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Abstract—Nowadays, more and more sources (connected de-
vices, social networks, etc.) emit real-time data with fluctuating
rates over time. Existing distributed stream processing engines
(SPE) have to resolve a difficult problem: deliver results satisfying
end-users in terms of quality and latency without over-consuming
resources. This paper focuses on parallelization of operators
to adapt their throughput to their input rate. We suggest
an approach which prevents operator congestion in order to
limit degradation of results quality. This approach relies on
an automatic and dynamic adaptation of resource consumption
for each continuous query. This solution takes advantage of i)
a metric estimating the activity level of operators in the near
future ii) the AUTOSCALE approach which evaluates the need
to modify parallelism degrees at local and global scope iii) an
integration into the Apache Storm solution. We show performance
tests comparing our approach to the native solution of this SPE.

I. INTRODUCTION

With the proliferation of data stream sources (connected
devices, sensors, social networks, etc.), specific issues related
to data volume and velocity have emerged. To address these
Big Data issues, some parallel and distributed solutions have
been developed [1]–[5].

Streams are potentially infinite sequences of items with
fluctuating rates and distribution over time. Users query these
streams through the definition of continuous queries [6],
which compute some results as soon as they receive new
items. For example, an application looking for traffic jam
detection consumes raw data streams from speed cameras.
Users can specify continuous queries implicitly by using a
declarative query language [6] or explicitly by building a graph
of operators [1]–[3]. The continuous query is turned into a
direct acyclic graph (DAG) of operators, denoted workflow
or topology. When processing multiple continuous queries at
the same time, some techniques [7] like query rewriting can
identify operators shared by many queries in order to execute
only once the same logical operator. We consider here selected
workflows after multiple query optimization. Each operator is
potentially processed in parallel [7], [8] by a set of threads.
This workflow is then distributed on a cluster of machines.
Considering our previous example on traffic jam detection,
sensor data are collected by an operator, which groups them

by location to compute average values every 15 minutes. These
averages are sent to an operator, which filters critical values
and raises an alert if necessary. Finally, a persistence operator
stores values into a remote database.

As we consider streams with rates that fluctuate contin-
uously, a SPE has fluctuating processing costs over time.
Thus, the resources required (CPU, RAM and bandwidth)
vary too. It appears then unavoidable that SPEs have to adapt
dynamically their usage of resources (i.e. number of allocated
processing units) to their processing requirements. Indeed,
an oversized usage implies large overheads due to massive
network traffic [9], [10]. On the contrary, an undersized usage
leads to congestion [11] of the system.

In order to adapt usage of resources, a SPE can manage two
aspects: scheduling and parallelism of operators. The first solu-
tion consists in changing scheduling of threads associated to an
operator. This allows a thread to be moved from one machine
to another. The aim of scheduling management is to keep to a
target concerning usage of resources on each machine [2], [9],
[10], [12]. For example, a scheduling strategy based on load
balancing [2] between machines allocates a maximal number
of available machines and spreads treatments over them. On
the contrary, a scheduling strategy based on network traffic
management [10] tends to concentrate treatments on a subset
of machines. The second solution affects operator parallelism
and defines how many threads handle the incoming load of an
operator at runtime. Under a certain threshold, the more there
are, the less each item waits before being processed.

In this paper, we aim at tackling the congestion issue.
Actually, an increase of input rate may lead an operator to
its congestion. The impact in a congestion is an unacceptable
end-to-end latency leading to system failure.

Some works [1], [2], [9], [10], [12] suggest scheduling
strategies which remove effective congestion of operators
only under the restrictive assumption that there is an optimal
scheduling plan according to a fixed set of operator instances.
We focus then on auto-parallelization strategies, changing
dynamically the set of operator instances in order to tackle
this issue.

Recent works [13]–[15] suggest approaches for elastic



stream processing, which tend to optimize performance and
resource usage. We consider as resources, the CPU, RAM
and bandwidth of processing units. To our knowledge, these
approaches do not aim at anticipating operator congestion as
they are curative. Moreover, some of them require user action.

We present a preventive approach relying on a metric
which estimates operator activity in the near future. This
metric is computed dynamically from the recent history for
each operator. Our auto-parallelization approach, named AU-
TOSCALE, can increase (scale-out) or decrease (scale-in) the
parallelism degree of each operator. AUTOSCALE takes into
account the local and the global context to identify necessary
and coherent modifications of parallelism degrees. It improves
the performance and controls the stability of the system.

