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Abstract. This paper deals with the problem of solving efficiently struc-
tured CSPs. It is well known that (hyper)tree-decompositions offer the
best approaches from a theoretical viewpoint, but from the practical
viewpoint, these methods do not offer efficient algorithms. Therefore,
we introduce here a framework founded on coverings of CSP by acyclic
hypergraphs. We study their properties and relations, and evaluate theo-
retically their interest with respect to the solving of structured problems.
This framework does not define a new decomposition, but makes easier
a dynamic management of the CSP structure during the search, and so
an exploitation of dynamic variables ordering heuristics in the solving
method. Thus, we provide a new complexity result which outperforms
significantly the previous one given in the literature about heuristics for
solving a decomposed problem. Finally, we present experimental results
to assess the practical interest of these notions.

1 Introduction

In the past, the interest for the exploitation of structural properties of a problem
was attested in various domains: for checking satisfiability in SAT [1–3], for solv-
ing CSP [4], in Bayesian or probabilistic networks [5, 6], in relational databases
[7, 8], for constraint optimization [9, 10]. Complexity results based on topological
properties of the network structure have been proposed. Generally, these results
rely on the properties of a tree-decomposition [11] or a hypertree-decomposition
[12] of the network, which can be considered as an acyclic hypergraph (a hyper-
tree) covering the network. If we consider tree-decomposition, the time complex-
ity of the best structural methods is O(exp(w+1)), with w the width of the used
tree-decomposition. If we consider hypertree-decomposition, the time complex-
ity is then O(exp(k)), with k the width of the used hypertree-decomposition. It
has been shown that hypertree-decomposition is better than tree-decomposition
[12], while it is recently outperformed by a generalized hypertree-decomposition
[13, 14]. Note that these theoretical complexities can really outperform the clas-
sical one which is O(exp(n)) (k < w < n) with n the number of variables of the
considered CSP.



However, while several methods and theoretical results have been proposed,
the practical interests of such approaches have not been proved yet, except in
some recent works around CSPs [15] or Valued CSPs [16, 17, 10]. This is due to
the fact that the good complexity bounds are often reached to the detriment of
the practical efficiency. Precisely, approaches based on hypertree-decompositions
and their generalizations assume that relations associated to constraints are ex-
pressed by tables, what is unrealistic, in practice, for many real life problems.
Moreover, to ensure complexity bounds, the decompositions perform joins of re-
lations. For solving CSPs, such an approach is generally unrealistic due to the size
of the generated relations. Indeed, solving structured CSPs sometimes requires
to manage joins of relations defined on several tens of attributes (i.e. variables),
which is clearly impossible in practice. On the other hand, the methods that have
shown their feasibility and their practical interest are based on assignments of
variables. These methods can exploit the practical efficiency of backtracking-
based algorithms with filtering, while they ensure complexity bounds without
problems related to practical space complexity, contrary to approaches based
on management of relations as hypertree-decomposition. Yet, some methods ex-
ploiting the structure of the problem, based on heuristics guaranteeing no good
complexity bound, have shown the interest of such an approach [3].

In this paper, we propose to make a trade-off between good theoretical com-
plexity bounds and the peremptory necessity to exploit efficient heuristics as
often as possible. From this viewpoint, this work can be considered as an ex-
tension of the works recently presented in [17] in the field of AND/OR Branch-
and-Bound Search in Constraint Optimization, or in [18] in the field of tree-
decomposition methods for CSPs. Our contribution is more precisely an exten-
sion of the approach presented in [18]. Furthermore, we propose a framework dif-
ferent from the previous one, better theoretical results and a practical validation
of this approach. Actually, we prefer here the more general and useful concept
of covering acyclic hypergraph to the concept of tree-decomposition. Note that
we do not aim here to define a new decomposition method for solving CSPs, nor
to propose new bounds for complexity. We introduce a framework that makes
possible to implement decomposition methods which can be more efficient than
previously, because they can exploit efficient heuristics. Note that generally, de-
composition methods define a decomposition of the constraint network, and then
solve the associated CSP exploiting statically this structure. Here, our goal is to
exploit dynamically sets of structures induced by the considered decomposition.

