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Abstract. With the extension of spatial database applications, during the last 
years continuous field databases emerge as an important research issue in order 
to deal with continuous natural phenomena during the last years. A field can be 
represented by a set of cells containing some explicit measured sample points 
and by arbitrary interpolation methods used to derive implicit values on non-
sampled positions. The form of cells depends on the specific data model in an 
application. In this paper, we present an efficient indexing method on the value 
domain in a large field database for field value queries (e.g. finding regions 
where the temperature is between 20 degrees and 30 degrees). The main idea is 
to divide a field into subfields [15] in order that all of explicit and implicit val-
ues inside a subfield are similar each other on the value domain. Then the in-
tervals of the value domain of subfields can be indexed using traditional spatial 
access methods, like R*-tree [1]. We propose an efficient and effective algo-
rithm for constructing subfields. This is done by using the field property that 
values close spatially in a field are likely to be closer together. In more details, 
we linearize cells in order of the Hilbert value of the center position of cells. 
Then we form subfields by grouping sequentially cells by means of the cost 
function proposed in this paper, which tries to minimize the probability that 
subfields will be accessed by a value query. We implemented our method and 
carried out experiments on real and synthetic data. The results of experiments 
show that our method dramatically improves query processing time of field 
value queries compared to linear scanning.  

1   Introduction 

The concept of field has been widely discussed for dealing with natural and environ-
mental continuous phenomena. Field data have a great impact in GIS to describe the 
distribution of some physical property that varies continuously over a domain. A 
typical example is altitude over a two-dimensional domain to describe a terrain. Other 
examples of two-dimensional fields are distributions of temperature, pressure, pollu-
tion agents, etc., over the surface of a territory. Three-dimensional fields can model 
geological structures and, in general, physical properties distributed in space. These 
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involve large data set and their analysis. The technology of field databases serves as 
an important bridge for extending spatial database to scientific databases. 

 A field can be defined as a function over space and time from a mathematical 
point of view. Field data are either scalar or vectorial depending on the result of the 
corresponding function. When the result is of single value, such as the temperature at 
a point, the field becomes scalar. On the other hand, the field is vectorial, when the 
result is of multiple values (for instance wind). And the most common queries for 
analyzing field data can be divided into two categories as follows :  
1. Queries based on a given position: e.g. what is the value at a given point p ? 
2. Queries based on a given field value: e.g. what are the regions where the rainfall is 

more than 2000 mm per year ?  
The first type of queries is to find the field values at a given position. On the other 

hand, the second type, which is more difficult than the first type, inquires the regions, 
where the field has a given value. We term the second type of queries as field value 
queries in contrast to conventional queries of first type of queries. Although the two 
types of queries are related with field, their processing methods are different and the 
processing cost is expensive due to the large volume of data. The processing of the 
field value queries are more difficult and expensive with comparison to the conven-
tional queries. There is no proposed indexing method for field value queries to our 
knowledge even though the conventional queries can be supported by a existing spa-
tial indexing method. By contrast, in many applications, field value queries are 
important for the analysis. Specific applications include the following : 
− In ocean environmental databases with ocean temperature and salinity field data, 

suppose that  salmons can be found in the part of sea under a certain condition of 
temperature and salinity. The queries we can ask for fishing salmons would be 
"Find regions where the temperature is between 20° and 25° and the salinity is be-
tween 12% and 13%".  

− In the urban noise system, a typical query to know the noisy regions would be 
"Find regions where the noise level is higher than 80 dB ", where dB is an unit of 
noise level. 

Despite the importance, no significant attention has been paid and no remarkable 
work has been done on the indexing and query processing for field data. Although a 
certain amount of researches are found, they still focus on the representation or mod-
eling issues for field. Most of the researches deal with the issues of the representation 
of continuous fields and appropriate data models [16, 20, 25]. In [10] an object ori-
ented model to implement a new estimation method for field data has been specified 
and the refined object oriented model which permit to change dynamically the 
estimation method has been studied.   

