
Provenance in relational databases
A Promising Formal Framework For Data Cleaning?

Romuald Thion

LIRIS, UMR 5205 CNRS
Université Claude Bernard, Lyon 1

April 11, 2016

http://www.univ-lyon1.fr
http://liris.cnrs.Fr
http://www.cnrs.fr

Context

Provenance

Structures

Query Evaluation

Access control

Conclusion

MedClean Provenance (for data cleaning) 2/23

Context

First year research axis

I Collecte et Annotation des masses de données
scientifiques

I Architecture de nettoyage de données scientifiques
I Utilisation des données probabilistes/incertaines

This talk : semiring-annotated data (a.k.a, relational
provenance)

A formal framework which extends (traditional) relational
algebra to annotated tuples [Green et al., PODS’07]

MedClean Provenance (for data cleaning) 3/23

Context

Provenance

Structures

Query Evaluation

Access control

Conclusion

MedClean Provenance (for data cleaning) 4/23

The SPJRU Algebra
R A B

t0 a 1
t1 a 2

S A C

t ′0 a 2
t ′1 b 1

φ := Rel | ∅ | σP(φ) | πV (φ) | φ on ψ | ρβ(φ) | φ ∪ ψ

R ∪ S A B/C

u0 a 1

u1

{ a 2
a 2

u2 b 1

R on S A B C

j0 a 1 2
j1 a 2 2

πA(R) A

p0 a

ρC/B(S) A B

r0 a 2
r1 b 1

σB=2(R) A B

s0 a 2

MedClean Provenance (for data cleaning) 5/23

The SPJRU Algebra
R A B

t0 a 1
t1 a 2

S A C

t ′0 a 2
t ′1 b 1

φ := Rel | ∅ | σP(φ) | πV (φ) | φ on ψ | ρβ(φ) | φ ∪ ψ

R ∪ S A B/C

u0 a 1

u1

{ a 2
a 2

u2 b 1

R on S A B C

j0 a 1 2
j1 a 2 2

πA(R) A

p0 a

ρC/B(S) A B

r0 a 2
r1 b 1

σB=2(R) A B

s0 a 2

MedClean Provenance (for data cleaning) 5/23

The SPJRU Algebra
R A B

t0 a 1
t1 a 2

S A C

t ′0 a 2
t ′1 b 1

φ := Rel | ∅ | σP(φ) | πV (φ) | φ on ψ | ρβ(φ) | φ ∪ ψ

R ∪ S A B/C

u0 a 1

u1

{ a 2
a 2

u2 b 1

R on S A B C

j0 a 1 2
j1 a 2 2

πA(R) A

p0 a

ρC/B(S) A B

r0 a 2
r1 b 1

σB=2(R) A B

s0 a 2

MedClean Provenance (for data cleaning) 5/23

The extended SPJRU Algebra
Same language, more general semantics:

set-based SPJRU operations are lifted to 〈K,⊕,⊗,0,1〉

R A B

t0 a 1 α0
t1 a 2 α1

. 0

S A C

t ′0 a 2 β0
t ′1 b 1 β1

. 0

R ∪ S A B/C

u0 a 1 α0

u1

{ a 2
α1 ⊕ β0a 2

u2 b 1 β1

R on S A B C

j0 a 1 2 α0 ⊗ β0
j1 a 2 2 α1 ⊗ β0

πA(R) A

p0 a α0 ⊕ α1

σB=2(R) A B

s0 a 2 α1 ⊗ 1 = α1

MedClean Provenance (for data cleaning) 6/23

The extended SPJRU Algebra
Same language, more general semantics:

set-based SPJRU operations are lifted to 〈K,⊕,⊗,0,1〉

R A B

t0 a 1 α0
t1 a 2 α1

. 0

S A C

t ′0 a 2 β0
t ′1 b 1 β1

. 0

R ∪ S A B/C

u0 a 1 α0

u1

{ a 2
α1 ⊕ β0a 2

u2 b 1 β1

R on S A B C

j0 a 1 2 α0 ⊗ β0
j1 a 2 2 α1 ⊗ β0

πA(R) A

p0 a α0 ⊕ α1

σB=2(R) A B

s0 a 2 α1 ⊗ 1 = α1

MedClean Provenance (for data cleaning) 6/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