In the remainder of this article, Section II presents the
context of execution and the challenges raised by congestion
management. In Section III, we discuss related works in more
detail. Then, in Section IV, we describe metrics and the
AUTOSCALE approach. Finally, we present an experimental
evaluation comparing AUTOSCALE to the native strategy of
Apache Storm in Section V.

II. BACKGROUND AND CHALLENGES

A. Background

In our context, we shall consider three continuous queries
Q1, Q2 and Q3 taking S1, S2 and S3 as input streams. As
shown on Figure 1, these queries are represented by work-
flows W1, W2 and W3 which correspond to their respective
execution plans.

Fig. 1. Execution context

W1 is a linear topology, W2 is a diamond topology and
W3 is a star topology. Each of these topology represents an
elementary topology and the most complex topologies can be
considered as a composition of these topologies[12].

To execute these topologies, each operator is mapped to a
set of threads. The number of threads executing an operator

is called its parallelism degree. On Figure 1, O2 is linked to
threads T 2

1 and T 2
2 , so its parallelism degree is two.

In order to run, these threads are then assigned to the
processing unit of machines M1 to M8 according to a schedul-
ing plan. In the example illustrated on Figure 1, threads of
topology W1 are distributed on machines M1 to M4.

Still on this example, we consider three machine roles.
First, machines M1 to M4 are active because they process
threads assigned on them. Then, M5 and M6 are configured
but inactive because there is no thread assigned on them.
Finally, M7 and M8 are available resources but they are not
configured so out of the scheduler’s reach.

B. Assumptions

We consider that each continuous query is composed of
stateless or stateful operators with respect to some assump-
tions. First, considering a set of continuous queries running
simultaneously, we assume that there are enough available
resources to process all queries (H1).

Then, we consider only SPEs able to manage states of
stateful operators (H2) like several well-known solutions [2],
[3], [16].

Concerning the execution of each query, we consider that
all operators can be processed in parallel by multiple threads
and scheduled potentially on different machines. The global
incoming load is divided evenly between threads executing
the same operator (H3).

These threads are assigned to machines according to a
scheduling strategy. We assume that this strategy revises oper-
ator placement periodically. Moreover, this strategy assigns at
most one thread for each operator on a given processing unit
(H4).

C. Challenges

Each operator applies a function defined by a user on each
input. For stateless operators, an input corresponds to an item,
while for stateful ones, an input matches to a set of items.
Depending on the time complexity of its function and available
CPU, an operator can process, on average, a certain number of
inputs per time unit. This number is called the capacity of the
operator. This capacity limits the input rate that an operator
can handle with a single thread. Given a thread executing an
operator, congestion may occur when input rate is greater than
capacity. There are two possible cases of this: a load balancing
issue between threads executing the same operator or a critical
change in global input rate. The first case is out of our scope
and has been studied in [17]. We focus then on the second
case in our context. To limit the impact of a critical input rate,
two solutions are possible: changing the current affectations
of critical operators or increasing their parallelism degree.

Faced with effective congestion, the scheduler can move
operators from overused nodes to less busy ones. While
this provides operators with more available CPU, capacity is
improved only if the new node has more available resources.

In order to prevent congestion, a SPE should be able to
detect when an operator’s input rate reaches or exceeds its



capacity. Indeed, a detection based on resource consumption
is only a solution for effective congestion. It is not satisfactory
because treatment quality deteriorates before the system has
time to reconfigure itself. Even if no item is lost, overall
latency suffers from the congestion of one or more operators.

Yet, it is not easy to decide when to increase (scale-out)
or to decrease (scale-in) the parallelism degree of an operator.
Actually, for any one operator, if its input rate exceeds its
capacity, the operator tends towards congestion. However,
congestion is effective only if the input rate remains equal
to or greater than capacity for a significant time. In any other
case, triggering a scale-out too early will lead to the activation
of one or more unnecessary threads. This will affect system
stability and generate large reconfiguration overheads. It is
then crucial that a relevant strategy takes system stability into
account. Moreover, it is important that this strategy reduces
the parallelism degree of underused operators. It should fit
global capacity to processing needs and, depending on the
scheduling strategy, free unnecessary processing units which
are then available for other queries.

To sum up, automatic and dynamic adaptation of operators
capacities requires that SPEs can detect potential congestion
before it becomes effective in most cases. Moreover, a rele-
vant strategy should not overreact because of reconfiguration
overheads. Finally, the system should fit operators capacities
to their processing needs in order to consume only necessary
resources. Finding a satisfactory compromise between these
issues is a major challenge for elastic stream processing.
Indeed, with the growing popularity of pay-as-you-consume
solutions[18] and the emergence of Green IT, it is crucial that
the current generation of SPEs takes treatment elasticity into
account.