The goal of this paper is to design of indexing methods for efficient field value 
queries processing in large field databases. The proposed indexing methods exploit 
the continuity of field, which is an important property of field. And our methods are 
based on the division of a field into several subfields in the context of the homogene-
ity of field values. The notion of subfield allows an approximate search in the level of 
subfields instead of the exhaustive search on the entire field, by discarding non-
qualified subfields for a given search condition.  
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The organization of this paper is as follows. In section 2, we will introduce the 
field representation, the overall procedures of query processing in field databases. In 
particular, the difficulties of query processing of field value queries will be presented 
in that section. In section 3, the concept subfield [15] will be introduced and we will 
show how to use it for indexing field values. Then, we will define two aspects to 
consider in order to determine subfields in the given field. We will propose a new 
indexing method defined by these two aspects so that the indexing method could be 
adaptable to the distribution of data and could try to minimize the number of disk 
accesses. We present results of some experiments not only on real data but also on 
synthetic data generated by a fractal method, which show the improvement of the 
performance by using our indexing methods in section 4. And we conclude our paper 
in section 5. 

2 Field Databases and Related Work 

2.1   Field Representation 

In many cases, the phenomenon under consideration can not be sampled in every 
point belonging to the study area: for example groundwater, temperature. Instead, the 
sample dataset is measured or generated at some points or in some zones and the 
spatial interpolation methods are used in order to estimate the field value at not sam-
pled locations. A field based on a sample point dataset can be formally modeled as 
follows : 

A sample dataset in a field of  d-dimension is a pair of (V,W), where V = {vi ∈  Rd, 
i=1,…, n} is a finite set of points in a domain Rd, in which integer d represents the 
dimension of the domain, i.e., R3 for a 3-d dataset V which is a set of points with a 
coordinate (x, y, z) or R4 for 3-D spatial and 1-D temporal domain with coordinate 
(x, y, z, t). And W = {wi ∈  Rk, i=1, …, n} is a corresponding set of field values ob-
tained by wi = F(vi), in which F is the interpolation function and the integer k de-
cides if the field is scalar or vector, thus if k = 1 then scalar field, or if  k >= 2 then 
vector field respectively. A continuous field with a dataset (V, W) is by a pair (C, 
F), where C is a subdivision of the domain Rd into cells ci (c1, c2, …, cn)  containing 
some points of V, and F is a set of corresponding interpolation functions fi (f1, f2, …, 
fn) of cells;  fi represents the corresponding cell ci, which means that it is possible to 
define some different interpolation methods to represent a field, if necessary. 
 
A scalar field has a single value at every point, i.e., temperature, land surface ele-

vation or noise level. By contrast, a vector field has a vector rather than a single 
value, i.e., the gradient of the land surface (aspect and slope) or wind (direction and 
magnitude). In this paper, we only consider scalar fields.  

Cells can be of regular or irregular form and the number of sample points con-
tained by a cell can vary even in a field space, i.e., regular square in DEM (grids, 
Digital Elevation Model) or irregular triangle in TIN (Triangulated Irregular Net-
works), or hybrid model of hexahedra or tetrahedra in a 3-D volume field. In most 
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cases, the sample points contained by a cell (we term these points as sample points of 
cell) are vertices of the cell like the models DEM, TIN, etc.. However we do not ex-
clude the possibility to have sample points inside a cell for a certain interpolation 
method in the case of necessity such as the Voronoi interpolation.  

The function fi is used to interpolate field values of all the points inside cell ci by 
applying fi to the sample points of cell ci . The reason is that the sample points of a cell 
are generally the nearest neighbor points of the given query point and the field value 
on a point is influenced principally by the nearest sample points by the field continu-
ity property. For example, in the 2-D TIN with a ‘linear interpolation’, we take three 
vertices of the triangle containing the given point to apply the function.  

A conventional raster-based DEM for imagery is not suitable to represent a con-
tinuous field. Because it defines just one value (i.e., the terrain elevation measured in 
the center of cell) for all points inside a cell, which means the lost of the all within-
cell variation [20] and the discontinuity between adjacent cells. In order that a DEM 
can be considered as a continuous field, interpolation methods need to be specified 
[26]. To meet this condition, we can generate (measure) sample points at each vertex 
of grid and specify an interpolation function, i.e., a linear interpolation. Thus all the 
points inside a cell can be interpolated by their nearest neighbor sample points, so that 
their vertices of the cell. Figure 1 illustrates an example of the transformation of a 
conventional DEM to the DEM for a continuous field such as a terrain.  

