
Programming language semantics

Romuald THION

October 8, 2010

Abstract

Haskell implementation of the denotational semantics for the toy programming language
in David A. SCHMIDT’s [Sch97], available at http://people.cis.ksu.edu/~schmidt/
papers/CRC.chapter.ps.gz

1 Introduction

This program is written in the Literate Haskell style. It compile with both a LATEXand a Haskell
compiler with the literate features turned on :

• The Glasgow Haskell Compiler do supports this source style (.lhs file extension). The
slogan is “everything is comment, please use > before a line of code”.

• lhs2TeX is used as a frontend for pdflatex. A config file is used to typeset the code according
to SCHMIDT’s mathematical notational conventions.

The document is a quite direct implementation ofDavid A. SCHMIDT’s semantics for a toy
programming language [Sch97], freely available on the internet 1. The paper focuses on deno-
tional semantics, its includes a detailled example for a toy imperative language.

The interpreter is built quite closely from the mathematical definitions in pages 6 to 11
of [Sch97]. The main differences with the paper are:

• the Maybe monad is used for ⊥,

• the intepreter returns a store instead of a single integer,

• coproduct + is used instead of N∪ {tt, ff},

• some extra tests has been added for borderline cases,

• fixpoint combinator fix is used for denotation of while construction. Actually, it’s the only
tricky part of the code.

It has been written in a hurry an should be improved! The document is meant to compile
without warning with full strictures turned on.

1http://people.cis.ksu.edu/~schmidt/papers/CRC.chapter.ps.gz

1

http://people.cis.ksu.edu/~schmidt/papers/CRC.chapter.ps.gz
http://people.cis.ksu.edu/~schmidt/papers/CRC.chapter.ps.gz
http://people.cis.ksu.edu/~schmidt/papers/CRC.chapter.ps.gz

2 Syntax

Notational conventions.

• composition is (◦) :: (b→ c)→ (a→ b)→ a→ c
• on types:

– boolean domain is written B = { tt, ff},
– integers are written N,
– A∇ is an optional A that is µX.1 + A. In Set, it is A∇= A ∪ {∗}

The syntax of the toy imperative language
data Prog = Prog Comm
data Comm = Affect Id Expr
| Sequence Comm Comm
| Begin Decl Comm
| Call Id
| While Expr Comm

data Decl = ProcDef Id Comm
data Expr = Val N

| Add Expr Expr
| NotEq Expr Expr
| Var Id

3 Domain

A triple to store values of variables "X","Y" and "Z"
type Store = (N, N, N)
data Loc = A | B | C
look :: Loc→ Store→N

look A (x, ,) = x
look B (, y,) = y
look C (, , z) = z
update :: Loc→N→ Store→ Store
update A i (, y, z) = (i, y, z)
update B i (x, , z) = (x, i, z)
update C i (x, y,) = (x, y, i)
initStore :: N→ Store
initStore n = (n, 0, 0)

Environment, that maps identifiers to either a location or a function that modifies the store. The
Maybe monad is used to capture bottom, check function is bind (>>=) with parameters reversed.

check :: (Store→ Store∇)→ Store∇ → Store∇
check f s = s >>= f
data Denotable = Mem Loc | Fun (Store→ Store∇)
type Env = [(Id, Denotable)]
find :: Id→ Env→ Denotable
find [] = error "find: Empty environnement"

2

find i ((j, d) : es) | (i⇔ j) = d
| otherwise = find i es

bind :: Id→ Denotable→ Env→ Env
bind = ((◦) ◦ (◦)) (:) (,)

bind is written in a cryptic way. Please consider this definition bind i d e = (i, d) : e.
initEnv :: Env
initEnv = ("X", Mem A) : ("Y", Mem B) : ("Z", Mem C) : []

4 Denotation

Semantic mappings for each level of the syntax

• J·KP for Prog(rams)

• J·KD for Decl(arations)

• J·KC for Comm(ands)