Given a hypergraph H = (X, C) related to the graphical representation of
the considered problem, we consider a covering of this hypergraph by an acyclic
hypergraph HA = (X, E): the set of vertices is the same while for each edge
Ci ∈ C, there is an edge Ei ∈ E covering Ci (Ci ⊂ Ei). Now, given HA, we
can define various classes of acyclic hypergraphs which cover HA. These classes
are defined on the basis of criteria related to the nature of coverings and the
relations existing with the solving methods: bounding the value of parameters
such as tree-width, preservation of the separators in HA, merging of neighboring
hyperedges or ability to implement effective heuristics, in particular dynamic



ones. First, these coverings are studied theoretically in order to determine their
characteristics and properties. After, we show that they permit to preserve al-
ready known complexity results and also to improve some of them. Moreover, we
indicate how they offer a framework for a dynamic management of the structure:
during a search, we can take into account not only one acyclic hypergraph cover-
ing, but a set of coverings in order to manage heuristics dynamically. Thanks to
this formal framework, we present a new algorithm (called BDH for ”Backtrack-
ing on Dynamic covering by acyclic Hypergraphs”) for which it is easy to extend
heuristics. For example, for dynamic variable ordering, we can add dynamically
a set of ∆ variables for the choices. Moreover, we show how an implementation is
made possible easily, allowing us to show the practical interest of this approach.

In the next section, we recall some results on structural decompositions.
Section 3 introduces various classes of acyclic hypergraph coverings and show
their relations. The fourth section describes how these classes can be exploited
on the algorithmic level and gives the theoretical complexity they guarantee.
Finally, we presents an experimental analysis before concluding.

2 Decompositions methods for solving CSPs efficiently

A constraint satisfaction problem (CSP) is defined by a tuple (X, D,C,R). X is
a set of n variables which must be assigned in their respective finite domain from
D, by satisfying a set C of constraints which are defined on a set of relations R.
A solution is an assignment of every variable which satisfies all the constraints.
Here a constraint Ci ∈ C is defined by a subset of variables (Ci ⊂ X), while the
associated relation Ri expresses a set of tuples of values defined on domains of
variables belonging to Ci, all tuples in Ri satisfying the constraint Ci. The CSP
structure can be represented by the hypergraph (X, C), called the constraint
hypergraph (if all the constraints of a CSP are defined by pairs of variables, then
we consider a constraint graph).

In this paper, we assume that the relations can be represented by tables,
predicates, functions, or (in)equations. This remark is important in the field of
decomposition methods. Indeed, several results assume that relations are repre-
sented by tables. From a theoretical viewpoint, this is possible since we consider
finite domains, but from a practical viewpoint, this restriction can be unrealistic.
Let us consider a constraint defined by the inequation x1 + x2 + . . . xc > c, with
domains Di = {1, . . . 1000}, i = 1, . . . , c. The memory size of the table for repre-
senting the associated relation is then c.(1000c − 1), which is clearly unrealistic
even for small values of c.

The basic concept which interests us here is the acyclicity of networks. Often,
this concept is expressed by considering the tree-decomposition of constraint
graphs, hypertree-decomposition of constraint hypergraphs, or more generally,
coverings of variables and constraints by acyclic hypergraphs. We recall these
different decompositions.

Tree-decomposition is based on graphs. Nevertheless, given a constraint hy-
pergraph, we can exploit it by considering its primal graph. Let H = (X, C) be



a hypergraph, with X a finite set of vertices and C = {C1, C2, . . . Cm} a set of
edges (sometimes called hyperedges) which are nonempty subsets of X. Here we
consider only reduced hypergraphs, that is hypergraphs such that for all edges
Ci of H, Ci is not a proper subset of another edge of H. The primal graph of H
is the graph G = (X, A) where A = {{x, y} : ∃Ci ∈ C such that {x, y} ⊂ Ci}.