 

 

 

 

 

 

 

 

Fig. 1. Example of a DEM for continuous fields 

2.2   Queries on Field Databases  

For simplicity we assume the interpolation function f as a linear interpolation in all 
the illustrating examples in this paper. Note that the approaches in this section can be 
applied to other interpolation methods as well. Depending on different query condi-
tions we can classify the type of queries in field databases as follows :  
− Q1 : Queries based on a spatial condition, i.e.,  Find field value on a given point v'. 
− Q2 : Queries based on a field value condition, i.e., Find regions with a given field 

value w'. 
 
Complex queries can be composed by combining these basic queries. 
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2.2.1   Conventional Queries. The type Q1 is the conventional query type in field 
databases, denoted as F(v’). It returns the field value on a given point v', i.e., “what is 
the temperature on a given point v'?”. To process this type of queries, we find firstly 
the cell c’ containing the query point v' and we apply the corresponding interpolation 
function on the neighbor sample points of the query point v', namely samples points 
of the c’ retrieved in the previous step ; w' = f(v', sample_points(c’)). Therefore the 
problem in a large field database is to efficiently find the qualified cell c’. This is one 
of the traditional spatial operations in spatial databases. Thus these queries can be 
easily supported by an conventional spatial indexing method, such as R-tree or its 
variants [1, 12, 23].  

2.2.2   Field Value Queries. The type Q2 is to find the regions with a given field 
value w'. The query condition value w’ involves not only exact match conditions but 
also range conditions. For example, a range query such as “Find the regions where 
temperature is between [20oC, 25oC]” or “Find the regions where temperature is more 
than 25oC” belongs to this query type. Most applications of field databases do not 
really care about “where are the value exactly equal to w' ?”, instead they are 
interested in the queries such as “where are the value approximately equal to w' ?”, 
since errors and uncertainty exist in the measurements. These queries can be denoted 
as F-1(w’-e < w < w’+e) where e is an error limit. More generally, they can be denoted 
as F-1(w’ < w < w”), which is a range query.  

Compared with the type Q1 queries, value queries are more difficult to support 
since there can be more than one cell where the field value is equal to (larger than, 
smaller than) w’. Figure 2 illustrates an example of a value query in a 2-D continuous 
field. Note that the spatial XY plan is simplified to the axis ‘Space v’ in this figure to 
show intuitively the value queries processing procedure. The field is viewed as con-
tinuous from their sample points and interpolation functions. The cell c1 contains 
sample points <v1, v2 ,v3 > and it is represented by an interpolation function f1. The cell 
c2 contains <v3, v4, v5> and it is represented by f2, respectively, etc. We can remark that 
the sample points of each cell support implicitly the interval of all possible values 
inside a cell ; not only explicit sample values and also implicit values to be interpo-
lated. These intervals are represented by Ii for the cell ci in Figure 2.  

In Figure 2, the answer points where the field value is equal to the query value w’ 
are v’ and v”. These answer points can be calculated by interpolation if we can re-
trieve all cells <c1, c3> whose intervals intersect the query value w’. In detail, v’ can 
be calculated by applying the inverse interpolation function on the sample points of 
c1, namely <v1, v2, v3> ; f1

-1(w’, sample_points(c1)). And v” can be done by the function 
f3

-1 on the sample points of c3 <v5, v6, v7> ; f3

-1(w’, sample_points(c3)). In the same way, 
in Figure 1, for a given query such as “Find the regions where the value is between 55 
and 59”, firstly we need to retrieve the cells <c1, c2, c3, c4>, whose intervals intersect 
the range query value [55, 59]. Then, the final exact answer regions can be retrieved 
by applying the inverse function on the vertices of each cell retrieved in previous 
step.      