A C

a 2 α0 ⊗ β0
a 2 α1 ⊗ β0
a 1 α0

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

A C

a 2 α0 ⊗ β0
a 2 α1 ⊗ β0
a 1 α0

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

A C

a 2 α0 ⊗ β0
a 2 α1 ⊗ β0
a 1 α0

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

A C

a 2 α0 ⊗ β0
a 2 α1 ⊗ β0
a 1 α0

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

A C

a 2 α0 ⊗ β0
a 2 α1 ⊗ β0
a 1 α0

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

A C

a 2 α0 ⊗ β0
}

a 2 α1 ⊗ β0
a 1 α0

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

Example

R A B

t0 a 1 α0
t1 a 2 α1

S A C

t ′0 a 2 β0
t ′1 b 1 β1

Q := πAC(R on S) ∪ σB=1(R)

A C

a 2 (α0 ⊕ α1)⊗ β0
a 1 α0

MedClean Provenance (for data cleaning) 7/23

The extended SPJRU Algebra

The specific case of the extended SPJRU Algebra in which
〈K,⊕,⊗,0,1〉 is instanciated to 〈{0,1},∨,∧,0,1〉 is the

classical SPJRU Algebra (with set semantics).

Key result [Green et. al., PODS’07]

The extended SPJRU algebra “behaves well” 1, when the
structure of annotations

〈K,⊕,⊗,0,1〉

is a commutative semiring

1morphisms between annotations commute with query evaluation
MedClean Provenance (for data cleaning) 8/23

Context

Provenance

Structures

Query Evaluation

Access control

Conclusion

MedClean Provenance (for data cleaning) 9/23

Commutative semiring

〈K,⊕,⊗,0,1〉 formal definition

I K, underlying set
I 〈K,⊕,0〉 a commutative (a.k.a., Abelian) monoid

I (associative) (a⊕ b)⊕ c = a⊕ (b ⊕ c)
I (unit) a⊕ 0 = a = 0⊕ a
I (commutative) a⊕ b = b ⊕ a

I 〈K,⊗,1〉 a commutative monoid
I The two sub-monoids are linked together

I (distribution law) a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)
I (distribution law)2 (b ⊕ c)⊗ a = (b ⊗ a)⊕ (c ⊗ a)
I (absorption law)3 0⊗ a = 0 = a⊗ 0

2Theorem when 〈K,⊗, 1〉 is commutative, but needed otherwise
3Theorem when 〈K,⊕,⊗, 0, 1〉 is a ring, but needed otherwise

MedClean Provenance (for data cleaning) 10/23

Some commutative semirings

I Boolean B = 〈{0,1},∨,∧,0,1〉
I Multiplicity 〈N,+,×,0,1〉

i.e., bag semantics for relational algebra
I Security 〈L,min,max ,O,P〉

with L = P < C < S < TS < O
I {Where, How, Why} provenance:

containers of containers4 of tuple identifiers.
I Uncertainty 〈P(Ω),∪,∩, ∅,Ω〉
I Trust scores 〈R∞

+ ,min,+,∞,0〉

One semiring to rule them all: N[X]

The set of all multivariate polynomials over a set X with integer
coefficients is the free5 commutative semiring over X .

4e.g., sets of bags, sets of sets, etc.
5intuitively, the syntactic algebra quotiented with the laws of a semiring

MedClean Provenance (for data cleaning) 11/23

Combining heterogeneous semirings

How to combine semirings?

I ⊕ and ⊗ merge homogeneous annotations
I However, there may be different kinds of annotations in a

data integration setting

New semirings from old ones

I Given 〈Ki ,⊕i ,⊗i ,0i ,1i〉 an indexed family of semirings
I Construct de product semiring:

I K = K0 × . . .×Kn
I extend ⊕i and ⊗i component wise
I define 0 = 〈00, . . . ,0n〉 and 1 = 〈10, . . . ,1n〉

I Injectors: a Ki should be read as a specific K annotation
I ιi : Ki → K
I ιi (k) = (10, . . . ,1i−1, k ,1i+1, . . . ,1n)

MedClean Provenance (for data cleaning) 12/23

Combining heterogeneous semirings

How to combine semirings?