• J·KE for Expr(essions)

4.1 Programs

Piece of cake.
J·KP :: Prog→N→ Store∇
J(Prog c)KP = λn→ (JcKC) initEnv (initStore n)

4.2 Declarations

A declaration is mapped to an endo function of the environment.
J·KD :: Decl→ Env→ Env
J(ProcDef i c)KD = λe→ bind i (Fun (JcKC e)) e

4.3 Commands

J·KC :: Comm→ Env→ Store→ Store∇
J(Affect i x)KC = λe s→ case (find i e) of

Mem l→ case (JxKE e s) of
ιL v → η (update l v s)
ιR → fail "denotC: Nat expected"

Fun → fail "denotC: Location expected"
J(Sequence x y)KC = λe s→ (JxKC e s)>>= (JyKC e)
J(Begin d c)KC = λe s→ JcKC (JdKD e) s
J(Call i)KC = λe→ case (find i e) of

Mem → const (fail "denotC: Fun expected")
Fun f → f

J(While x c)KC = λe→ let
f :: (Store→ Store∇)→ (Store→ Store∇)
f h = λs→ case (JxKE e s) of

3

(ιR tt) → (JcKC e s)>>= h
(ιR ff)→ η s
(ιL) → fail "denotC: Bool expected"

in fix f

4.4 Expressions

Function fix :: (a → a) → a defined as fix f = let x = f x in x is the fixed point2 combinator of
Haskell

J·KE :: Expr→ Env→ Store→N + B

J(Val i)KE = λ → ιL i
J(Var x)KE = λe s→ case (find x e) of

Mem l→ ιL $ look l s
Fun → error "denotE: Location expected"

J(Add x y)KE = λe s→ case (JxKE e s, JyKE e s) of
(ιL x′, ιL y′)→ ιL (x′ + y′)
→ error "denotE: Nat expected"

J(NotEq x y)KE = λe s→ case (JxKE e s, JyKE e s) of
(ιR x′, ιR y′)→ ιR (x′ 6⇔ y′)
(ιL x′, ιL y′)→ ιR (x′ 6⇔ y′)

→ error "denotE: Bool VS Nat"

5 Toy sample

The toy sample of the paper : a function that squares a natural number
myDecl :: Decl
myDecl = ProcDef "INCR" aComm where

aComm, comm1, comm2 :: Comm
aComm = Sequence comm1 comm2
comm1 = Affect "Z" (Add (Var "Z") (Var "X"))
comm2 = Affect "Y" (Add (Var "Y") (Val 1))

myBody :: Comm
myBody = Sequence initP aLoop where

initP, aLoop :: Comm
initP = Sequence (Affect "Y" (Val 0)) (Affect "Z" (Val 0))
aLoop = While cond inn
cond :: Expr
cond = NotEq (Var "Y") (Var "X")
inn :: Comm
inn = Call "INCR"

myProg :: Prog
myProg = Prog (Begin myDecl myBody)

Instances of class Show are defined in the source files (pretty printing).

2http://en.wikibooks.org/wiki/Haskell/Denotational_semantics

4

http://en.wikibooks.org/wiki/Haskell/Denotational_semantics

show myProg =
"begin proc INCR = Z:=Z + X; Y:=Y + 1 in Y:=0; Z:=0; while Y != X do call INCR od end."

One can use J·KP as an interpreter for the programming language

JmyProgKP 9 = η (9, 9, 81)

More generally, for x > 0, JmyProgKP x = η (x, x, x ↑ 2).

References

[Sch97] David A. Schmidt. Programming language semantics. In Allen B. Tucker, editor, The
Computer Science and Engineering Handbook, pages 2237–2254. CRC Press, 1997.

5

	1 Introduction
	2 Syntax
	3 Domain
	4 Denotation
	4.1 Programs
	4.2 Declarations
	4.3 Commands
	4.4 Expressions

	5 Toy sample