 



202      Myoung-Ah Kang et al. 

 

 

 

 

 

 

 

Fig. 2. Example of a continuous field and a value query 

Thus, the problem of value queries in a continuous field database is transformed 
into the problem of “finding all the cells whose value intervals intersect the given 
query value condition”. Without indexing, we should scan all cells of the database, 
which will degrade dramatically the system performance. We term this method as 
‘LinearScan’ method. Thus in this paper, we propose an efficient indexing method to 
support value queries in large continuous databases by accelerating the retrieval of all 
the cells intersecting a query value condition w’. We should point out that if the inter-
polation function introduces new extreme points having values outside the original 
interval of cells, these points must be considered when deciding intervals of cells.  

2.3   Related Work 

The similar approaches of the value query processing have been proposed for isosur-
face extraction from volumetric scalar dataset [4] and for the extraction of isolines 
from TIN [24]. Thus each volume or triangle is associated with an interval bounded 
by the elevation of the vertices of the cell (volume or triangle) with lowest and high-
est elevation. For any query elevation w' between this interval (the lowest and the 
highest elevation), the cell contributes to the isosurface or isoline map. An Interval 
tree [5] was used in order to index intervals of cells for intersection query. However, 
the Interval tree data structure is a main-memory based indexing method thus it is not 
suitable for a large field database. 

In [19], IP-index [18] for indexing values of time sequences was used for the ter-
rain-added navigation application. The IP-index was applied to the terrain elevation 
map of DEM to find area whose the elevations are inside the given query interval. 
Since the IP-index is designed for 1-D sequences, an IP-index was used for each row 
of the map by considering it as a time sequence. This approach could not handle the 
continuity of terrain by considering only the continuity of one dimension (the axis X). 
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2.4   Motivation 

As we saw before, without indexing value query processing requires to scan the entire 
field database. Despite the importance of the efficient value query processing, no 
significant attention has been paid and no remarkable work has been done on the 
indexing methods. In this paper, we would like to build new indexing schemes which 
can improve the value query processing with in large field databases. This is the mo-
tivation of this paper.  

3   Proposed Method  

As mentioned above, the problem of answering value queries translates to finding a 
way to index cells intersecting the query value. Given a field database, we can associ-
ate with each cell ci an interval, whose extremes are the minimum and maximum 
value among all possible values inside ci, respectively. One straightforward way is 
therefore to index all these intervals associated with the cells. An interval of values 
represents the one dimensional minimum bounding rectangle (MBR) of values that it 
includes. Thus we can use 1-D R*-tree to index intervals. We term this method as ‘I-
All’ method, where I represents ‘Indexing’. Given a query value w’, we can search the 
1-D R*-tree in order to find intervals intersecting w’. Then we retrieve the cells asso-
ciated with found intervals and we calculate the final exact answer regions by the 
interpolation method with sample points of retrieved cells. Because these cells corre-
spond to cells containing a part of answer regions. We term these cells as candidate 
cells. However storing all these individual intervals in an R*-tree has the problems as 
follows:  

The R*-tree will become tall and slow due to a large number of intervals in a large 
field database. This is not efficient both in terms of space as well as search speed. 
Moreover the search speed will also suffer because of  the overlapping of so many 
similar intervals. Sometime they lead to more poor performance than the ‘Linear-
Scan’ method as we can see in Figure 11.a in Section 4.  

  
Thus we propose an another efficient method based on the continuity of field, 

which is an important property of field concept. By the continuity property, the values 
close spatially in a continuous field are likely to be closer together. It means that the 
adjacent cells probably become the candidate cells together for a given query.  

Therefore we propose to group these (connected) adjacent cells having similar val-
ues into subfields. Since a field is entirely covered by a set of cells, subfields mean 
also a division of a entire field space into some subspaces. Thus a subfield can be 
defined as a subspace where field values are close together. Then we can get the in-
tervals of all possible values inside subfields instead of individual intervals of all 
cells, and we can index only these a few intervals of subfields by using 1-D R*-tree. 
It means that a value query firstly retrieves the subfields whose intervals intersect the 
query value by R*-tree. It is evident that if a value query intersects some intervals of 
cells inside a subfield then it has to intersect also the interval of subfield itself. The 
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final exact answer regions need to be calculated by interpolating the cells inside re-
trieved subfields. The i-th subfield can be defined by its interval as follows : 

SFi  = (Wmin,i , Wmax,i ) , 
where Wmin,i  and Wmax,i  mean the minimum and maximum value of values inside SFi, 
respectively. 

