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ABSTRACT

This paper proposes a flexible control framework for rela-
tional personal data that enforces data originators’ dissemi-
nation policies. Inspired by the sticky policy paradigm and
mandatory access control, dissemination policies are linked
with atomic data and are combined when different pieces
of data are merged. The background setting of relational
provenance guarantees that the policy combining operations
behave accordingly to the operations carried out on the data.
We show that the framework can capture a large class of
policies similar to those of lattice-based access control mod-
els and that it can be integrated seamlessly into relational
database management systems. In particular, we define a
path oriented dissemination control model where policies de-
fine authorized chains of transfers between databases.

Promising ongoing research work include the generaliza-
tion of the theoretical framework to more expressive query
languages including aggregation and difference operators as
well as experiments on secure tokens.

Keywords: access control, relational databases, prove-
nance, information flow, personal data server.

1. INTRODUCTION

The digitization of personal files has proved to be a con-
venient procedure to store, find, query and transfer these
files. Its advantages have led to the large amount of digi-
tized personal data we own today. Since such data contain
private information by nature, it is mandatory to offer docu-
ment and file owners some control over the diffusion of their
personal data. Secure Personal Data Servers (PDSs) built
upon portable and secure devices have emerged as a possi-
ble technical solution to deal with the issues raised by the
proliferation of personal data by providing secure storage. A
PDS is a USB-sized token equipped with a tiny processor,
cryptographic capabilities and protection against physical
tampering. It has been shown that a Relational DataBase
Management System (R-DBMS) can be embedded into a
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Figure 1: Data transfer between PDS

secure smart card, to provide a real breakthrough in the
management of sensitive data [3]. However access control
and information flow control solutions need to be developed
for such environments and for personal relational databases
as well.

This paper defines an information flow control model,
namely Tuple-Based Access Control (TBAC), inspired by
lattice-based and Mandatory Access Control (MAC) mod-
els [23] as well as by the sticky policy paradigm [12] and
Hippocratic DBMS [1]. The objective of TBAC is to pro-
vide a mechanism that controls the dissemination of tuples
between R-DBMS according to the authorizations defined
by the producers of the initial tuples. TBAC authorization
policies are attached to tuples as a specific form of prove-
nance information, then, when tuples are accessed by means
of relational queries, the related policies are combined ac-
cordingly to the queries’ structures. In this paper we em-
phasize PDS-based applications, but the TBAC approach is
more generally applicable to relational databases.

Figure [1] illustrates a typical data transfer scenario be-

tween three participants that own personal relational databases

powered by PDSs: the PDSs both act as clients that send
queries to other participants’ PDSs as well as servers that
compute queries and send results to requesters. The point
of TBAC is to filter results in such a way that tuples owners’
policies are enforced along chains of transfers. In the sce-
nario of Figure[I] Alice is the initial producer who tags each



of her tuples at insertion time with an authorization policy
that stipulates who has access to her personal information.
Bob, one of Alice’s colleagues, executes a query on Alice’s
PDS. Bob does not receive the complete answer to his query
but only a subset of it, filtered according to Bob’s creden-
tials. Then Charlie asks Bob for Alice’s data combined with
others’ tuples under Bob’s sovereignty: at this point, we aim
at enforcing an access control complying with both the ac-
cess rights Alice initially put on her tuples as well as the
access rights stipulated by Bob on his ones. Doing so, we
can control the transfer of information between the partic-
ipants of the system made of all PDSs with the guarantee
that the initial will of tuple producers are satisfied.

In Section [2] we provide background information on the
provenance model on which TBAC relies. In Section [3] we
define the TBAC access-control models family: a flexible
tuple-grained model that integrates with the core engine of
a R-DBMS. More precisely, we define an abstract settings,
give its semantics and exemplify it with several kinds of au-
thorization policies. The two key differences between TBAC
and traditional MAC in R-DBMS (e.g., Oracle Label Secu-
rity) are the treatment of alternation and the seamless in-
tegration of control into query evaluation. In Section @, we
focus on dissemination control to show how to express autho-
rized path policies that control where data can flow from one
PDS to another. In Section [} we compare TBAC against
standard access control models used in R-DBMS and we sur-
vey related work on dissemination control and provenance-
based access control models. Finally, in Section [6] we dis-
cuss the design of TBAC, its usability and we show how
to use Ciphertext-Policy Attribute Based Encryption to en-
force TBAC, before concluding this paper and suggesting
further research work in Section [