III. RELATED WORKS

The performance of a SPE and the quality of its results
rely mainly on its reactivity to fluctuations in its execution
context. The problem is complex because it requires adaptation
of resource usage, while avoiding massive reconfiguration
overheads that affect SPE stability.

SPEs must integrate a strategy to confront large fluctuations
in input rate. This strategy is either curative or preventive. In
the first case, the SPE reacts exclusively to existing congestion
of operators, while in the second case, the SPE is able to
anticipate them. In both cases, if the SPE triggers some
mechanisms to remove or avoid automatically a congestion
at runtime, it is considered to be automatic. In other cases, it
is not an automatic approach.

Some solutions [9], [10] are based on the state of resources
and the network traffic to determine an optimal operator
scheduling. This allows global latency of a topology to be
reduced as it avoids large network overheads. However, these
solutions rely exclusively on scheduling management (see
Section II) and are curative. In particular, they do not adapt
the parallelism degree. This adaptation then requires additional
solutions.

Solutions based on maximal usage of resources [3], [16]
serve as a guarantee, according to hypothesis H1, that con-
tinuous queries can be processed without loss of quality.
Unfortunately, these solutions are inappropriate in a context
simultaneously. Moreover, from an economical and energetic
point of view, it is not advisable to spread treatments without
taking load fluctuations into account.

In [11], authors suggest an algorithm enabling scale-in or
scale-out on demand. This approach relies on an external
intervention or a script not explained by the authors to detect
automatically a need for more resources. Actually, there is no
information about the transition from an available machine
to a configured one, thus making this approach inefficient
with a constant number of configured resources. Finally, this
approach is curative and cannot prevent operator congestion.

Some solutions [13], [14] make it possible to adapt dynam-
ically and automatically the parallelism degree of operators
with a constant number of configured resources. Nevertheless,
they rely on the detection of effective operator congestion.
Even if they can reduce congestion duration, they cannot
anticipate it. Likewise, in [15], authors suggest a solution
based on a learning algorithm. According to this method, the
system is able to select the parallelism degree maximizing
performance gain after a learning phase. However, this method
is based on active resource monitoring (CPU and RAM),
making anticipation of operator congestion a complex process.

Finally, concerning anticipation of operator congestion,
some works [19], [20] based on queuing theory have been
suggested. As presented in [15], [19], queuing theory relies on
a detailed system model and do not fit to dynamic modification
of execution context such as frequent fluctuations in input rate
or add of processing units at runtime. We choose then time
series analysis algorithms [21] as forecasting method.

IV. AUTOSCALE APPROACH

A. Goal

As discussed in Section II, we aim at suggesting a strategy
able to prevent operator congestion. In AUTOSCALE, we seek
to define an auto-parallelization strategy which fits usage of
resources dynamically and automatically in order to prevent
congestion and free unnecessary resources. We consider that
an adequate usage of resources, with respect to given treat-
ments, yields results with acceptable item loss and minimum
latency.

B. Monitoring formalization

We introduce the formalization of monitored values used by
our auto-parallelization strategy.

Let T = (O,V) the topology of a continuous query
represented as a direct acyclic graph where O is the set of
operators and V the set of streams. We consider that each
operator Oi can be processed in parallel by a set of threads.
The parallelism considered in this paper is data parallelism
[7]. The number of threads, denoted deg(Oi), defines the
parallelism degree of operator Oi.



Fig. 2. Monitoring window

Let F a set of monitoring sliding windows Fi =
{(F i

j )}j∈N+ . As illustrated on Figure 2, each window Fi is
associated with the operator Oi and is composed of iterations
F i
j . Each F i

j is defined by a duration ∆ and collects measure-
ments collected during this interval. These measurements are
collected according to a predefined set of timestamps Mi =
{mi

1,m
i
2, ..., m

i
n}n∈N+ . For each operator Oi, we collect mea-

surements taking into account items received and processed
in the interval [mi

k−1,m
i
k[ with k=1,...,n. It is worth noting

that a master process (e.g. JobTracker for Hadoop) serves
as guarantee that measurements are collected synchronously
on each processing unit. Moreover, as mentioned in Section
II, we consider that the scheduling strategy runs periodically,
so we assume that this period corresponds to the size of the
interval [mi

k−1,m
i
k[. To improve monitoring effectiveness, the

size of this interval should be greater than the time required
to pre-process and store measurements in a standard database
management system, which is around a second. In addition, the
monitoring window size should be greater than the size of the
greatest processing window of a stateful operator belonging
to a given topology. It ensures that all metrics presented
in the remainder of this section can be computed for both
stateless and stateful operators. Finally, scale-in and scale-
out actions performed by AUTOSCALE have no impact on
monitored values as we take a grace period into account after
each reconfiguration.