We may append other kinds of values to Vmin,i and Vmax,i , if necessary, for example, 
the average of field values of subfield. Figure 3 shows an example of the division of a 
continuous field into some subfields. The spatial XY plan is simplified on the axis 
'Space (x,y)'. In this figure, subfields are represented by rectangles. It means that each 
rectangle contains (or intersect) some adjacent cells that are not drawn in this figure 
for the simplicity. The width of rectangle implies the area of subfield covering some 
cells. The height of rectangle does the interval of subfield. Note that these heights are 
not very large since the values inside subfields are similar each other. In other words, 
the similarity of values inside a subfield can be represented by the interval size of the 
subfield, which means the difference between maximum and  minimum value inside.  
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Fig. 3. Indexing for field value queries with subfields 

Since we use 1-D R*-tree with these intervals of subfields, the procedure of value 
query processing can be defined as follows : 
• Step 1 (filtering step) : find all subfields whose intervals intersect the query value 

by the R*-tree. 
• Step 2 (estimation step) : retrieve all cells inside the selected subfields by step 1, 

and estimate the exact answer regions where the value is equal to (more than or 
less than) the query value.  

 
Suppose that a TIN is used to represent the field in Figure 3 and that a query such 

as “Find the zone where temperature is more than 20oC and less than 25oC” is given. 
For the filtering step, we select three subfields 1, 2, and 3, which intersect query in-
terval. And we retrieve the triangles contained or intersected by the selected subfields 
and compute the regions where the temperature is between [20oC, 25oC] with the 
sample points of retrieved triangles. 
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3.1   Insertion 

Before insertion of intervals of subfield in 1-D R*-Tree, we have to define how to get 
these subfields for indexing for value queries. How can we divide a field space into 
some subfields so that these subfields could have the similar values ?  

3.1.1   Subfields.  In order to get subfields, we must consider two aspects so that the 
number of disk accesses can be minimized.  
1. The manner to divide the field space : It means also how to group some (con-

nected) adjacent cells into subfields, since a field space is totally covered by cells. 
2. The criterion of similarity of values inside a subfield : As we saw before, we can 

use the interval size of subfield as a criterion of measurement of similarity of val-
ues inside a subfield.  
 
In the paper [15], Interval Quadtrees have been proposed. The division of space is 

based on that of Quadtree [22]. And they used a pre-determined, fixed threshold for 
the interval size of subfield. It means that the interval size of a subfield must be less 
than the given fixed threshold in order that values inside are similar. In detail, the 
field space is recursively divided into four subspaces in the manner of Quadtree until 
each subspace satisfies the condition that interval size of the subspace must be less 
than the given threshold. Then the final subspaces of this division procedure become 
subfields. However, there is no justifiable way to decide the optimal threshold that 
can give the best performance. And the quadratic division is not very suitable to a 
field represented by non quadratic forms of cells such as TIN. Thus we would like to 
find a method that will group cells in order that subfields could have more natural and 
realistic forms by trying maximum of adjacent cells. It means no limitation of forms 
quadratic or triangular, etc., like in the case of Interval Quadtree. We propose to use a 
space filling curve to impose a linear ordering on the cells covering a field space. We 
term this method as 'I-Hilbert'. 

3.1.2   The Manner to Divide the Field Space Using Hilbert Value Order.  A 
space filling curve visits all the points in a k-dimensional grid exactly once and never 
crosses itself. The Z-order (or Peano curve, or bit-interleaving), the Hilbert curve, and 
the Gray-code curve [6] are the examples of space filling curves. In [7, 13], it was 
shown experimentally that the Hilbert curve achieves the best clustering among the 
three above methods. Thus we choose the Hilbert curve. Indeed, the fact that all 
successive cells in a linear order are the adjacent cells each other in k-dimension; 
there is no “jumps” in the linear traversal, allows to examine sequentially all cells 
when generating subfields. 