2. RELATIONAL PROVENANCE

In TBAC, security policies are labels called s-tags, for
security tags, associated to tuples, as are labels in MAC
models. However, we do not assume that labels are auto-
matically deduced from the users’ credentials but are rather
user-defined statements. The main building block to imple-
ment a sticky policy approach is a mechanism that deals
with s-tags consistently with the operations carried out on
the tuples. Green, Karvounarakis and Tannen have intro-
duced a formal framework — the extended Relational Algebra
(RAT) — that provides a positive and elegant answer to this
problem [13] in the setting of the positive relational alge-
bra (Selection (o), Projection (), Join (X), Renaming (p)
and Union (U)). In the RA' model each tuple is anno-
tated with a value from a set K of s-tags. When tuples are
combined by SPJRU expressions their related metadata are
combined accordingly using two operations: ® : K x K — K
and ® : K x K — K that act as generalized versions of the
boolean operators V and A used in the classical relational
algebra with set semantics. Informally, & combines s-tags
of tuples involved in unions and projections while ® is used
by joins and cartesian product operations.

Relational algebra obeys some identities (e.g., R X (S'U
T) = RX SURNXT), akey result of RA" that we will use in
Section [3is to show that the algebraic structures that reflect
and preserve fundamental identities of the positive relational
algebra are precisely commutative semirings. A commuta-
tive semiring on an underlying set K is an algebraic vari-
ety (K,®,®,0,1) made of two different binary operations

r A B C s-tag
to a . c ko
tv d . e ki
to f g e k’z
q(r) A C s-tag
S0 a c (ko ® ko) (&) (ko & k’o)
s1 a e (ko®k)
S2 d ¢ (k‘o ® k‘l)
s3 d e (k1®k)® (ki ®Fk)® (k1 ®k2)
sa  f e (k2®k2)® (k2 ®Fk2) ® (k1 ®k2)

Table 1: Instance r and result ¢(r)

@ and ® with two distinguished elements 0 and 1. The
substructures (K, ®,0) and (K, ®, 1) are both commutative
monoids, with the additional properties that ® distributes
over @ and that 0 is absorbing for ®. Thus, it is basically
a distributive lattice without the idempotency requirement.
A homomorphism (of semirings) between (K1, ®1, ®1, 01, 11)
and <K2,@2,®2,02,12> is a function f : Ki — Ks that
satisfies the usual requirements of a structure-preserving
map, f(z ®1y) = f(x) ©2 f(y), f(z@1y) = f(z) @2 f(y),
f(01) =02, f(11) = 1. Details are to be found in [13].

As an example, consider the instance r given by Table
which contains three tuples annotated respectively with ko,
k1 and k2. We assume that the instance r is held by Alice
in her PDS. Bob runs the following SPJRU query g on Al-
ice’s secure PDS: q(r) = mac(map(r) X wpc(r) Umac(r) X
meco(r)) Tableillustrates the RAT semantics, for example,
s3 ’s annotation (k1 ®k1) P (k1 ®k1)® (k1 ®k2) indicates that
there are three different ways to obtain (d, e), one for each
monomial: by joining t; with itself on B (first monomial
k1 ® ki1); by joining ¢; with itself on C' (second monomial
k1 ® k1); by combining ¢; with ¢tz (monomial k1 ® k).