Let Ri the set, potentially infinite, of items received by
operator Oi. We consider Ri,j as the subset of items received
by Oi during the iteration F i

j , and Ri
k the subset of items

received between [mi
k−1,m

i
k[. In the example presented on

Figure 2, Ri,j is the sum of measurements Ri
0 to Ri

4, and
Ri,j+1 the sum of measurements Ri

1 to Ri
5.

In addition to the number of items received, we collect the
processing latency per item of the operator observed during
F i
j , denoted LatF i

j
. This does not include the time an item

may spend in pending queues.

C. Estimation of operator activities at local scope

Now that we have defined how each operator is monitored,
we introduce metrics computed from monitored values to
estimate the activity of each operator.

1) Metrics: The aim is to estimate if the number of items an
operator has to process is compatible with its current capacity.
If it is not, the operator is considered as a potential source of
congestion. The input size an operator has to process during an
iteration is defined as the number of items received during this
iteration added to the pending items received during previous
iterations. The effective input size during the iteration F i

j is
then:

Inputij = |Ri,j |+ pendingF i
j−1

(1)

Because of the value |Ri,j | in formula (1), this effective
input size can only be computed at the end of the iteration F i

j .
To anticipate operator congestion, we need to estimate |Ri,j |
at the end of F i

j−1. We estimate the number of items received
during F i

j with a linear regression based on measurements
collected during F i

j−1. Let f ij−1 the affine function computed
by linear regression and based on pairs (mi

k, Ri
k) collected

during F i
j . The estimation of items received during F i

j is then:

|EstimRi,j | =
∑

mi
k∈Mi

df ij−1(mi
k)e (2)

We choose linear regression to compute estimations arbi-
trarily. Up to now, the choice of this quite simple solution has
not been contradicted by experimental results.

The expected input size during F i
j is then defined as follows:

EstimInputF i
j

= |EstimRi,j |+ pendingF i
j−1

(3)

Now that we have an approximation of the future input
size of each operator Oi during F i

j , we have to estimate their
respective capacities on F i

j . We consider operator capacity,
the average number of items this operator is able to process
during an iteration of size ∆.

CapacityF i
j

=
1

LatF i
j

×∆× deg(Oi) (4)

We use covariance to estimate the capacity of Oi during
F i
j .

EstimCapacityF i
j

= CapacityF i
j−1

+ εi (5)

where εi is the covariance between the capacity during F i
j−1

and the capacities observed during previous iterations.
The above estimations allow us to define a control metric

evaluating the activity of an operator at its local scope.
The notion of Local Activity Level, denoted LAL, represents
intuitively the balance between parallelism degree and future
input size. It is defined by:

LALF i
j

=
EstimInputF i

j

EstimCapacityF i
j

(6)



Let θmin and θmax two thresholds delimiting respectively
a low and a high activity level. For a given operator, the
interpretation of LAL value is as follows:

• If LALF i
j
≤ θmin, the local activity of the operator is

’low’ because operator capacity is too great in comparison
to EstimInputF i

j
.

• If θmin < LALF i
j
≤ θmax, the local activity of the

operator is ’medium’ because the operator is able to
process all items during F i

j .
• If θmax < LALF i

j
≤ 1, the local activity of the operator

is ’high’ because the operator has just the capacity to
process items waiting to be processed during F i

j .
• If LALF i

j
> 1, the local activity of the operator is

then ’critical’ because the operator is not able to pro-
cess now EstimInputF i

j
with its estimated capacity

EstimCapacityF i
j
.

2) Principle: The AUTOSCALE approach determines local
activities. Each operator is mapped to a vertex of an attributed
graph. Each attribute corresponds to a local metric as presented
on Figure 3. We denote this attributed graph the instantaneous
graph of local activities (IGLA). An example of IGLA is
illustrated on Figure 3 for query Q1 introduced in Section
II.

Fig. 3. An example of IGLA

D. Qualitative estimation of scale-in/out requirements at
global scope

As soon as the IGLA has been built, the AUTOSCALE
approach checks its global consistency. For this, we introduce
a metric that quantifies the effect of local activities on next
operators.