Definition 1 A tree-decomposition of a graph G = (X, A) is a pair (E, T ) where
T = (I, F ) is a tree with nodes I and edges F and E = {Ei : i ∈ I} a family of
subsets of X, s.t. each subset (called cluster) Ei is a node of T and verifies:

(i) ∪i∈IEi = X,
(ii) for each edge {x, y} ∈ A, there exists i ∈ I with {x, y} ⊂ Ei, and
(iii) for all i, j, k ∈ I, if k is in a path from i to j in T , then Ei ∩ Ej ⊂ Ek.

The width w of a tree-decomposition (E, T ) is equal to maxi∈I |Ei| − 1. The
tree-width w∗ of G is the minimal width over all the tree-decompositions of G.

Assume that we have a tree-decomposition of width w for the constraint net-
work. The best structural methods based on a tree-decomposition of a CSP
have a time complexity in O(exp(w + 1)), while their space complexity can be
reduced to O(exp(s)) where s is the size of the largest intersection Ei ∩Ej (gen-
erally considered as minimal separators) between neighboring clusters of the
tree-decomposition. Tree-Clustering (TC [4]) is based on this notion, but has
never shown its efficiency for real life problems. This is due to the fact that TC
runs in finding firstly all solutions of each subproblem induced by the variables
in each Ei. An example of an efficient method exploiting tree-decomposition is
BTD [15], which does not compute all solutions of subproblems. This method
applies a backtracking driven by the tree-decomposition and preserves complex-
ity bounds in O(exp(w + 1)). Note that this kind of methods can be considered
as driven by the assignment of variables (or as ”variables driven” methods). As
a consequence, it does not need to represent relations in tables.

From a theoretical viewpoint, methods based on tree-decomposition are less
interesting than those based on hypertree-decomposition and their generaliza-
tions [12].

Definition 2 Given a hypergraph H = (X, E), a hypertree for the hypergraph H
is a triple (T, χ, λ) where T = (N,F ) is a rooted tree, and χ and λ are labelling
functions which associate to each vertex p ∈ N two sets χ(p) ⊂ X and λ(p) ⊂ E.
If T ′ = (N ′, F ′) is a subtree of T , we define χ(T ′) = ∪v∈N ′χ(v). We denote the
set of vertices N of T by vertices(T ), and the root of T by root(T ). Moreover,
for any p ∈ N , Tp denotes the subtree of T rooted at p.

Definition 3 Given a hypergraph H = (X, E), a hypertree-decomposition of H
is a hypertree HD = (T, χ, λ) for H which satisfies all the following conditions:

(i) for each edge Ei ∈ E,∃p ∈ vertices(T ) such that Ei ⊂ χ(p),
(ii) for each vertex x ∈ X, the set {p ∈ vertices(T ) : x ∈ χ(p)} induces a

(connected) subtree of T ,



(iii) for each p ∈ vertices(T ), χ(p) ⊂ ∪Ei∈λ(p)Ei,
(iv) for each p ∈ vertices(T ),∪Ei∈λ(p)Ei ∩ χ(Tp) ⊂ χ(p).

An edge Ei ∈ E is strongly covered in HD if there exists p ∈ vertices(T ) such
that Ei ⊂ χ(p) and Ei ∈ λ(p). A hypertree-decomposition HD is a complete
decomposition of H if every edge of H is strongly covered in HD. The width
k of a hypertree-decomposition HD = (T, χ, λ) is maxp∈vertices(T )|λ(p)|. The
hypertree-width k∗ of H is the minimum width over all its hypertree-decomposi-
tions.

Remark that acyclic hypergraphs are precisely those hypergraphs having a hy-
pertree width one.