3. THE TBAC MODELS FAMILY

The key idea behind the design of the TBAC model is to
think about a semiring on K as the algebraic structure of
security policies, similar to the lattices used in lattice-based
access control and MAC. The first ingredient is the semiring
(K,®,®,0,1) of access rights that are attached to tuples.
The two distinguished elements 0 € K and 1 € K represent
the deny-all and the allow-all s-tag respectively. Opera-
tors @ and ® are policy combinators that captures summa-
tion (a.k.a., disjunction) and product (a.k.a., conjunction)
of policies. The second ingredient is the set C of creden-
tials that are associated with users. The last ingredient is
the decision function f : C x K — B (with B = {T,1})
that decides whether a tuple with s-tag k£ € K should be
authorized or not by comparing it against the requester’s
credentials ¢ € C. The decision function captures the access
control semantics of TBAC: a user with credentials ¢ has
access to a tuple t, tagged with k, in a query result g(r)
only if the decision function f(c)(k) is T. In the rest of this
section we introduce motivating instances of the framework,
entitled UserSet, AttributeSet and Deadline TBAC, we show
the core semantic property of the framework and prove that
different TBAC policies can be integrated. From now on,
we will write (¢ : k) for a tuple ¢t and its s-tag k.



3.1 Example instances

3.1.1 UserSet TBAC

In UserSet TBAC a user is allowed to access a tuple based
on his/her identity and the set of authorized users. We note
by U the set of all the users in the system. Each tuple ¢
is annotated by an element £ C U, which means that every
user in k is allowed to read ¢t. Formally, we have K = P(U)
with P the powerset operator and C = U. UserSet TBAC
amounts to instantiating the RA™" framework by choosing
the structure (P(U),U,N, B, U) as the domain of s-tags. For
a user u requesting a tuple (¢ : k), access is granted if u € k.
The decision function is thus defined by f(c)(k) =c € k.

3.1.2 AttributeSet TBAC

We can go a bit further to capture attribute-based access
control. In AttributeSet TBAC an s-tag is given as a set of
sets of authorized attributes, that is an s-tag is an element
of P(P(G)) where G denotes the set of all attributes. The
access control semantics is the following: the outer set level
captures alternation, that is, an access to t is authorized if
it is granted by {gg,..., g0} or ... or by {g8,. .., gl };
the inner set level captures conjunction, that is, an access is
granted if all the g;- of one group are satisfied. The opera-
tion that captures the addition of policies is naturally & = U.
Multiplication of policies is formally defined by the opera-
tion XUY = {zUy | z € X Ay € Y'}. The resulting semiring
is (P(P(G)),U,u,0,{0}). In AttributeSet TBAC, a creden-
tial ¢ € C = P(G) is a subset of attributes the requester is
assigned to. An access to (¢ : k) is granted if the requester
can fulfil all the requirements of at least one of the groups
of attributes in k, formally: f(c)(k) = 3g € k.g C c. Table[2]
recasts the example relation of Section [2| with the concrete
structure of AttributeSet TBAC. For the tuple (¢ : ko), the
s-tag ko = {{g0,91},{92}} means that any user who has
attributes go and g1 or who has attribute g2 has access to
(a,b,c). Query result g(r) of the Table[2]can be filtered using
Bob’s credentials ¢ = {g1,93} as shown in the last column.
Bob has access to (d,e) and (f,e) because his credentials
cover one group of attributes of k1 and another of k2. Note
that AttributeSet TBAC policies can be simplified by keep-
ing only the minimal sets of attributes w.r.t. set inclusion.
For instance, the element {{go,g1},{g0}, {91}} € P(P(G))
can be simplified to {{go},{g1}}. Such a property is used
in formal proofs and can be seen as an optimization to keep
the size of s-tags as small as possible. This simplification
has been carried out on Table [2] for the sake of readability.

r A B C s-tag

to a Bl ¢ ko={{go, 0} {g2}}

tr d B e k= {{g} {g}}

t2 f g le k2={{g1},{92,93}}
q(r) A C s-tag f() (k)
so a ¢ {{g0,91},{92}} 1
si a e {{go,91},{g0,92},{92,95}} L
s2d ¢ {{90,91},{90,92},{92,93}} 1
s3d e {{go},{93}} T
sa. f e {{o1},{92,93}} T

Table 2: AttributeSet TBAC example

3.1.3 Deadline TBAC

Among the rights covered by the 95/46/EC European di-
rective on the processing of personal data, Article 6 (e) stip-
ulates that personal data should be collected no longer than
necessary. This right has been coined as the right to obliv-
ion, which states that personal data will eventually van-
ish. The idea behind Deadline TBAC is to use s-tags as
“best before dates”: one should have access to a tuple if
the current time is before the deadline. In this setting, ac-
cess rights are elements of K = N U {co}, where oo cap-
tures the lack of constraint. Credentials in N\ {0} denote
the current time and are degenerated in the sense that they
are not user-dependent. The decision function is defined by
fle)(k) = ¢ < k withn < oo for all n € N. The full semiring
is finally (N U {00}, max, min, 0, 00).