1) Metrics: Let us consider a monitored operator Oi during
an iteration F i

j . We have measured the total number of items
it has processed, denoted processF i

j
, and the total number of

items it has emitted during F i
j , denoted outputF i

j
. We compute

its selectivity factor SFF i
j

during the iteration F i
j as follows:

SFF i
j

=
outputF i

j

processF i
j

(7)

According to estimation of the future input size
EstimInputF i

j
and the current capacity CapacityF i

j
of the

operator Oi, we confine the estimated number of processed
elements during the next iteration, denoted EstimProcessF i

j
,

to the following value:

EstimProcessF i
j

= min(EstimInputF i
j
, CapacityF i

j
×∆)

(8)
It is a fact that an operator can at most process the number

of items corresponding to its capacity per time unit multiplied
by the duration of an iteration. With this estimation and the
selectivity factor SFF i

j
, we estimate then number of items

emitted by Oi on F i
j+1, denoted EstimOuputF i

j+1
with

respect to the following formula:

EstimOutputF i
j+1

= EstimProcessF i
j
× SFF i

j
(9)

According this value, it is now possible to obtain a comple-
mentary estimation of the future input size of next operators.
Concretely, let us consider a child operator Oc receiving its in-
puts from a parent operator Op. The value EstimOutputFp

j+1

is intrinsically different from EstimInputF c
j

since it is not
based on items already received by Oc as illustrated on Figure
4. Indeed, EstimOutputFp

j+1
is computed from items received

and processed by the previous operator, in this example, Op.
Intuitively, it offers a better anticipation of critical variations
of the global input rate.

2) Global consistency strategy: So, still considering an
operator Oc receiving its inputs from an operator Op, we have
at our disposal two distinct estimations of the future input
size of Oc: its local estimation EstimInputF c

j
and the global

estimation EstimOutputFp
j+1

. The choice of the estimation
to consider depends on which aspect the SPE should favor.

If the SPE serves as guarantee that the capacity of each
operator remains great enough to absorb its inputs, the maxi-
mal value between EstimInputF c

j
and EstimOutputFp

j+1
is

considered to adjust the parallelism degree of Oc. According
to available estimations and H1, it ensures that each operator
is able to process all incoming items. Nevertheless, it prevents
scale-in from being performed until local and global estima-
tions confirm that it does not lead to a potential congestion.

On the contrary, if the SPE aims at using only necessary
resources, the minimal value between EstimInputF c

j
and

EstimOutputFp
j+1

is used. With this combination strategy,
the SPE decreases operator capacity as soon as it is locally
or globally advisable. However, the drawback of this strategy
is that it affects system stability. Indeed, decreasing operator
capacity to save resources as soon as possible also means
increasing them whenever input size increases significantly.

For both combination strategies, we consider the globally
consistent estimation as the result of a function combine,
which takes both estimations as input and returns the globally
consistent estimation according to the SPE’s goal.

3) Principle: As presented in Algorithm 1, we perform a
BFS on the IGLA from child operators of sources. Indeed,
local estimations of source operators cannot be contradicted
by the global context. We check whether any parent of the op-
erator has a critical activity. If the function activity() returns
that the current operator has a critical parent at local scale and
the method unchecked() returns that it has not been already



Algorithm 1 Global consistency checking
Require: an operator Oi, the set parents of parent operators

of Oi, the local-based IGLA
Ensure: the parallelism degree of Oi according to the global

context
current ← currentDeg(Oi);
for all parent in parents do

if activity(parent) == ’critical’ ∧ unchecked(Oi) then
EstimParentOutput ←

∑
EstimOutput

F
Pi
j+1

;
EstimInputF i

j
← combine(EstimInputF i

j
,

EstimParentOutput);
next ← degj(Oi);
if current > next then
setScaleIn(IGLA, Oi, next);

end if
if current == next then
setNothing(IGLA, Oi, current);

end if
if current < next then
setScaleOut(IGLA, Oi, next);

end if
checked ← checked ∪ {Oi};

end if
end for

checked, we compute the globally consistent estimation of
its future input size and replace its local estimation. This
replacement propagates the effect of critical estimation to
all operators processing items emitted by an operator. Then,
we compare the current parallelism degree given by function
currentDeg() and the adequate parallelism. According to
this comparison, we map each operator to a modification of
parallelism degree.

TABLE I
DECISION MATRIX FOR IGLA COMPUTATION

HH
HHH

HHH
HH

Operator
activity

Evolution
trend of

inputs Decreasing or
constant

Increasing

low activity scale-in nothing
medium activity nothing nothing
high activity nothing scale-out
critical activity scale-out scale-out

Now that we have a globally consistent estimation of input
size, we define the notion Global Activity Level, denoted GAL,
of an operator Oi defined as follows:

GALF i
j

=
combine(EstimInputF i

j
,
∑
EstimOutput

F
Pi
j+1

)

EstimCapacityF i
j

(10)
where

∑
EstimOutput

F
Pi
j+1

is the sum of the estimated
outputs of all parent operators of Oi. According to Table I,

we can evaluate at a global scope if a scale-in or a scale-
out is needed. We can map each operator to a modification
of its parallelism degree. This decision takes into account the
global activity of a given operator and the evolution trend of its
input size. As a reminder, the affine function f ij is computed
with linear regression to estimate the future input size of an
operator (see formula (2)). The derivative value of this function
is used to evaluate the evolution trend of input size. If this
value is strictly positive, input size is considered as increasing.
Otherwise it is estimated as decreasing or constant.

