Programming language semantics

Romuald THION

October 8, 2010

Abstract

Haskell implementation of the denotational semantics for the toy programming language
in David A. SCHMIDT’s [Sch97], available at http://people.cis.ksu.edu/~schmidt/
papers/CRC.chapter.ps.gz

1 Introduction

This program is written in the Literate Haskell style. It compile with both a I&IgXand a Haskell
compiler with the literate features turned on :

* The Glasgow Haskell Compiler do supports this source style (. 1hs file extension). The
slogan is “everything is comment, please use > before a line of code”.

* [hs2TeX is used as a frontend for pdflatex. A config file is used to typeset the code according
to SCHMIDT’s mathematical notational conventions.

The document is a quite direct implementation ofDavid A. SCHMIDT’s semantics for a toy
programming language [Sch97], freely available on the internet !. The paper focuses on deno-
tional semantics, its includes a detailled example for a toy imperative language.

The interpreter is built quite closely from the mathematical definitions in pages 6 to 11
of [Sch97]. The main differences with the paper are:

¢ the Maybe monad is used for L,

¢ the intepreter returns a store instead of a single integer,
e coproduct + is used instead of IN U {tt, ff},

* some extra tests has been added for borderline cases,

* fixpoint combinator fix is used for denotation of while construction. Actually, it’s the only
tricky part of the code.

It has been written in a hurry an should be improved! The document is meant to compile
without warning with full strictures turned on.

Thttp://people.cis.ksu.edu/~schmidt/papers/CRC.chapter.ps.gz

http://people.cis.ksu.edu/~schmidt/papers/CRC.chapter.ps.gz
http://people.cis.ksu.edu/~schmidt/papers/CRC.chapter.ps.gz
http://people.cis.ksu.edu/~schmidt/papers/CRC.chapter.ps.gz

2 Syntax
Notational conventions.

e compositionis (o) :: (b —¢) = (a —b) »a—c¢
* on types:

- boolean domain is written B = {tt, ff},
- integers are written IN,
- Ay is an optional A thatis uX.1 + A. In Set, itis Ay= A U {x}

The syntax of the toy imperative language
data Prog = Prog Comm

data Comm = Affect Id Expr
| Sequence Comm Comm
| Begin Decl Comm
| Call Id
| While Expr Comm
data Decl = ProcDef 1d Comm

data Expr = Val N
| Add Expr Expr
| NotEq Expr Expr
| Var I1d

3 Domain

A triple to store values of variables "X","Y" and "Z"
type Store = (N,IN, IN)
dataloc=A|B|C
look :: Loc — Store — IN
look A (x,_,_) =x
lookB (_,y,-) =y
look C (-, _,z) =z
update :: Loc — IN — Store — Store
update Ai (_,y,z) = (i,y,2)
update Bi (x, _,z) = (x,i,2)
update Ci (x,y, —) = (x,y,1)
initStore :: IN — Store
initStore n = (n,0,0)
Environment, that maps identifiers to either a location or a function that modifies the store. The
Maybe monad is used to capture bottom, check function is bind (>>=) with parameters reversed.
check :: (Store — Storey) — Storey — Storey
check fs =s>=f
data Denotable = Mem Loc | Fun (Store — Storey)
type Env = [(Id, Denotable)]
find :: Id — Env — Denotable
find _[] =error "find: Empty environnement"

findi((j,d):es) | (iej) =d

| otherwise = find i es
bind :: Id — Denotable — Env — Env

bind = ((0) o (0)) (:) (,)

bind is written in a cryptic way. Please consider this definition bind i d e = (i, d) : e.
initEnv :: Env
initEnv = ("X",Mem A) : ("Y",Mem B): ("z",Mem C) : []

4 Denotation

Semantic mappings for each level of the syntax
¢ [-]p for Prog(rams)
¢ [-]p for Decl(arations)
¢ [-]c for Comm(ands)
]

¢ [-]E for Expr(essions)

4.1 Programs

Piece of cake.
[-1p :: Prog — IN — Storey
[(Prog c)]p = An — ([c]¢) initEnv (initStore n)

4.2 Declarations

A declaration is mapped to an endo function of the environment.
[-lp :: Decl - Env — Env
[(ProcDef i c)|p = Ae — bind i (Fun ([c]c e)) e

4.3 Commands

[-lc :: Comm — Env — Store — Storey
[(Affectix)]c = Aes — case (findie) of
Mem | — case ([x]g e s) of
i v — 1 (updatel vs)
IR — = fail "denotC: Nat expected"
Fun _ — fail "denotC: Location expected"
[(Sequence x y)c = Aes — ([xlc e5) 3= ([ylc e)
[(Begindc)]c = Aes — [cfc ([d]pe) s

[(Calli)]c = Ae — case (find i e) of
Mem _ — const (fail "denotC: Fun expected")
Funf —f

[(While x c)]c = Ae — let

f iz (Store — Storeyy) — (Store — Storey)
fh=As— case ([x]g es) of

(g tt) — ([c]ces)>=h
(ig ff) > 75
(1p =) — fail "denotC: Bool expected"

in fix f

4.4 Expressions

Function fix :: (a — a) — a defined as fix f = let x = f x in x is the fixed point?> combinator of
Haskell
[-lg :: Expr — Env — Store — IN + B
[[(Val l)]]E =A__—upi
[(Var x)]g = Ae s — case (find x e) of
Mem | — 11 $look [s
Fun _ — error "denotE: Location expected"
[(Add xy)]g = Aes — case ([x[ges, [y]e es) of
(g X' y') = (X +y)
_ —error "denotE: Nat expected"
[(NotEq x y)]g = Ae s — case ([x[g es, [y]g es) of
(RY,irY) =R (X' £ Y)
(wx,wy) = w & #&y)
- — error "denotE: Bool VS Nat"

5 Toy sample

The toy sample of the paper : a function that squares a natural number
myDecl :: Decl
myDecl = ProcDef "INCR" aComm where
aComm, comm1, comm?2 :: Comm
aComm = Sequence comm1 comm?2
comm1 = Affect "z" (Add (Var "z") (Var "x"))
comm?2 = Affect "y" (Add (Var "y") (Val 1))
myBody :: Comm
myBody = Sequence initP aLoop where
initP, aLoop :: Comm
initP = Sequence (Affect "Y" (Val 0)) (Affect "z" (Val 0))
aLoop = While cond inn
cond :: Expr
cond = NotEq (Var "y") (Var "x")
inn :: Comm
inn = Call "INCR"
myProg :: Prog
myProg = Prog (Begin myDecl myBody)
Instances of class Show are defined in the source files (pretty printing).

Zhttp://en.wikibooks.org/wiki/Haskell/Denotational_semantics

http://en.wikibooks.org/wiki/Haskell/Denotational_semantics

show myProg =
"begin proc INCR = Z:=Z + X; Y:=Y + 1 in Y:=0; Z:=0; while Y != X do call INCR od enc

One can use [[-]p as an interpreter for the programming language
[myProglp 9=1(9,9,81)

More generally, for x > 0, [myProg]p x =1 (x,x,x12).

References

[Sch97] David A. Schmidt. Programming language semantics. In Allen B. Tucker, editor, The
Computer Science and Engineering Handbook, pages 2237-2254. CRC Press, 1997.

	1 Introduction
	2 Syntax
	3 Domain
	4 Denotation
	4.1 Programs
	4.2 Declarations
	4.3 Commands
	4.4 Expressions

	5 Toy sample