3.2 Properties of the TBAC models family

A fundamental property of given TBAC instances is that
for any given credentials the decision function behaves well
in the following sense: 0 is the deny all policy, 1 is the allow
all policy, one can read a tuple tagged with X @Y if he/she
can read either X or Y, and one can read a tuple tagged
with X ® Y if he/she can read both X and Y. Informally,
the decision functions of UserSet, AttributeSet and Dead-
line TBAC preserve the intuitive meaning of disjunction and
conjunction of policies. This property is formally captured
by stating that for all ¢ € C, f(c) is an homomorphism from
(K, ®,®,0,1) into the boolean semiring (B, V, A, L, T). This
is a key property of the approach: first it captures the se-
mantics of access control, then it proves that TBAC fits
into the RAT framework, and finally, Corollary [1| ensures
that TBAC can be seamlessly integrated into an R-DBMS
in the sense that it is independent of the evaluation order of
queries.

PROPOSITION 1. The curried decision function f(c) : K —
B of UserSet (resp., AttributeSet and Deadline) is a homo-
morphism for all ¢ € C.

The Fundamental Theorem of RA" [13, Theorem 3.3]
shows that the semiring structure works nicely with SPJRU
operations: homomorphism of semirings and RAT queries
commutes. Applied to TBAC, the Fundamental Theorem
ensures that the decision function can be applied either be-
fore or after the evaluation of a query without loss. This
guarantees that algebraic query optimization, query rewrit-
ing and other techniques that rely on equivalent algebraic
expressions can still be used transparently in the presence
of TBAC.

When a query is executed, its result is filtered through
the decision function f(c). The filtered result of ¢(r) is for-
mally defined by the following function eval; that selects
the subset of authorized tuples after the evaluation of g(r):
evali(r)(g,c) = {(t : k) | (t : k) € q(r) A f(c)(k)}. Alter-
natively, it is possible to apply the decision function before
the evaluation of ¢(r), that is, we define another evaluation
function evals: evala(r)(g,c) = q(r’) with v’ = {(t : k) | (¢:
k) € r A f(e)(k)}. Corollary is obtained by applying the
Fundamental Theorem of RA™ to Proposition

COROLLARY 1. The filtering function of TBAC can be
applied before or after the evaluation of a query without
loss, that is evali(r)(q, c) = evala(r)(q, c).



3.3 Integrating heterogeneous policies

We show now that we can exploit the structure of semir-
ings to combine heterogeneous instances of TBAC together
into larger ones, mimicking an important property of lattice-
based access control models.

Let (K;, @i, ®i,0i,1;) be a finitely I-indexed family of
semirings and let K = Ko X ... X K,, be the Cartesian prod-
uct of their underlying sets. We denote by m; : K — K;
the ith projection of the product that maps a tuple to its
ith component. The set K equipped with componentwise
addition (ko,...,kn) ® (k0,-..,kn) = (ko Do ko, - - -, kn Bn
k;,) and componentwise multiplication is itself a semiring
called the product semiring [11]. For instance, we can in-
tegrate UserSet, AttributeSet and Deadline TBAC struc-
tures altogether by building the following product structure
PU) x P(P(G)) x (NU{oo}) with addition of policies de-
fined by (z,y,2)® (z',y,2') = (zUx’, yUy', max(z, 2')) and
multiplication defined by (z,y,2) ® (z’,y',2') = (x N2’y ¥
y',min(z, 2')).

The decision function f : C x K — B can be defined from
the f;s using either a Deny Takes Precedence (DTP) con-
flict resolution rule defined by f(c)(k) = Vi € I.fi(c)(mi(k))
or a Permit Takes Precedence (PTP) conflict resolution rule
defined by f(c)(k) = 3 € I.fi(c)(mi(k)). Following the ex-
ample mixing UserSet, AttributeSet and Deadline, we obtain
the following definition of the combined function in the PTP
case: f(u,gs,n)(X,)Y,Z) s ue XNJgeYglgsAn< Z.

