
An extension of complexity bounds and dynamic

heuristics for tree-decompositions of CSP

Philippe Jégou, Samba Ndojh Ndiaye, and Cyril Terrioux

LSIS - UMR CNRS 6168
Université Paul Cézanne (Aix-Marseille 3)

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

{philippe.jegou, samba-ndojh.ndiaye, cyril.terrioux }@univ-cezanne.fr

Abstract. This paper deals with methods exploiting tree-decomposition
approaches for solving constraint networks. We consider here the practi-
cal efficiency of these approaches by defining five classes of variable orders
more and more dynamic which guarantee time complexity bounds from
O(exp(w + 1)) to O(exp(2(w + k))), with w the ”tree-width” of a CSP
and k a constant. Finally, we assess practically their relevance.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful frame-
work for representing and solving efficiently many problems. An instance of CSP
is defined by a tuple (X, D, C) where X is a set of n variables, taking their values
in finite domains from D, and being subject to constraints from C. Given an
instance, the CSP problem consists in determining if there is an assignment of
each variable which satisfies each constraint. This problem is NP-complete. In
this paper, without loss of generality, we only consider binary constraints (i.e.
constraints which involve two variables). So, the structure of a CSP can be repre-
sented by the constraint graph G = (X, C). The usual approach for solving CSP
(Backtracking), has an exponential theoretical time complexity in O(exp(n)). To
improve this bound, structural methods like Tree-Clustering [1] were proposed
(see [2] for a survey and a theoretical comparison of these methods). They are
based on particular features of the instance like the ”tree-width” of the con-
straint graph (denoted w). The tree-width w of G is the minimal width over
all the tree-decompositions of G [3]. A tree-decomposition of G is a pair (E, T)
where T = (I, F) is a tree with nodes I and edges F and E = {Ei : i ∈ I}
a family of subsets of X , such that each subset (called cluster) Ei is a node
of T and verifies: (i) ∪i∈IEi = X , (ii) for each edge {x, y} ∈ C, there exists
i ∈ I with {x, y} ⊆ Ei, and (iii) for all i, j, k ∈ I, if k is in a path from i to
j in T , then Ei ∩ Ej ⊆ Ek. The width of a tree-decomposition (E, T) is equal
to maxi∈I |Ei| − 1. Recent studies (e.g. [4]) integrate as quality parameter for
a decomposition, its efficiency for solving the considered CSP. This paper deals
with the question of an efficient use of the considered decompositions. We focus

on the BTD method (Backtracking on tree-decomposition [5]) which seems to
be the most effective method proposed until now within the framework of these
structural methods. Indeed, most of works based on this approach only present
theoretical results, except [6, 5]. BTD proceeds by an enumerative search guided
by a static pre-established partial order induced by a tree-decomposition of the
constraint graph. This permits to bound its time complexity by O(exp(w + 1)),
while its space complexity is O(n.s.ds) with s the size of the largest minimal sep-
arators of the graph. Since the efficiency of dynamic variable orders is known, we
propose five classes of orders which exploit dynamically the tree-decomposition
and guarantee time complexity bounds. Then we define several heuristics for
each class.

In section 2, we define the classes and heuristics to compute their orders.
Section 3 is devoted to experimental results and conclusions.

2 Classes of orders and heuristics

Even though, the basic version of BTD uses a compatible static variable ordering,
we prove here by defining the following classes that it is possible to consider
more dynamic orders without loosing the complexity bounds. These orders are
in fact provided by the cluster order and the variable ordering inside each cluster.
Firstly, we give the definition of a generalized tree-decomposition [7]. The set
of directed k-covering tree-decompositions of a tree-decomposition (E, T) of G

with E1 its root cluster and k a non nil positive integer, is defined by the set of
tree-decompositions (E′, T ′) of G that verify: (i) E1 ⊂ E′

1, E′

1 the root cluster
of (E′, T ′), (ii) ∀E′

i ∈ E′, E′

i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiK
, with Ei1 . . . EiK

a path
in T , and (iii) |E′

i| ≤ w+ + k, where w+ = maxEi∈E |Ei|. Given a CSP and a
tree-decomposition of its constraint graph, we define:

– Class 1. Enumerative static compatible order.

– Class 2. Static compatible cluster order and dynamic variable order in the
clusters.

– Class 3. Dynamic compatible cluster order and dynamic variable order in
the clusters.

– Class 4. Class 3 order on a directed k-covering tree-decomposition of the
tree-decomposition.

– Class 5. Class 3 order on a set of directed k-covering tree-decompositions
of the tree-decomposition.

– Class ++. Enumerative dynamic order.

The defined classes form a hierarchy since we have: Class 1 ⊂ Class 2 ⊂ Class
3 ⊂ Class 4 ⊂ Class 5⊂ Class ++. The Class ++ gives a complete freedom,
but it does not guarantee time complexity bounds, contrary to the Class 3.