 The Hilbert curve can be generalized for higher dimensionalities. Algorithms to 
generate two-dimensional curve for a given order can be found in [11, 13]. An algo-
rithm for higher dimensionalities is in [2]. Figure 4 shows examples of the Hilbert 
curve ordering. 
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Fig. 4. Example of Hilbert curves 

The cells will be linealized in order of the Hilbert value of their spatial position, 
specifically the Hilbert value of the center of cells (from now, in this paper the Hilbert 
value of a cell means that of the center of the cell). Then we check sequentially inter-
vals of linealized cells if their values are similar or not in order to generate subfields. 
Therefore, each cell can be represented only by its interval in the procedure of sub-
fields generation like in the Figure 5.b. Figure 5.a presents an example of a continu-
ous field represented by a regular DEM and Figure 5.b shows some subfields gener-
ated  according to the intervals of cells. 

 
 

 

 

 

 

 

 

 

 

 

Fig. 5. : a. Example of continuous DEM, b. Generated subfields and their intervals 

Data Structure of subfields  As mentioned above, each interval of subfields shown 
in Figure 5.b can be indexed by 1-D R*-tree storing it in a 1-D MBR. We should 
point out that at the leaf nodes of the R*-tree, we need to store disk addresses where 
cells within the corresponding subfield are stored. The adjacent cells in subfields are 
already clustered by linealiring them physically in order of Hilbert value of cells. 
Therefore it is sufficient to store the pointers of starting and ending cells of the sub-
field in the linear Hilbert value order. Figure 6 shows the structure of a leaf node and 
a non-leaf node of 1-D R*-tree for intervals of subfields.  
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Fig. 6. Data structure of nodes of 1-D R*-tree for intervals of subfields 

Before describing the cost function, we define an interval size of a cell or that of a 
subfield having minimum and maximum values as, 

interval size I = maximum-minimum + 1. 
In the special case that the minimum and maximum value are the same, for exam-

ple when a interpolation function returns a constant value for all points in a cell, the 
interval size is 1. According to [14], the probability P that a subfield of interval size 
L, that is, an 1-D MBR of length L will be accessed by the average range query is : 

P = L + 0.5 
It assumes that the data space is normalized to the range [0,1] and that average 

range query is of length 0.5. Then we define the cost C of the subfield as followings :  
C = P / SI, 

where SI is the sum of interval sizes of all cells inside the subfield. Namely, the prob-
ability of accessing a subfield is divided by the sum of interval sizes of cells included 
by the subfield.  

The strategy is that the insertion of the interval of a new adjacent cell into a sub-
field containing already some cells must not increase the cost C of the subfield before 
the insertion. Suppose that Ca be the cost of a subfield before the insertion of a new 
cell and Cb after the insertion, respectively. This insertion can be executed only if Ca 
> Cb. Thus at first, we start with the interval of first cell of the whole linearized cells. 
Then we form a subfield by including all the successive cells until the cost of subfield 
before insertion of a cell Ca is more than that of the subfield after intersection Cb. In 
the case of Ca <= Cb, we start a new subfield. In this way, subfields are generated by 
including sequentially cells in a field. For example, in Figure 5.b the cost of Subfield 
1 before the insertion of cell c5 into Subfield 1 was about 0.466; 21/(11+10+11+13). 
The cost of Subfield 1 after this insertion will be about 0.534; 31/(11+10+11+13+13). 
This insertion increased the cost of Subfield 1 before insertion, thus a new Subfield 2 
was started with c5. 

Figure 7 shows an example of the sub-
fields generated by the proposed method 
above with  real terrain data of a part of 
ROSEBURG city in USA obtained at 
http://edcwww.cr.usgs.gov. The areas of 
subfields are represented by polygon on 
the map where the terrain elevations are 
represented by different colors.  

  …         min,  max      ...
      min, max

 … ptr_start, ptr_end      ...

b) leaf levela) non leaf level

 
Fig. 7. Examples of generated subfields 
of a terrain data 
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3.2   Search 

In the previous subsection, we showed how to construct 'I-Hilbert' indexing method. 
Here we examine how to search the index for value queries. The searching algorithm 
starts to perform a intersect query within the 1-D R*-tree constructed by intervals of 
subfields. It retrieves all leaf MBRs intersecting the given query field value then es-
timate the exact answer regions by retrieving cells located between the pointers of 
starting and ending cell.  