However, if we want to combine two existing relations al-
ready tagged with different structures into a large one we
need a method to consider each atomic policy as a member
of the large one. In other words, we need a way to canoni-
cally inject the existing policies K; into the product structure
K. This can be done using the following family of functions:
ti : Ki = K, one for each i € I, defined by combining a given
s-tag with the “authorize all” policies for other components:
ti(k) = (loy...,Li—1,k,1i41,...,1,). For example, the in-
jection ¢g : P(U) — K is defined by wo(z) = (z, {0}, {oc0}).

PROPOSITION 2. By combining semirings and decision func-

tions as defined above, the product structure is a semiring
and the decision function is an homomorphism, with both
DTP and PTP conflict resolution rules.

Interestingly, Proposition[2ensures that one does not need
to always use the same conflict resolution rule. For in-
stance, by integrating two semirings at a time: first P(U)
and P(P(G)) and then (NU {oco}), one can select DTP for
the first pair and then PTP.

4. PATH-BASED DISSEMINATION

In the previous section we have defined and illustrated the
TBAC framework with three standard access control struc-
tures. In this section we present a new structure for s-tags,
called Path TBAC. The motivation driving Path TBAC is
to introduce the concept of consumption in s-tags to be able
to control the depth of a data dissemination. The secu-
rity semantics is not only to filter the tuples pertaining to a
query result but also to modify the s-tags obtained during
query evaluation. We obtain a resource-limited information
flow model where security tags are consumed when tuples
are transferred from one PDS to another.

Let the set U denote the set of PDS identifiers. The set U*
of finite strings over the alphabet U can be endowed with the

C s-tag

B

to a B ¢ ko={(B,D)}
b
g

e k ={B,0C),(B,D)} =

ta f e ko= {x}
Alice’s relation r
q(r) A C s-tag
So a c {(D)} qd(r) A C s-tag
51 a e {(D)} ss d e {0}
s2 d ¢ {(D)} = sh f e {x}
zi ? Z E(}j)’ (o Charlie’s result ¢'(r)

Bob’s result g(r)

Table 3: Path TBAC example

prefiz partial order by defining x C y < 3z.(z = 2) = y with
(z :: y) being the concatenation of two words. This partial
order is equipped with a greatest lower bound operator on
pairs of strings which is the longest common prefir written
lep(z,y). An s-tag is a set of authorized paths with label
taken from U. To capture the lack of constraints on data
dissemination, we add an extra element %, thus the set of
all Path TBAC policies becomes K = P(U*) U {x}. For
instance, the s-tag ko = {(B, D)} captures the fact that the
tuple to can go first to Bob (B) and then to Denise (D).
The @ policy combinator is the union of sets of paths X UY
with X @ % = %. The empty set plays the role of neutral
element for U. The ® combinator is defined similarly to the
W operator by X ® Y = {lep(z,y) |z € X Ay € Y}. In
order to control the depth of the dissemination, the decision
function f(c) is defined according to the locality of who is
requesting the tuple. If the destination PDS is the current
PDS, then f(c) returns T. If the destination is remote,
f(c) returns T only if at least one of the paths of the s-
tag begins with the remote destination, that is f(c)(k) =
Ips.(c :: ps) € k. The following proposition ensures that
this structure is indeed a semiring and that f(c) is another
semiring homomorphism.

PropPosITION 3. (K =P(U*) U {x},®,®,0,*) is a com-
mutative semiring and f(c) is an homomorphism.

When a tuple leaves a PDS its s-tag must be updated to
reflect this hop. For each tuple transferred to ¢, each path of
the annotation is modified by popping ¢ from the beginning
of each path. The update function upd : C x K — K is for-
mally defined by: upd(c)(k) = {p | (¢ :: p) € k}. The eval-
uation function is now upgraded to the following definition
where ¢(r) is filtered and the s-tags modified: eval(r)(q,c) =
{(¢ 5 upd(c) (k) | (£: k) € alr) A Fle) (k) = T}.