Fig. 4. Estimations at local and global scope

To summarize, AUTOSCALE estimates activity at local and
global scope for each operator as illustrated on Figure 4. At
local scope, AUTOSCALE computes an estimation of future
input size by monitoring received data and pending queues.
The input size estimation is divided by the estimated operator
capacity to give a value of its local activity level. To propagate
local estimations to next operators, the estimated output is
computed, relying on estimation of items processed and the
operator selectivity factor. For child operators, this estimation
is combined with their local estimation of input size to help
the SPE reach its goal as stated above.

E. Quantification of scale-in/out modifications

We then identified operators requiring scale-in or scale-out.
We need now to evaluate the appropriate parallelism degree
of each operator requiring a modification. Let degj−1(Oi) the
parallelism degree of Oi during the iteration F i

j . Let maxPOi
,

the maximal parallelism degree of Oi, we consider that its
appropriate parallelism degree is defined as follows:

degj(Oi) =


min(maxPOi

, degj−1(Oi) + 1),

if activity is ’high’
min(maxPOi , ddegj−1(Oi)×GALF i

j
e),

otherwise
(11)

We distinguish the specific case where an operator has a
high activity and an increasing input rate. Indeed, the value
of GALF i

j
is smaller than 1, but a scale-out is recommended

(see Table I). In this case, we simply increment the parallelism
degree of the operator by 1.

V. EVALUATION

A. Design and Implementation

1) Overview of Apache Storm: Apache Storm[2] is an
open-source SPE, allowing users to define continuous queries



as graphs of operators, called topologies. Users define each
operator in a high-level programming language such as Java,
Python or Clojure.

Fig. 5. Storm architecture

Operators, named components in Storm terminology, belong
to one of two categories: spouts or bolts. A spout is a connector
to a raw stream source and represents an entry of a topology. It
distributes stream items to components to which it is connected
and can process filtering operations if required. Bolts consume
items from any component and compute a result for each item
received (stateless bolt) or for a set of items (stateful bolt).

Each component is executed in parallel by executors. An
executor is an instance of an operator. Each executor is
assigned to a processing unit by the scheduler (see Figure
5). The number of executors for a given spout/bolt is revised
at runtime only at user request[11].

Concerning the execution support, Storm relies on two types
of processing nodes: Nimbus and supervisor. The Nimbus acts
as a JobTracker for Hadoop [22]. As illustrated on Figure 5,
each supervisor manages a pool of workers, i.e. processing
units, and monitors executors assigned on them.

In this article, we consider the scheduling strategy presented
in [12]. This strategy aims at optimizing resource usage of
active supervisors and using only the necessary supervisors
according to resource requirements defined by users.

Fig. 6. AUTOSCALE architecture

2) Design of the AUTOSCALE approach: We have im-
plemented AUTOSCALE over Storm 1.0.2. We have chosen
this solution over other efficient SPEs such as Apache Spark
Streaming[16] due to data management. Yet, Spark Stream-
ing systematically groups items into batches, called Resilient
Distributed Datasets (RDD). Nevertheless, if RDD sizes are
large compared to incoming volumes, detection of congestion
and over-consumption of resources is delayed. Thus, RDD

size must be managed dynamically in addition to parallelism
degrees.

AUTOSCALE is composed of three modules:
• Component Monitor: this module listens to the Nimbus,

collects and post-processes statistics concerning each ex-
ecutor. It stores monitoring data in a database (see Figure
6). These data are periodically retrieved by a Scaling
Manager, which then evaluates whether a modification
is needed for each operator as described above.

• Assignment Monitor: this module collects information on
executor assignments and supervisor states.

• Topology Explorer: for each submitted topology, this
module builds static knowledge in order to explore
topologies efficiently. For example, it builds lists of
parents and children for each operator.

The AUTOSCALE scheduler includes the auto-parallelization
strategy described above and the resource-aware scheduling
strategy. It implements the IScheduler interface of the Storm
API.