 

Algorithm Search(node Root, query value w) : 

S1. Search non-leaf nodes : invoke Search for every 
entry whose MBR intersects the query value w. 

S2. Search leaf nodes : invoke Estimate(ptr_start, 
ptr_end, w) of every entry whose MBR intersects the 
query value w. 

Algorithm Estimate(pointer ptr_str, pointer ptr_end, 
query value w) : 

E1. Retrieve sample points of cells at the disk ad-
dress between ptr_str and ptr_end. 

E2. Estimate the exact answer regions corresponding 
to w with retrieved sample points.  

4   Experiments  

We implemented the our method 'I-Hilbert' and we carried out experiments on two 
spatial dimensional field data. The method was implemented in C, under Unix. We 
compared our method against the ‘LinearScan’ and ‘I-All’ methods. For each ex-
periment, we used interval field value queries with variable query intervals : 

Qinterval : ranged from 0-0.1 relatively to the normalized interval range of the to-
tal field value space to [0, 1]. For example, interval value queries ranged 0 mean 
exact field value queries such that “Find all regions where the value is equal to 
30“.  

We generated randomly 200 interval field value queries for each query interval 
Qinterval. We measured the execution time of field value queries by calculating the 
average of total query processing time of these 200 queries. The page size used is 
4KB. Both real and synthetic data were used in the measurement. The reason for 
using real data was to evaluate how the our method behaves in reality. We used syn-
thetic data by controlling several parameters of field data in order to test our method 
on larger and various types of data. A simple linear interpolation was used for inter-
polating all the points inside a cell for every kind of data.  
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4.1   Real Data 

Two kinds of real field data were used as followings : 
1. Real terrain data : The USGS DEM elevation data of a region in USA was ob-

tained from http://edcwww.cr.usgs.gov. Their resolution was 512*512, so 266,144 
rectangular cells having four vertexis in the field space. Figure 8.a shows the re-
sults of performance comparison of 'I-Hilbert' against the ‘LinearScan’ and ‘I-All’ 
methods. 

2. Real urban noise data : A real urban noise data measured in a region of Lyon, 
France were used. The noise data were represented by TIN with about 9000 trian-
gles. Figure 8.b shows the results of performance according to varied field value 
query interval.   

 
 

 

 

 

 

 

 

 

 

 

Fig. 8. Execution time of field value queries with the real data 

Our method 'I-Hilbert' outperforms 'LinearScan' and 'I-All' methods with the ter-
rain data and also urban noise data. Our method achieves from 6 up to 12 times better 
query processing time than 'LinearScan' method in Figure 8.a. 

4.2   Synthetic Data by Fractal 

We used synthetic data of various characteristics. As synthetic field data, we gener-
ated 2-D random fractal terrain of DEM by the diamond-square algorithm using the 
midpoint displacement algorithm as random displacements [21]. Thus an height of 
terrain at each vertex is generated. In the diamond-square algorithm, we start out with 
a big square and initial heights chosen at random at the four vertices. The square grid 
is subdivided recursively into the next with half grid size by one pass consisting of 
two steps, see Figure 9 :  
− The diamond step : The midpoints of all squares are computed by interpolation 

from their four neighbor points (average of four neighbor points) plus an offset by 
the random displacement.    

− The square step : The remaining intermediate points are computed by interpolation 
from their four neighbor points plus an offset by the random displacement.  

a. real terrain data              b. real urban nose data 
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Fig. 9. Two passes of subdivision for generation fractal surfaces by diamond-square 
algorithm on a square of 4 x 4 

The midpoint displacement algorithm is used as random displacement for generat-
ing an offset. Therefore when we assumes that value space (heights of terrain) is 
normalized to [-1.0, 1.0], the initial random value range from [-1.0, 1.0]. In each pass, 
an offset is randomly generated in the random value range in each of two steps and 
then the random value range is reduced by the scaling factor of 2(-H) .  

The H is a parameter for the roughness constant of terrain. This is the value which 
will determine how much the random number range is reduced each time through the 
loop (pass) and, therefore, will determine the roughness of the resulting fractal :    

H : ranged from 0.0 to 1.0, thus the 2(-H)  is ranged from 1.0 (for small H) to 0.05 
(for large H). 