Table [3] recasts the running example with Path s-tags.
The transfer scenario is made of two steps. First, Bob
queries Alice’s PDS to obtain ¢(r) and store it in his own
PDS. Then, Charlie asks Bob for the whole content of g(r)
and obtains ¢'(r) which is a strict subset of ¢(r). At this
point Charlie holds the tuple s5 but cannot transfer it any-
more, however, s can be freely distributed. If Charlie had
asked Alice directly, the disclosure would have been limited
to {(f,e) : {*}} because Charlie has only access to .

This ability to define fine-grained control policies with dif-
ferent results according to the previous step is a key feature
of Path TBAC. In the example, Charlie receives less infor-



mation by querying Alice, who is supposed to be the orig-
inator of data, than by querying Bob. Such a scenario is
relevant in many contexts and is coined as intransitive in-
formation flow. For instance, Bob may be a trusted party
that ensures encryption, or Bob may be Charlie’s boss who
has to control the data sent to his subordinates. In this last
example, Alice trusts Bob to select the right subset of data
Charlie is authorized to.

5. RELATED WORK

According to the classification used in the monograph en-
titled Access Control for Databases [5, Section 5], the TBAC
control model can be categorized as a tuple-labeled access
control model. View-based access control is the most com-
mon access control mechanism in R-DBMS but lacks flexi-
bility and scalability because of the necessary proliferation
of views. A more flexible and transparent approach is to try
to rewrite the user’s query using authorized views and to
grant access if the rewriting succeeds [20]. Even so, privi-
leges are still not attached to the data items themselves but
to their containers.

Whereas MAC and related information flow models pro-
vide strong guarantees |21 9], we advocate that the context
of personal information management and PDSs presented in
Section [1] would benefit from a softer user-based approach.
In TBAC, the classification of a tuple is not derived from
the user’s credentials but is user-specified at insertion time.
TBAC relates to the Hippocratic database paradigm where
owners specify to where data can flow. According to the
classification of LeFevre et al. on Hippocratic databases [14],
TBAC follows the query semantics disclosure model: a tuple
is discarded or not, without partial releases using NULL for
forbidden attributes.

The TBAC dissemination function is close to the concepts
of originator control, sticky policies and dissemination con-
trol. We give hereafter a brief overview of some related
work. Park and Sandhu [19] study the combination of orig-
inator control with usage control. Thomas and Sandhu [24]
provide an overview of dissemination control characteristics.
Sandhu et al. [22| propose a Policy, Enforcement, Imple-
mentation model for secure information sharing, targeting
TPM-enabled architectures (trusted software), which share
similarities with PDSs. Bandhakavi et al. [4] define a logic
framework to specify release control policies. Sticky release
policies are used to control future dissemination of the data,
and also of the aggregated data. Finally, Cerbo et al. (8|
propose to use sticky policies to integrate usage control con-
ditions in mobile devices. The main purpose of the dissem-
ination function in TBAC is to tackle the problems of data
combinations of relational data for which it is tailored.

Provenance-Based Access Control have been coined in 2011
by Cadenhead et al. [7] and then by Park et al. [18] with the
following manifesto: “we strongly feel that access control sys-
tems built upon provenance data by fully utilizing its unique
characteristics will provide a foundation for new access con-
trol mechanisms that are highly capable of supporting fea-
tures that were not easily achievable with traditional access
control solutions”. The initial proposal by Cadenhead et al.
turned its focus to the RDF triple-oriented data model and
the applicability of access control technologies, whereas the
second one by Park et al. sticks to the TBAC rationale.
However, this second contribution provides a very wide vi-
sion on such models and does not define any specific model.

Provenance-based access control has received attention
from the semantic web community. Lopes et al. [16] fo-
cus on the provenance machinery for the RDF-S paradigm.
They use attribute-based policies with negation. Papakon-
stantinou et al. [17] provide a similar system with more de-
tailed experiments. Whereas these papers specify a unique
concrete annotation domain, TBAC provides several differ-
ent ones with a mechanism to integrate them. Moreover,
we broaden the scope of applicability with the Path TBAC
model that controls dissemination in a distributed environ-
ment.