B. Experimental Protocol

Our test cluster is composed of 7 VMs. Each VM has
at its disposal a dual-core CPU Intel(R) Xeon(R) E5-2620
running at 2.00GHz, 4Gb of RAM and 40Gb of hard disk
space. A machine runs the Nimbus daemon and is dedicated
to cluster coordination. Each supervisor manages 4 workers.
On the Nimbus host, a MySQL database is also deployed in
order to store historical data as illustrated above.

To validate our approach, we choose to show its impact
on three elementary topologies: a linear, a star and a diamond
topology. Each elementary topology is composed of two types
of bolts: intermediate bolts with low latency and sink bolts
with high latency.

In this section, we choose to present only some results
relative to the linear ad a complex topology. However, more
detailed results for diamond and star topologies are also
available on our website1. Moreover, implementation, datasets
and topologies can be downloaded for reproductibility.

Fig. 7. 3-step stream

We built a 3-step synthetic stream with the following char-
acteristics: 1) distribution with a small standard derivation 2)

1https://liris.cnrs.fr/ rkottoko/autoscale/v2/



significant increase and decrease in load. Indeed, as illustrated
on Figure 7, input load is constant at a low rate. Load
then increases progressively before stabilizing at a high rate.
Finally, rates decrease markedly until it reaches the initial low
rate. We also add small and irregular fluctuations in order to
simulate fluctuations in a real stream. To comply with good
Storm practices, we implemented the replay of out-of-time
items.

Fig. 8. 5-step stream

We then apply a 5-step stream with sudden input rate
peaks (see Figure 8) to test the reactivity of our approach.
This second stream moves from a low input to a very high
one without a progressive transition as presented above. The
input rate then decreases suddenly before increasing again. We
summarize the main experimental parameters in Table II.

TABLE II
MAIN PARAMETERS

window size 60s
monitoring frequency 10s

θmin 0.3
θmax 0.8

processing timeout 30s
combine strategy max

C. Results

1) 3-step stream and linear topology: We compare AU-
TOSCALE to the native scheduler according to two config-
urations. We summarize experimental configurations for the
linear topology in Table III:

TABLE III
PARAMETERS OF OPERATORS FOR LINEAR TOPOLOGY

intermediate sink
average latency 2ms 80ms

min degree 1 1
expert degree 1 8
max degree 8 8
CPU load 20.0 80.0

memory load 256Mb 512Mb

With the configuration ConfMin, the initial number of
executors per bolt corresponds to minimal degrees (see Table
III). Intuitively, the configuration ConfMin is adapted to small

incoming loads but cannot handle large ones. With the con-
figuration ConfExpt, initial numbers of executors correspond
to expert degrees (see Table III). Expert degrees have been
chosen with full knowledge of stream variation and operator
latencies. This configuration can in fact handle maximal loads
without wasting resources.

For each configuration, we measured the global latency of
the topology (configuration performance) and the number of
dephased items (results quality). Concerning system reactivity
and the usage of resources, we observed parallelism degrees
of each bolt.

With ConfMin, we observe that the incoming load cannot
be handled, thus leading to the complete congestion of the
topology. Indeed, the topology is not able to process items
completely. As soon as congestion occurs, new items emitted
by the spout are dephased and replayed indefinitely until a
user intervenes (see Figure 9a). On the contrary, our auto-
parallelization strategy increases dynamically and automat-
ically the parallelism degree of critical operators in order
to adjust their capacities to future incoming loads. When
the stream rate decreases, the parallelism degree decreases
accordingly. It also prevents overusing resources that are no
longer necessary.

With ConfExpt (see Figure 9b), we start with a configuration
able to handle large loads. Nevertheless, this configuration
overuses resources when the stream rate is low. It corresponds
to the start and the end of the synthetic stream. Our auto-
parallelization strategy reduces the parallelism degree when
operators do not need large capacities. In this case, just as
with ConfMin, the parallelism degree is adapted dynamically.
AUTOSCALE then achieves equivalent performance with ap-
proximately 37.5% less CPU and memory resources. The
significant increase in topology latency with AUTOSCALE is
due to a scale-in from three to one supervisor, which re-routes
multiple items and implies this significant overhead.

2) 5-step stream and linear topology: We can see on
Figure 10, that with ConfMin, Storm is unable to handle the
sudden increase in input rate and that topology is completely
congested. Even the decrease in input rate is not enough to
restore normal operator activity. Indeed, due to replay of out-
of-time items more and more emissions are carried out by the
spout, with the result that pending queues remain full. On the
contrary, the AUTOSCALE approach reacts in multiple stages
to adapt the capacity of each operator to fluctuations in input
rate. Even the intermediate bolt, which has a very low latency,
performs a scale-out as a precaution thanks to the global
context. As a result of this adaptation, operators can consume
their respective pending queues fast enough to benefit from the
decrease in input rate. AUTOSCALE then adapts dynamically
the parallelism degree. Finally, a reconfiguration is performed
as soon as a new peak appears.