Theorem 1 Let the enumerative order be in the Class 3, the time complexity
of BTD is O(exp(w + 1)).

The properties of the Class 3 offer the possibility to choose any cluster to visit
next since the variables on the path from the root cluster to that cluster are
already assigned. And in each cluster, the variable ordering is totally free. The
definitions of the Class 4 and Class 5 enforce the order of one assignment to be
in the Class 3. So we derive natural theorems:

Theorem 2 Let the enumerative order be in the Class 4 with constant k, the
time complexity of BTD is O(exp(w+ + k)).

Theorem 3 [7] Let the enumerative order be in the Class 5, the time complexity
of BTD is O(exp(2(w+ + k))).

We define many heuristics to compute orders in the Classes proposed here and,
by lack of place, we only present the more efficient ones:

– minexp(A): this heuristic is based on the expected number of partial solu-
tions of clusters [8] and on their size. It chooses as root cluster one which
minimizes the ratio between the expected number of solutions and the size
of the cluster. It allows to start the exploration with a large cluster having
few solutions.

– size(B): we have here a local criteria: we choose the cluster of maximum size
as root cluster

– minexps(C): this heuristic is similar to minexp and orders the son clusters
according to the increasing value of their ratio.

– minseps (D): we order the son clusters according to the increasing size of
their separator with their parent.

– nv(E): we visit first the son cluster where appears the next variable in the
variable order among the variables of the unvisited son clusters.

– minexpsdyn (F): the next cluster to visit minimizes the ratio between the
current expected number

– nvsdyn(G): We visit first the son cluster where appears the next variable in
the variable order among the variables of the unvisited son clusters.

Inside a cluster, we use min domain/degree heuristic for choosing the next vari-
able (static version mdds for class 1 and dynamic mdddyn for the other classes).

3 Experimental study and discussion

Applying a structural method on an instance generally assumes that this in-
stance presents some particular topological features. So, our study is performed
on random partial structured CSPs described in [7]. All these experimentations
are performed on a Linux-based PC with a Pentium IV 3.2GHz and 1GB of mem-
ory. For each class, the presented results are the average on instances solved over
50. We limit the runtime to 30 minutes. Above, the solver is stopped and the
involved instance is considered as unsolved. In the table, the letter M means
that at least one instance cannot be solved because it requires more than 1GB
of memory. We use MCS [9] to compute tree-decompositions because it obtains

Table 1. Parameters w+ and s of the tree-decomposition and runtime (in s) on random
partial structured CSPs with mdd for class 1 and mdddyn for classes 2, 3 and 4.

CSP Class 1 Class 2 Class 3 Class 4

w+ s B A B A A B B A A B
(n, d, w, t, s, nc, p) D C D C F G D C F G

(150, 25, 15, 215, 5, 15, 10) 13.0 12.2 9.31 28.12 3.41 2.52 2.45 5.34 2.75 2.17 2.08 2.65
(150, 25, 15, 237, 5, 15, 20) 12.5 11.9 9.99 5.27 5.10 2.47 1.99 5.47 2.58 1.76 1.63 2.97
(150, 25, 15, 257, 5, 15, 30) 12.1 11.4 13.36 27.82 3.38 5.06 4.97 3.55 1.41 1.05 1.13 1.30
(150, 25, 15, 285, 5, 15, 40) 11.5 10.6 3.07 8.77 1.13 0.87 1.27 1.17 1.67 0.39 0.63 1.75
(250, 20, 20, 107, 5, 20, 10) 17.8 16.9 54.59 57.75 15.92 12.39 12.14 14.93 10.18 7.75 7.34 10.26
(250, 20, 20, 117, 5, 20, 20) 17.2 16.5 55.39 79.80 23.38 14.26 13.25 24.14 10.05 8.81 8.39 10.34
(250, 20, 20, 129, 5, 20, 30) 16.8 15.8 26.21 21.14 7.23 5.51 6.19 7.84 33.93 4.61 4.41 34.20
(250, 20, 20, 146, 5, 20, 40) 15.9 15.2 44.60 30.17 26.24 3.91 4.51 17.99 11.38 3.17 3.17 10.63
(250, 25, 15, 211, 5, 25, 10) 13.0 12.3 28.86 38.75 15.33 11.67 13.37 18.12 5.86 7.71 6.65 6.44
(250, 25, 15, 230, 5, 25, 20) 12.8 11.9 20.21 34.47 8.60 7.12 14.84 19.47 4.19 3.94 3.36 6.81
(250, 25, 15, 253, 5, 25, 30) 12.3 11.8 11.36 16.91 5.18 11.13 5.14 5.26 2.80 3.71 3.52 3.06
(250, 25, 15, 280, 5, 25, 40) 11.8 11.1 7.56 32.74 3.67 16.32 17.49 4.91 4.03 1.40 1.26 3.55
(250, 20, 20, 99, 10, 25, 10) 17.9 17.0 M M M M M M 66.94 63.15 62.99 66.33
(500, 20, 15, 123, 5, 50, 10) 13.0 12.5 12.60 13.63 7.01 8.08 7.31 7.54 5.48 4.50 4.41 5.86
(500, 20, 15, 136, 5, 50, 20) 12.9 12.1 47.16 19.22 25.54 23.49 27.01 15.11 4.86 4.92 3.94 5.24