6. DISCUSSION

In this section we discuss different issues related to the im-
plementation of TBAC. The first issue is the formal language
of s-tags. Elements of UserSet, AttributeSet and Deadline
TBAC all have a formal representation and a natural im-
plementation. In general, it is also the case that any semir-
ing has a syntactical representation because the category of
semirings has an initial element, namely N[X]: the set of
formal polynomials with integer coefficients freely generated
from a set X of variables |11]. As N[X] can be easily imple-
mented using a recursive datatype, it is an adequate generic
formal representation of s-tags. For instance, AttributeSet is
obtained from N[G] by dropping coefficients and exponents.

Regarding user-friendliness, one may not assume that end-
users will express their security policies by writing formal
polynomials. The idea is rather to provide high-level, possi-
bly graphical, languages to users and then to compile these
expressions into concrete s-tags. As an example, one can
introduce a set R of roles with a GUI to graphically define
user-role assignments (UR C U x R) and tuple-role assign-
ments (RT C R x T') to help end-users writing (possibly
large) UserSet expressions. The s-tag k associated with a
tuple ¢ is computed by k = {u|3r € R.(u,r) € UR A (r,t) €
TR}. As ongoing work, we are studying high-level state-
ments such as “I authorize any member of this group to ac-
cess this class of data as long as the data are served by
x and that I have access to my own data” to be trans-
lated into Path TBAC expressions.

Enforcement is a key issue for access control models. The
use of cryptographic systems can ensure the security of data
while transferred between PDSs. Whereas PDSs are as-
sumed to be trusted by all users in the system, it is not
the case for communication services. A solution is to en-
crypt tuples according to their s-tags by using related work
on the Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) [6]. In CP-ABE, attributes are used to describe users’
credentials, and a party encrypting data determines a pol-
icy for who can decrypt. Once applied to TBAC, the idea
amounts to letting PDSs encrypt the tuples they emit ac-
cording to the s-tags. CP-ABE deals with ciphertext-policies
that can represent positive boolean formulae. As Attribute-
Set policies are isomorphic to positive boolean formulae, CP-
ABE can be used for it. Extending CP-ABE to deal with
richer semirings and ultimately N[X] is left open.

7. CONCLUSION

Motivated by personal information management in a fed-
eration of personal databases, this paper has introduced a
tuple-grained control model for relational data named TBAC.
The model is grounded in the algebraic foundations of the



provenance data model, guaranteeing transparent integra-
tion of MAC into classical query evaluation engines of R-
DBMSs. Moreover, we showed that the framework can be
used to provide fine-grained user-based dissemination con-
trol using Path TBAC.

We have developed a proof-of-concept implementation of
TBAC using the Perm prototype: a R-DBMS that handles
provenance [10]. Perm is used as the database tier of an
n-tiers application, where the TBAC filtering process is in-
tegrated into the application server that acts as a proxy be-
tween users and the DB tiers. An ongoing funded research
project is to integrate TBAC into an existing R-DBMS,
small enough to fit into a secure smart card. We have also
developed a second proof-of-concept where PDSs are used
control collection and dissemination of personal data in a
smart building scenario [15].

Besides experiments, an ongoing research direction is to
provide a completely algebraic definition of the TBAC mod-
els family. Actually, the filtering functions are not defined
using the ® and @ operators but directly on the concrete
structures of C and K. For instance, the condition f(c)(k) <
¢ € k for UserSet is equivalent to kU {c} = k and f(c)(k) &
¢ < k for Deadline is equivalent to max(c, k) = k. These ev-
idences suggest that the class of interesting semirings for se-
curity applications is the class of canonically ordered semyir-
ings, where the relation ¢ < b given by Jdc.a @ c = b is a
partial order [11].

Our last research avenue is to extend the positive fragment
of the provenance framework to richer languages, including
aggregation or difference. Theoretical results that extend
the RAT framework have been obtained [2], however, the al-
gebraic structures are more ad-hoc than semirings and their
applicability to access-control purposes is left open. Being
able to provide a systematic definition of the decision func-
tion without reference to the internal structure of C and K
may lead to a more generic framework, suitable for these
extensions.
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