I ⊕ and ⊗ merge homogeneous annotations
I However, there may be different kinds of annotations in a

data integration setting

New semirings from old ones

I Given 〈Ki ,⊕i ,⊗i ,0i ,1i〉 an indexed family of semirings
I Construct de product semiring:

I K = K0 × . . .×Kn
I extend ⊕i and ⊗i component wise
I define 0 = 〈00, . . . ,0n〉 and 1 = 〈10, . . . ,1n〉

I Injectors: a Ki should be read as a specific K annotation
I ιi : Ki → K
I ιi (k) = (10, . . . ,1i−1, k ,1i+1, . . . ,1n)

MedClean Provenance (for data cleaning) 12/23

Context

Provenance

Structures

Query Evaluation

Access control

Conclusion

MedClean Provenance (for data cleaning) 13/23

TBAC – Query Evaluation VS Morphisms

Homomorphism of semirings
An homomorphism between 〈K0,⊕0,⊗0,00,10〉 and
〈K1,⊕1,⊗1,01,11〉 is a structure-preserving function
f : K0 → K1 between underyling sets:

I f (00) = 01

I f (10) = 11

I f (a⊕0 b) = f (a)⊕1 f (b)

I f (a⊗0 b) = f (a)⊗1 f (b)

Morphism into the boolean semiring
Let 〈P(U),∪,∩, ∅,U〉, the following function fc is an
homomorphism from P(U) to 〈{0,1},∨,∧,0,1〉 for each c ∈ U :