While tree-decomposition consists in grouping the vertices in clusters (i.e.
variables in subproblems), hypertree-decomposition consists in grouping the con-
straints (and so the relations) in nodes of the hypertree. Given a hypertree-
decomposition of a CSP, the method exploiting it consists in solving first each
node of T , and then solving the acyclic induced problem. Thus its time com-
plexity is O(|P|k+1log(|P|)) where |P| denotes the size of the CSP P and k
the width of the considered hypertree-decomposition of H = (X, C). This com-
plexity can be limited to O(rk+1log(r)) where r is the maximum size for all
tables representing relations in the considered CSP. This cost is related to the
cost of computing each node of the hypertree, which is bounded by the cost of
joins between k relations, which is rk. Now, if we consider complexity space, the
complexity is related to the size of the largest relation induced for each node
of the hypertree, that is also O(rk). This kind of methods can be considered as
”relations driven” approaches. Indeed, the time complexity bounds of these ap-
proaches outperform those guaranteed by methods as TC or BTD. Nevertheless,
the relations associated to constraints must be represented by tables, or at least,
the relations associated to nodes of the hypertree must be represented by tables.
This restriction can make these approaches unusable in practice. Moreover, like
TC, they must compute first all the solutions in each node of the hypertree by
joining relations in it. Consequently, as for TC, these methods will require a too
expensive amount of memory space in practice making them unusable again.
Thus, they are generally unrealistic to solve real instances of CSPs, and then, at
the present time, the proof of their practical efficiency has never been shown.

So, while from a theoretical viewpoint, it appears that (generalized-)hyper-
tree-decompositions should be considered, we prefer consider here ”variables
driven” decompositions. In this paper, we will refer to the covering of constraint
networks by acyclic hypergraphs. Different definitions of acyclicity have been
proposed. Here, we consider the classical definition called α− acyclicity in [7].

Definition 4 Let H = (X, C) be a hypergraph. A covering by an acyclic hyper-
graph (CAH) of the hypergraph H is an acyclic hypergraph HA = (X, E) such
that for each edge Ci ∈ C, there exists Ej ∈ E such that Ci ⊂ Ej. The width α of
a CAH (X, E) is equal to maxEi∈E |Ei|. The CAH-width α∗ of H is the minimal
width over all the CAHs of HA. Finally, CAH(H) is the set of the CAHs of H.



The notion of covering by acyclic hypergraph (called hypertree embedding
in [19]) is very close to the one of tree-decomposition. Particularly, it is easy to
see that for a tree-decomposition (E, T ) of the primal graph of H = (X, C), the
pair (X, E) is a CAH of the hypergraph H. Moreover, the CAH-width α∗ of H
is equal to the tree-width of G plus one. However, the concept of CAH is less
restrictive. Indeed, for a given (hyper)graph, it can exist a single CAH whose
width is α, while it can exist several tree-decompositions of width w such that
α = w + 1. An example is given in figure 1, where for a constraint network, we
have one CAH (with α = 4) and two possible tree-decompositions (with w = 3).
Given a CSP with a CAH of width α, the time complexity of better structural
methods for solving it is O(exp(α)) while its space complexity can be reduced
to O(exp(s)) where s is the size of the largest intersection Ei ∩ Ej in HA.

he next section presents different classes of covering acyclic hypergraphs.

3 Coverings by classes of acyclic hypergraphs

In the sequel, given a hypergraph H = (X, C) and one of its CAHs HA = (X, E),
we study several classes of acyclic coverings of HA. These coverings correspond
to coverings of hyperedges (elements of E) by other hyperedges (larger but less
numerous), which belong to a hypergraph defined on the same set of vertices
and which is acyclic. In all the cases, these extensions are defined with respect
to a particular CAH HA, called CAH of reference. Here, we do not introduce a
new decomposition of hypergraph. We study different ways for covering and so
to solve a CSP by decomposition. Our objective is to formalize different classes
of acyclic coverings, to manage dynamically, during search, acyclic coverings of
the considered CSP. We hope by this mean, to manage dynamic heuristics to
optimize backtrack search while preserving complexity results.
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Fig. 1. A graph on 23 vertices under a covering by an acyclic hypergraph (of 15 edges)
and 2 possible tree-decompositions.

Definition 5 The set of coverings of a CAH HA = (X, E) of a hypergraph
H = (X, C) is defined by CAHHA

= {(X, E′) ∈ CAH(H) : ∀Ei ∈ E,∃E′j ∈ E′ :
Ei ⊂ E′j}



The following classes of coverings will be successive restrictions of this first
class CAHHA

. But, let us define before that the notions of neighboring hyper-
edges in a hypergraph H = (X, C).

