2004 http://www.laserscan.com/eurosdr/ontologies/index.htm