fc(X) = c ∈ X

MedClean Provenance (for data cleaning) 14/23

TBAC – Query Evaluation VS Morphisms

With Q = R on ρB′/B(R) and f = fB

A B

a 1 α0 = AB
a 2 α1 = AC

f−→

A B

a 1 f (α0) = 1

↓ Q ↓ Q

A B B′

a 1 1 α0 ∩ α0 = AB
a 1 2 α0 ∩ α1 = A
a 2 1 α1 ∩ α0 = A
a 2 2 α1 ∩ α1 = AC

f−→
A B B′

a 1 1 1

MedClean Provenance (for data cleaning) 15/23

TBAC – Query Evaluation VS Morphisms

With Q = R on ρB′/B(R) and f = fB

A B

a 1 α0 = AB
a 2 α1 = AC

f−→

A B

a 1 f (α0) = 1

↓ Q ↓ Q

A B B′

a 1 1 α0 ∩ α0 = AB
a 1 2 α0 ∩ α1 = A
a 2 1 α1 ∩ α0 = A
a 2 2 α1 ∩ α1 = AC

f−→
A B B′

a 1 1 1

MedClean Provenance (for data cleaning) 15/23

TBAC – Query Evaluation VS Morphisms

With Q = R on ρB′/B(R) and f = fB

A B

a 1 α0 = AB
a 2 α1 = AC

f−→

A B

a 1 f (α0) = 1

↓ Q ↓ Q

A B B′

a 1 1 α0 ∩ α0 = AB
a 1 2 α0 ∩ α1 = A
a 2 1 α1 ∩ α0 = A
a 2 2 α1 ∩ α1 = AC

f−→
A B B′

a 1 1 1

MedClean Provenance (for data cleaning) 15/23

TBAC – Query Evaluation VS Morphisms

With Q = R on ρB′/B(R) and f = fB

A B

a 1 α0 = AB
a 2 α1 = AC

f−→

A B

a 1 f (α0) = 1

↓ Q ↓ Q

A B B′

a 1 1 α0 ∩ α0 = AB
a 1 2 α0 ∩ α1 = A
a 2 1 α1 ∩ α0 = A
a 2 2 α1 ∩ α1 = AC

f−→
A B B′

a 1 1 1

MedClean Provenance (for data cleaning) 15/23

TBAC – Query Evaluation VS Morphisms

With Q = R on ρB′/B(R) and f = fB

A B

a 1 α0 = AB
a 2 α1 = AC

f−→

A B

a 1 f (α0) = 1

↓ Q ↓ Q

A B B′

a 1 1 α0 ∩ α0 = AB
a 1 2 α0 ∩ α1 = A
a 2 1 α1 ∩ α0 = A
a 2 2 α1 ∩ α1 = AC

f−→
A B B′

a 1 1 1

MedClean Provenance (for data cleaning) 15/23

TBAC – Query Evaluation VS Morphisms

With Q = R on ρB′/B(R) and f = fB

A B

a 1 α0 = AB
a 2 α1 = AC

f−→

A B

a 1 f (α0) = 1

↓ Q ↓ Q

A B B′

a 1 1 α0 ∩ α0 = AB
a 1 2 α0 ∩ α1 = A
a 2 1 α1 ∩ α0 = A
a 2 2 α1 ∩ α1 = AC

f−→
A B B′

a 1 1 1

MedClean Provenance (for data cleaning) 15/23

TBAC – Query Evaluation VS Morphisms

With Q = R on ρB′/B(R) and f = fB

A B

a 1 α0 = AB
a 2 α1 = AC

f−→

A B

a 1 f (α0) = 1

↓ Q The square commutes! ↓ Q

A B B′

a 1 1 α0 ∩ α0 = AB
a 1 2 α0 ∩ α1 = A
a 2 1 α1 ∩ α0 = A
a 2 2 α1 ∩ α1 = AC

f−→
A B B′

a 1 1 1

MedClean Provenance (for data cleaning) 15/23

Query Evaluation VS Morphisms

Query Evaluation VS Morphisms
With Q(I) the evaluation of the query Q on an instance I

evalAfterQ(I)(Q) = {(t : f (k)) | (t : k) ∈ Q(I)}

evalBeforeQ(I)(Q) = Q({(t : f (k)) | (t : k) ∈ I})

Evaluation commutes6 with morphisms

evalAfterQ(I)(Q) = evalBeforeQ(I)(Q)

6because extended SPJRU algebra “behaves well w.r.t. morphisms”
MedClean Provenance (for data cleaning) 16/23

Query Evaluation VS Morphisms

Query Evaluation VS Morphisms
With Q(I) the evaluation of the query Q on an instance I

evalAfterQ(I)(Q) = {(t : f (k)) | (t : k) ∈ Q(I)}

evalBeforeQ(I)(Q) = Q({(t : f (k)) | (t : k) ∈ I})

Evaluation commutes6 with morphisms

evalAfterQ(I)(Q) = evalBeforeQ(I)(Q)

6because extended SPJRU algebra “behaves well w.r.t. morphisms”
MedClean Provenance (for data cleaning) 16/23

Query Evaluation VS Morphisms

Query Evaluation VS Morphisms
With Q(I) the evaluation of the query Q on an instance I

evalAfterQ(I)(Q) = {(t : f (k)) | (t : k) ∈ Q(I)}

evalBeforeQ(I)(Q) = Q({(t : f (k)) | (t : k) ∈ I})

Evaluation commutes6 with morphisms

evalAfterQ(I)(Q) = evalBeforeQ(I)(Q)

6because extended SPJRU algebra “behaves well w.r.t. morphisms”
MedClean Provenance (for data cleaning) 16/23

Query Evaluation VS Morphisms

Query Evaluation VS Morphisms
With Q(I) the evaluation of the query Q on an instance I

evalAfterQ(I)(Q) = {(t : f (k)) | (t : k) ∈ Q(I)}

evalBeforeQ(I)(Q) = Q({(t : f (k)) | (t : k) ∈ I})

Evaluation commutes6 with morphisms

evalAfterQ(I)(Q) = evalBeforeQ(I)(Q)

6because extended SPJRU algebra “behaves well w.r.t. morphisms”
MedClean Provenance (for data cleaning) 16/23

Context

Provenance

Structures

Query Evaluation

Access control

Conclusion

MedClean Provenance (for data cleaning) 17/23

Tuple-Based Access Control (TBAC) (1/2)