Definition 6 Let Cu and Cv be two hyperedges in H such that Cu∩Cv 6= ∅. Cu

and Cv are neighbours if @Ci1 , Ci2 , . . . , CiR
such that R > 2, Ci1 = Cu, CiR

= Cv

and Cu ∩ Cv ( Cij ∩ Cij+1 , with j = 1, . . . , R− 1.
A path in H is a sequence of hyperedges (Ci1 , . . . CiR

) such that ∀j, 1 ≤ j < R, Cij

and Cij+1 are neighbours. A cycle in H is a path (Ci1 , Ci2 , . . . CiR
) such that

R > 3 and Ci1 = CiR
. H is α− acyclic iff H contains no cycle.

The first restriction imposes that the edges Ei covered (even partially) by
a same edge E′j are connected in HA, i.e. mutually accessible by paths. This
class is called set of connected-coverings of a CAH HA = (X, E) and is denoted
CAHHA

[C+]. It is possible to restrict this class by restricting the nature of
the set {Ei1 , Ei2 , . . . EiR

}. On the one hand, we can limit the considered set
to paths (class of path-coverings of a CAH denoted CAHHA

[P+]), and on the
other hand by taking into account the maximum length of connection (class
of family-coverings of a CAH denote CAHHA

[F+]). We can also define a class
(called unique-coverings of a CAH and denoted CAHHA

[U+]) which imposes the
covering of an edge Ei by a single edge of E′. Finally, it is possible to extend the
class CAHHA

in another direction (class of close-coverings of a CAH denoted
CAHHA

[B+]), ensuring neither connexity, nor unicity: we can cover edges with
empty intersections but which have a common neighbor.

Definition 7 Given a graph H and a CAH HA of H:

– CAHHA
[C+] = {(X, E′) ∈ CAHHA

: ∀E′i ∈ E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR

with Eij ∈ E and ∀Eiu , Eiv , 1 ≤ u < v ≤ R, there is a path in H between
Eiu and Eiv defined on edges belonging to {Ei1 , Ei2 , . . . EiR

}}.
– CAHHA

[P+] = {(X, E′) ∈ CAHHA
: ∀E′i ∈ E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR

with Eij ∈ E and Ei1 , Ei2 , . . . EiR
is a path in H}.

– CAHHA
[F+] = {(X, E′) ∈ CAHHA

: ∀E′i ∈ E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR

with Eij ∈ E and ∃Eiu , 1 ≤ u ≤ R,∀Eiv , 1 ≤ v ≤ R and v 6= u, Eiu and Eiv

are neighbours }.
– CAHHA

[U+] = {(X, E′) ∈ CAHHA
: ∀Ei ∈ E,∃!E′j ∈ E′ : Ei ⊂ E′j}.

– CAHHA
[B+] = {(X, E′) ∈ CAHHA

: ∀E′i ∈ E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR

with Eij ∈ E and ∃Ek ∈ E such that ∀Eiv , 1 ≤ v ≤ R Ek 6= Eiv and Ek and
Eiv are neighbours }.

If ∀E′i ∈ E′, E′i = Ei1∪Ei2∪. . .∪EiR
, these classes will be denoted CAHHA

[X]
for X = C,P, F, U or B.

The concept of separator is essential in the methods exploiting the structure,
because space complexity directly depends on their size. This concept is intro-
duced here to impose a new restriction. This one will make it possible to limit
the separators to an existing subset of those in the hypergraph of reference:



Definition 8 The set of separator-based coverings of a CAH HA = (X, E) is
defined by CAHHA

[S] = {(X, E′) ∈ CAHHA
: ∀E′i, E′j ∈ E′, i 6= j, ∃Ek, El ∈

E, k 6= l : E′i ∩ E′j = Ek ∩ El}.