The random value range is reduced by 2(-H) each time through the pass. With H set 
to 1.0, the random value range will be halved each time, resulting in a very smooth 
fractal. With H set to 0.0, the range will not be reduced at all, resulting in something 
quite jagged.  

Figure 10 shows examples of the produced synthetic terrain data with 32*32 cells. 
The roughness H of the terrain data of Figure 10.a and Figure 10.b is equal to 0.2 and 
0.8 respectively. We used the same initial values randomly generated at four vertices 
in the two cases in order to show the effect of the different H values in the same con-
dition. 

 

  

Fig. 10. Examples of synthetic terrain data 

We generated the fractal terrain with 1,048,576 rectangular cells with variable H 
from 0.1 to 0.9 in order to measure the performance of our method ‘I-Hilbert’ with 
various type of field dataset. Figure 11 gives the results of experiments according to 
the value of H. The horizontal axis is the variable query interval and the vertical axis 

a. H = 0.2 b. H = 0.8 

 

  •  : point known   : point to be computed     Initial heights 
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is the average of total query processing time of 200 randomly generated for each 
query interval. 

We see that our method is more efficient than the others in all the cases of H, 
achieving up to more than 50 times better query processing time than 'LinearScan' 
method for the Qinterval from 0 to 0.01 in the case of H = 0.9. The results also show 
that the 'I-All' method gives the performance with big differences according to the 
value of H and Qinterval. The 'I-All' method was slower than 'LinearScan' method in 
the case that H is small or Qinterval is large, that results in the high query selectivity; 
the query selectivity is defined as the rate of the number of answer data over the total 
number of data. The small H leads to the high query selectivity due to many over-
lapped values in the field space as shown in Figure 10.a. We remark that our method 
outperforms consistently the other methods by giving stable results in all the cases. 

Fig. 11. Execution times of field values queries with synthetic fractal data 

4.3   Synthetic Monotonic Data   

We generated a synthetic monotonic DEM field data with 512* 512 rectangular cells 
modeled by: 

w (x, y) = x + y¸ 
where w(P) is the elevation of the terrain at the point P. 
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Fig. 12. Test on monotonic field data 

Figure 12.a shows an example of this monotonic data of 32 * 32 rectangular cells. 
Figure 12.b shows that our method outperforms the other methods also for this kind 
of monotonic field data. 

5   Conclusion 

A field can be represented by a large number of cells containing some explicit sample 
points and by arbitrary interpolation methods used to calculate the implicit field val-
ues on non-sample positions. To process the value queries in these continuous field 
databases is very expensive due to the large volume of data. In this paper, we have 
proposed new indexing structures which index on the value domain in continuous 
field databases.  

One straightforward way is to index the interval of the possible values of each cell, 
termed 'I-All' method in this paper. However storing all these individual intervals in 
an index structure (ex. 1-D R*-tree) gives poor performances due to the large and 
slow index structure. Thus we proposed to adopt the concept subfields [15]. The main 
idea is to divide the field space into several subfields in which the field values (not 
only explicit but also implicite) are similar, each other on the value domain. By 
indexing the intervals of subfields instead of each individual cell, we can execute an 
approximate search at the level of subfields instead of the exhaustive search on the 
entire cells in the field. In order to get subfields, we proposed to linearize cells in 
order of the Hilbert value of the centre position of cells. Then we form subfields by 
grouping sequentially cells accroding to the cost of a subfield proposed in this paper. 
The cost of a subfield is based on the probability of a MBR to be accessed for a given 
query [14]. We extended this probability for subfields. The strategy of forming 
subfields based on this cost model was proposed. We used 1-D R*-tree in order to 
index the intervals of subfields and we termed this proposed method 'I-Hilbert'. 
Notice that the proposed method can be used with any indexing method that can 
handle interval data.  

We evaluated the proposed method 'I-Hilbert', 'I-All' and the linear scan method. 
The 'I-Hilbert' method is more efficient than the others. The performance 
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measurements shows that the proposed method outperformes consistently the others 
for all of the different data types used for the test.  

In fact, in this paper we were interested in scalar field databases. In future work we 
would like to extend our method to process value queries in vector field databases 
such as wind. 
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