Key insight

〈K,⊕,⊗,0,1〉

is the domain of authorizations

Intuitive authorization semantics

0 and 1 are extremal policies of type K
I 0 ∈ K : deny all
I 1 ∈ K : authorize all

⊕ and ⊗ are policy combinators of type K×K→ K
I ⊕: addition (disjunction)
I ⊗: multiplication (conjunction)

MedClean Provenance (for data cleaning) 18/23

Tuple-Based Access Control (TBAC) (1/2)

Key insight

〈K,⊕,⊗,0,1〉

is the domain of authorizations

Intuitive authorization semantics

0 and 1 are extremal policies of type K
I 0 ∈ K : deny all
I 1 ∈ K : authorize all

⊕ and ⊗ are policy combinators of type K×K→ K
I ⊕: addition (disjunction)
I ⊗: multiplication (conjunction)

MedClean Provenance (for data cleaning) 18/23

Tuple-Based Access Control (TBAC) (2/2)

Example: 〈K,⊕,⊗,0,1〉 is 〈P(U),∪,∩, ∅,U〉

I α0 = {Alice,Bob} = AB
I α1 = {Alice,Charlie} = AC
I β0 = {Bob} = B

K P(U)

a 2 (α0 ⊕ α1)⊗ β0 B = (AB ∪ AC) ∩ B
a 1 α0 AB

Q := πAC(R on ρC/B(S)) ∪ σB=1(R)

MedClean Provenance (for data cleaning) 19/23

Tuple-Based Access Control (TBAC) (2/2)

Example: 〈K,⊕,⊗,0,1〉 is 〈P(U),∪,∩, ∅,U〉

I α0 = {Alice,Bob} = AB
I α1 = {Alice,Charlie} = AC
I β0 = {Bob} = B

K P(U)

a 2 (α0 ⊕ α1)⊗ β0 B = (AB ∪ AC) ∩ B
a 1 α0 AB

Q := πAC(R on ρC/B(S)) ∪ σB=1(R)

MedClean Provenance (for data cleaning) 19/23

TBAC – Filtering (1/2)

Filtering function f : C→ K→ B
With C the set of credentials, associated to subjects:

I f (c)(k) = > if k allows c to read (t : k)

I f (c)(k) = ⊥ if k denies c to read (t : k)

Example: 〈P(U),∪,∩, ∅,U〉 with f (c)(k) = c ∈ k

A C f (Alice) f (Bob) f (Charlie)

a 2 B ⊥ > ⊥
a 1 AB > > ⊥

Filtering Q with X ’s identity is to compute f (X)(k)

MedClean Provenance (for data cleaning) 20/23

TBAC – Filtering (1/2)

Filtering function f : C→ K→ B
With C the set of credentials, associated to subjects:

I f (c)(k) = > if k allows c to read (t : k)

I f (c)(k) = ⊥ if k denies c to read (t : k)

Example: 〈P(U),∪,∩, ∅,U〉 with f (c)(k) = c ∈ k

A C f (Alice) f (Bob) f (Charlie)

a 2 B ⊥ > ⊥
a 1 AB > > ⊥

Filtering Q with X ’s identity is to compute f (X)(k)

MedClean Provenance (for data cleaning) 20/23

TBAC – Filtering (2/2)
Flow policy

“one may read a tuple if he/she is has access to the source
tuples which contribute to it”

I f (c)(0) = ⊥
nobody can read (t : 0)

I f (c)(1) = >
anybody can read (t : 1)

I f (c)(a⊕ b) = f (c)(a) ∨ f (c)(b)
one can read (t : a⊕ b) if he/she can read either a or b

I f (c)(a⊗ b) = f (x)(a) ∧ f (x)(b)
one can read (t : a⊗ b) if he/she can read both a and b

f (c) is a morphism from 〈K ,⊕,⊗,0,1〉 into 〈B,∨,∧,⊥,>〉

MedClean Provenance (for data cleaning) 21/23

TBAC – Filtering (2/2)
Flow policy

“one may read a tuple if he/she is has access to the source
tuples which contribute to it”