In fact, this class imposes both the unicity and the connexity. It thus cor-
responds to restrictions of the two classes [U ] and [C]. One deduces from it
that the unicity of covering and the connexity of the covered edges impose the
conservation of the separators of HA:

Theorem 1 CAHHA
[S] = CAHHA

[U ] ∩ CAHHA
[C]

By lack of place, we do not provide the proof of theorems 1-6.
Let us note that this classification is not exhaustive. We could consider addi-

tional classes but their interest and thus their study would probably be limited.
Finally, the computation of an element of these various classes is easy in terms
of complexity. For example, given H and HA (HA can be obtained as a tree-
decomposition), we can compute H ′A ∈ CAHHA

[S] by merging neighboring edges
of HA.
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Fig. 2. (a) In this covering, neither connexity (E′
6 = E11 ∪ E12), nor unicity (E5 ⊂

E′
4 ∩ E′

3) and then separators (e.g. E′
4 ∩ E′

3) are satisfied. This covering belongs to
CAHHA [C+]. (b) This covering belongs to CAHHA [S].

In all the cases, one can observe that the value of the CAH-width increase
inside these classes, and then is larger than α, the width associated to the hy-
pergraph of reference HA. In particular, for the classes of the type CAHHA

[X+],
it is an additive increase:

Theorem 2 ∀H ′A ∈ CAHHA
[X+] with X = C,P, F, U or B, ∃∆ ≥ 0 such that

α′ ≤ α + ∆.

Concerning the other classes, the increase is multiplicative. Indeed, in each
case, covering is related to the merging of edges of (X, E):

Theorem 3 ∀H ′A ∈ CAHHA
[C],∃δ ≥ 1 such that α′ ≤ δ(α − s−) + s−, where

s− is the minimum size of separators.



For classes CAHHA
[U ] and CAHHA

[B], edges can be deconnected and con-
sequently with empty intersections. So, we cannot take into account the size of
separators:

Theorem 4 ∀H ′A ∈ CAHHA
[U ] ∪ CAHHA

[B],∃δ ≥ 1 such that α′ ≤ δ.α.

These remarks are useful because they have consequences on the complexity
of the algorithms which will exploit these coverings. They show in particular
that classes CAHHA

[C] (and then [P ], [F ] and [S]) must be privileged rather
than classes CAHHA

[U ] or CAHHA
[B]. Concerning the size of the separators,

one can observe that for the class CAHHA
[S], the value s associated to HA is

an upper bound for any considered hypergraph H ′A. Formally:

Theorem 5 ∀H ′A ∈ CAHHA
[S], s′ ≤ s.

This study indicates us the most promising classes. From a theoretical view-
point, it seems that a class as CAHHA

[S] could be the most useful, on condition
that we limit the size of the induced width.

In the sequel, we exploit these concepts at the algorithmic level. So, each
CAH is thus now equipped of a privileged edge - the root - from which the
search begins. Consequently, the connections between edges of the hypergraph
will be oriented. Thus, certain concepts introduced before will be now expressed
with words such as ”hyperedge father”, ”hyperedge son” or ”hyperedge brother”
like for trees.

4 Algorithmic Exploiting of the CAHs

Several methods have been proposed to exploit properties related to the acyclic-
ity of constraint networks. We have chosen to extend BTD. This method has
shown its practical interest and it is easy to extend it to other formalisms [9, 20,
10]. It relies on the concept of tree-decomposition of graph, but its adaptation
to acyclic hypergraphs is easy. BTD explores the search space by assigning the
variables according to an order induced by a tree-decomposition (E, T ). BTD
initially chooses a node E1 as the root of T . Thus, T is now directed. For a
node Ei, Father(Ei) denotes its father node, and Sons(Ei) the set of its sons.
BTD carries out a backtracking search, by using an induced order and main-
taining an assignment A of the variables. During the search, BTD assigns the
variables VEi of the current cluster Ei. Assume that it succeeds to extend the
current assignment on these variables. If Ei is a leaf of T , the search continues
on another part of the problem. If Ei has sons, BTD will continue the search
on a son Ej ∈ Sons(Ei). Note that the assignment A[Ei ∩ Ej ] allows in fact
to disconnect the problem in two independent subproblems. One independent
subproblem is the one located below Ei which is rooted in Ej . Then two possi-
bilities arise. Either, A[Ei ∩ Ej ] has never been computed until now and then
the search continues on the subproblem rooted in Ej ; or, A[Ei ∩ Ej ] has been
computed before. In case the subproblem rooted in Ej has a consistent extension