3) 3-step stream and advertising topology: Finally, we test
our approach on an advertising topology mainly inspired from
a topology used in [12] and available on Github2 to validate

2https://github.com/yahoo/streaming-benchmarks/



(a) Comparison between Storm (Default) and AUTOSCALE for the Linear topology with ConfMin and a 3-step stream.

(b) Comparison between Storm (Default) and AUTOSCALE for the Linear topology with ConfExpt and a 3-step stream.

Fig. 9. Experimental results for the Linear topology

Fig. 10. Comparison between Storm (Default) and AUTOSCALE for the Linear topology with ConfMin and 5-step stream.

our approach. We essentially modify the source to be able to
reproduce the same stream with different configurations and
add two operators (ip projection and ip processor) to obtain
a complex topology. Moreover, we apply the input stream
variation illustrated on Figure 7.

Fig. 11. Advertising topology for stream benchmarking

This topology takes as input, logs representing an event

linked to an advertisement on a web page. Each log is
first deserialized before being transmitted to an event filter.
Two projection operators receive items from this filter, one
looking for user IP addresses and the other for information
on the ad. A join with a static dataset is performed to link
the ad to a promotion campaign. Finally, IP and campaign
processors increase users and campaign counts to update a
remote database. The main interest of this topology is the
significant selectivity of a filter operator (see Figure 11), as
this implies that a large increase in input rate will have a minor
impact on final operators even if they have large latencies in
comparison with other operators.

We observe that even if the topology is not congested,
the AUTOSCALE approach performs some scale-outs in order
to adapt operator capacity to their respective input rates as
illustrated on Figure 12a. This is due to the combine strategy,
which takes into account the maximum between local and



(a) Comparison between Storm (Default) and AUTOSCALE for the Advertising topology with ConfMin and a 3-step stream.

(b) Comparison between Storm (Default) and AUTOSCALE for the Advertising topology with ConfExpt and a 3-step stream.

Fig. 12. Experimental results for the Advertising topology

global estimations as the globally consistent one. Therefore,
when a slow operator begins to accumulate some items on its
pending queue, the AUTOSCALE approach performs a scale-
out to avoid congestion. Nevertheless, AUTOSCALE performs
a similar throughput even if there are some unnecessary
reconfigurations in one case. We can then estimate overheads
induced by AUTOSCALE to 12% in comparison to actual needs
in terms of CPU and memory requirements.

If a user bases his/her choice of parallelism degree exclu-
sively on latencies, he/she will start the topology with some
unnecessary executors (see Figure 12b). The AUTOSCALE
approach then performs scale-in to fit capacities of operators
to their respective processing needs. It is important to notice
that the dynamic adaptation made by AUTOSCALE, combined
with the scheduler, allows all treatments to be collected on a
single supervisor. With AUTOSCALE, Storm is then able to
handle biggest amount of data without generating network
traffic, which is a large overhead factor, as explained in [10],
and using 50% less resources.

VI. CONCLUSION

We suggest an approach that adapts dynamically and au-
tomatically the parallelism degree of operators according to
stream rate fluctuations. Conducted experiments show that this
approach limits operator congestion. Indeed, even a resource-
aware strategy cannot prevent operator congestion if the issue
is not exclusively linked to operator placement. We highlight
through different test cases that an auto-parallelization strategy
limits operator congestion significantly by adapting automat-
ically and dynamically the parallelism degree of operators.

Moreover, when compared to a configuration aiming at absorb-
ing input rate peaks, AUTOSCALE allows the SPE to deliver
similar performance with up to 37% less CPU and memory
resources. Also, a dynamic change in the parallelism degree of
operators significantly decrease network traffic when the input
stream rate is low. When applied to a topology with selective
operators, experiments show an overhead that does not exceed
12% of CPU and memory resources even with a strategy
favoring scale-out as soon as possible. Nevertheless, the reac-
tivity of AUTOSCALE is limited by monitoring configuration.
This is because, if incoming load increases massively between
consecutive timestamps, AUTOSCALE may not re-configure
the system within an acceptable duration. Yet, AUTOSCALE
periodically analyzes historical data before taking decisions.
Thus, addition of monitoring of CPU and RAM resources is an
effective solution for dealing with sudden operator congestion.
Our future works deal with that limitation and the management
of limited resources according to processing needs.
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