I f (c)(0) = ⊥
nobody can read (t : 0)

I f (c)(1) = >
anybody can read (t : 1)

I f (c)(a⊕ b) = f (c)(a) ∨ f (c)(b)
one can read (t : a⊕ b) if he/she can read either a or b

I f (c)(a⊗ b) = f (x)(a) ∧ f (x)(b)
one can read (t : a⊗ b) if he/she can read both a and b

f (c) is a morphism from 〈K ,⊕,⊗,0,1〉 into 〈B,∨,∧,⊥,>〉

MedClean Provenance (for data cleaning) 21/23

TBAC – Filtering (2/2)
Flow policy

“one may read a tuple if he/she is has access to the source
tuples which contribute to it”

I f (c)(0) = ⊥
nobody can read (t : 0)

I f (c)(1) = >
anybody can read (t : 1)

I f (c)(a⊕ b) = f (c)(a) ∨ f (c)(b)
one can read (t : a⊕ b) if he/she can read either a or b

I f (c)(a⊗ b) = f (x)(a) ∧ f (x)(b)
one can read (t : a⊗ b) if he/she can read both a and b

f (c) is a morphism from 〈K ,⊕,⊗,0,1〉 into 〈B,∨,∧,⊥,>〉

MedClean Provenance (for data cleaning) 21/23

TBAC – Filtering (2/2)
Flow policy

“one may read a tuple if he/she is has access to the source
tuples which contribute to it”

I f (c)(0) = ⊥
nobody can read (t : 0)

I f (c)(1) = >
anybody can read (t : 1)

I f (c)(a⊕ b) = f (c)(a) ∨ f (c)(b)
one can read (t : a⊕ b) if he/she can read either a or b

I f (c)(a⊗ b) = f (x)(a) ∧ f (x)(b)
one can read (t : a⊗ b) if he/she can read both a and b

f (c) is a morphism from 〈K ,⊕,⊗,0,1〉 into 〈B,∨,∧,⊥,>〉

MedClean Provenance (for data cleaning) 21/23

TBAC – Filtering (2/2)
Flow policy

“one may read a tuple if he/she is has access to the source
tuples which contribute to it”

I f (c)(0) = ⊥
nobody can read (t : 0)

I f (c)(1) = >
anybody can read (t : 1)

I f (c)(a⊕ b) = f (c)(a) ∨ f (c)(b)
one can read (t : a⊕ b) if he/she can read either a or b

I f (c)(a⊗ b) = f (x)(a) ∧ f (x)(b)
one can read (t : a⊗ b) if he/she can read both a and b

f (c) is a morphism from 〈K ,⊕,⊗,0,1〉 into 〈B,∨,∧,⊥,>〉

MedClean Provenance (for data cleaning) 21/23

TBAC – Filtering (2/2)
Flow policy

“one may read a tuple if he/she is has access to the source
tuples which contribute to it”

I f (c)(0) = ⊥
nobody can read (t : 0)

I f (c)(1) = >
anybody can read (t : 1)

I f (c)(a⊕ b) = f (c)(a) ∨ f (c)(b)
one can read (t : a⊕ b) if he/she can read either a or b

I f (c)(a⊗ b) = f (x)(a) ∧ f (x)(b)
one can read (t : a⊗ b) if he/she can read both a and b

f (c) is a morphism from 〈K ,⊕,⊗,0,1〉 into 〈B,∨,∧,⊥,>〉

MedClean Provenance (for data cleaning) 21/23

Context

Provenance

Structures

Query Evaluation

Access control

Conclusion

MedClean Provenance (for data cleaning) 22/23

Conclusion
I generic and algebraic approach
I “behaves well” w.r.t. query evaluation
I can be extended to Datalog (with proper limit condition)

Extensions
I Set-inspired negation: partial order and difference on K
I Aggregation operators: K-semimodules

Drawbacks
I Implementations!
I Hard to divide between data and metadata?

Thank you for your attention!

MedClean Provenance (for data cleaning) 23/23

	Context
	Provenance
	Structures
	Query Evaluation
	Access control
	Conclusion