of A[Ei ∩Ej ], this information has been recorded as a structural good of Ei with
respect to Ej (i.e. a consistent assignment on the separator Ei ∩ Ej which can
be consistently extended on the subproblem rooted on Ej). Otherwise, the sub-
problem rooted in Ej has no consistent extension of A[Ei∩Ej ]. This information
has been recorded as structural nogood of Ei with respect to Ej (i.e. a consistent
assignment on Ei∩Ej which cannot be extended consistently on the subproblem
rooted on Ej). In these two cases, the search will be immediately stopped on this
part of the problem, either by a success (good), or by a failure (nogood). The
efficiency of BTD is based on these principles. The time complexity of BTD is
O(exp(w + 1)). Its space complexity can be limited to O(exp(s)), although this
complexity is never reached in practice.

We propose an extension of BTD, called BDH (for ”Backtracking on Dy-
namic covering by acyclic Hypergraphs”), and based on dynamic exploitation
of the CAH. This approach will make it possible to effectively integrate more
dynamic variable ordering heuristics. Such heuristics are necessary to ensure
an effective practical solving. In order to make the implementation easier and
to guarantee interesting time and space complexity bounds, we will only con-
sider hypergraphs in CAHHA

[S], with H the constraint hypergraph of the given
problem and HA its reference hypergraph.

Firstly, we must exploit an orientation of the hypergraph by considering edges
as nodes and distinguishing an edge E1 as the root. The neighbouring edges of
E1 are its sons and recursively the neighbouring edges of an edge Ei are its sons
except the one on the path from the root to Ei, actually its father. Let Ei be a
node, Father(Ei) denotes its father node and Sons(Ei) its son set. The descent
of Ei is the set of variables in the edges contained in the acyclic sub-hypergraph
rooted on Ei. The subproblem rooted on Ei is the subproblem induced by the
variables in the descent in Ei.

BDH has 4 inputs: A the current assignment, E′i the current edge, VE′
i
the set

of unassigned variables in E′i and H ′A the current hypergraph. This hypergraph
is computed recursively. The choice (heuristic) of a new covering hypergraph H ′′A
in CAHHA

[S] is made before the beginning of the search on a subproblem. BDH
solves recursively the subproblems rooted on E′i and returns true if A can be
consistently extended on this subproblem and false otherwise. At the first call,
the assignment A is empty, the subproblem rooted on E1 corresponds to the
whole problem and HA is the hypergraph of reference. Like in BTD, the order
according to which variables are assigned is partially induced by the current
hypergraph H ′A. During the search, the covering hypergraph is modified to take
into account the evolutions of the problem. While VE′

i
is not empty, BDH chooses

a variable x in VE′
i

(line 16) and a value in its domain (line 18) (if not empty)
that verifies all the constraints (included those induced by the nogoods). Then
BDH(A ∪ {x← v}, E′i, VE′

i
\{x},H ′A) is called in the rest of the edge (line 19).

When all the variables in E′i are assigned, the algorithm chooses a son E′j of the
current edge (line 4) (if exists). If A[E′i ∩ E′j ] is a good (line 5), we know that
A can be consistently extended on Desc(E′j) (descent of E′j). Likewise, if E′i
contains a separator sk = Eku ∩ Eku′ of HA, with Eku′ a son of Eku , such that



Algorithm 1: BDH(A, E′
i, VE′

i
, H′

A)

if VE′
i

= ∅ then1
Cons← true ; F ← Sons(E′

i)2
while F 6= ∅ and Cons do3

Choose E′
j in F ; F ← F\{E′

j}4

if A[E′
j ∩ E′

i] is a good then Cons← true5

else6
if ∃sk = Eku ∩ Ek

u′
in HA s.t.7

Ek
u′
∈ Sons(Eku ), sk ⊂ E′

i, E′
j ⊂ Desc(Ek

u′
) and A[sk] is a good then

Cons← true
else8

Choose H′′
A induced by H′

A and E′
j with root E′′

19

Cons← BDH(A, E′′
1 , E′′

1 \(E
′′
1 ∩ E′

i), H′′
A)10

if Cons then Record the good A[E′′
1 ∩ E′

i]11

else Record the nogood A[E′′
1 ∩ E′

i]12

if Cons then ∀Eu ∩ Ev ⊂ E′
i, record the good A[Eu ∩ Ev ]13

return Cons14

else15
Choose x ∈ VE′

i
; dx ← Dx ; Cons← false16

while dx 6= ∅ and ¬Cons do17
Choose v in dx ; dx ← dx\{v}18
if A ∪ {x← v} satisfies constraints and nogoods then19