the best results in the study performed in [4] on triangulation algorithms to
compute a good tree-decomposition w.r.t. CSP solving. FC and MAC are often
unable to solve several instances of each class within 30 minutes.
Table 1 shows the runtime of BTD with several heuristics of Classes 1, 2, 3 and
4. For Class 5, we cannot get good results and then, the results are not pre-
sented. Also it presents the width of the computed tree-decompositions and the
maximum size of the separators. Clearly, we observe that Class 1 orders obtain
poor results. This behaviour is not surprising since static variable orders are well
known to be inefficient compared to dynamic ones. A dynamic strategy allows to
make good choices by taking in account the modifications of the problem during
search. That explains the good results of Classes 2 and 3 orders. The results show
as well the crucial importance of the root cluster choice since each heuristic of
the Classes 2 and 3 has a dramatic runtime on an average of 4 instances over all
instances of all classes because of a bad choice of root cluster. The memory prob-
lems marked by M can be solved by using a Class 4 order with the sep heuristic
for grouping variables (we merge cluster whose intersection is greater than a
value smax). Table 1 gives the runtime of BTD for this class with smax = 5.
When we analyze the value of the parameter k, we observe that in general, that
its value is limited (between 1 to 6). Yet, for the CSPs (250, 20, 20, 99, 10, 25, 10),
the value of k is near 40, but this high value allows to solve them.
The heuristics improve very significantly their results obtained for the Classes
2 and 3. The impact of the dynamicity is obvious. minexp and nv heuristics
solve all the instances except one due to a bad root cluster choice, size solves
all the instances. Except this unsolved instance, minexp obtains very promis-
ing results. The son cluster ordering has a limited effect because the instances
considered have a few son clusters reducing the possible choices and so their im-
pact. The best results are obtained by minexp + minexpsdyn , but size + minseps

obtains often similar results and succeed in solving all instances in the Class
4. The calculus of the expected number of solution assumes that the problem

constraints are independent, what is the case for the problems considered here.
Thus, size + minsep may outperform minexp + minexpsdyn on real-world prob-
lems which have dependent constraints.
These experiments highlight the importance of dynamic orders and make us con-
clude that the Class 4 gives the best variable orders w.r.t CSP solving with a
good value of k. Merging clusters with k less than 5 decreases the maximal size
of separator and leads to an important reduction of the runtime.

To summarize, we aim to improve the practical interest of the CSP solving
methods based on tree-decompositions. This study takes now on importance for
solving hard instances with suitable structural properties since they are seldom
solved by enumerative methods like FC or MAC. We defined classes of variable
orders which guarantee good theoretical time complexity bounds. A comparison
of these classes with relevant heuristics w.r.t. CSP solving, points up the impor-
tance of a dynamic variable ordering. Indeed the best results are obtained by
Class 4 orders because they give more freedom to the variable ordering heuristic
while their time complexity is O(exp(w+k)) where k is a constant to parameter-
ize. Note that for the most dynamic class (the Class 5), we get a time complexity
in O(exp(2(w+k))) which should be too large to expect a practical improvement.
Then, for Class 4, we aim to exploit better the problem features to improve the
computing of k. This study will be pursued on the optimization problem.

References

1. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial Intel-

ligence, 38:353–366, 1989.
2. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decom-

position Methods. Artificial Intelligence, 124:343–282, 2000.
3. N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of tree-

width. Algorithms, 7:309–322, 1986.
4. P. Jégou, S. N. Ndiaye, and C. Terrioux. Computing and exploiting tree-

decompositions for solving constraint networks. In Proceedings of CP, pages 777–
781, 2005.

5. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence, 146:43–75, 2003.

6. G. Gottlob, M. Hutle, and F. Wotawa. Combining hypertree, bicomp and hinge
decomposition. In Proceedings of ECAI, pages 161–165, 2002.

7. P. Jégou, S. N. Ndiaye, and C. Terrioux. Strategies and heuristics for exploiting
tree-decompositions of constraint networks. In Proceedings of WIGSK, 2006.

8. B. Smith. The Phase Transition and the Mushy Region in Constraint Satisfaction
Problems. In Proceedings of ECAI, pages 100–104, 1994.

9. R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing, 13 (3):566–579, 1984.