Cons← BDH(A ∪ {x← v}, E′
i, VE′

i
\{x}, H′

A)

return Cons20

the subproblem rooted on E′j is included in the one rooted on Eku′ and if A[sk]
is a good (line 7), we know that A can be consistently extended on Desc(Eku′ ).
So A can also be consistently extended on Desc(E′j). Thus a forward-jump is
performed and the algorithm keeps on the search on the rest of the problem.
Since the nogoods are used like constraints, the assignment A is stopped in E′i
if it contains a nogood. If E′i contains no (no)good, then the search continues
on the subproblem rooted on E′j . If A admits a consistent extension on this
subproblem, A[E′i ∩E′j ] is recorded as a good (line 11) and true is returned, else
A[E′i ∩E′j ] is recorded as a nogood (line 12) and false is returned. If BDH fails
to consistently extend A on E′i then it returns false.

This extension of BTD brings several advantages. It makes it possible to pro-
pose a large number of heuristics since we are freed from the initial structure HA

(e.g. the next variable to assign is not necessarily chosen in one single edge Ej).
Then BDH can exploit all the (no)goods recorded on all the separators of the
reference CAH included separators which are currently included in a larger edge
in the current CAH, while BTD with a class 5 order only exploits (no)goods on
the intersection of two clusters of the current covering. The space complexity is
not modified (O(exp(s))) because the search is based on the same set of sepa-
rators that those of HA. Finally, its implementation is straightforward because
only hypergraphs of CAHHA

[S] will be considered and these hypergraphs will
be obtained by a simple merging of neighboring edges in HA.

Theorem 6 BDH is sound, complete and terminates.



BDH uses a subset of hypergraphs in CAHHA
[S]. The theorem 2 states that

there exists ∆ ≥ 0 such that for all H ′A in this subset, α′ ≤ α + ∆. The time
complexity of the method depends on ∆. Besides, ∆ can be parametrized : it
is possible to bound the value of ∆ and only consider covering hypergraphs in
CAHHA

[S] whose width is bounded by α + ∆. Anyway, the time complexity of
BDH is given by the following theorem.

Theorem 7 The time complexity of BDH is O(exp(α + ∆ + 1)).

Proof Let (X, D,C,R) be a CSP, HA the reference CAH of H = (X, C). Let
V be a set of α + ∆ + 1 variables such that ∃Eu1 , . . . , Eur , a path in HA (with
r ≥ 2 since |V | = α + ∆ + 1 and α is the maximum size of the edges of HA),
V ⊂ Eu1 ∪ . . . ∪ Eur and Eu2 ∪ . . . ∪ Eur−1 ( V (resp. Eu1 ∩ Eu2 ( V ) if
r ≥ 3 (resp. r = 2). We will prove first that any assignment on V is computed
only twice. ∀H ′A ∈ CAHHA

[S],∃E′i1 , . . . , E
′
ir′

, a path, (with r′ ≥ 2 since the
maximum size of the edges in H ′A is α + ∆) such that V ⊂ E′i1 ∪ . . . ∪ E′ir′

and
E′i2 ∪ . . . ∪ E′ir′−1

( V (resp. E′i1 ∩ E′i2 ( V ) if r′ ≥ 3 (resp. r′ = 2). Let A be
an assignment to extend on V . The order in which the variables of A will be
assigned is induced by H ′A ∈ CAHHA

[S]. We suppose in the following that the
edges covering V are ordered w.r.t. the order they are assigned: E′ij

is visited
before E′ij′

if j < j′. Thus Eu1 is the first assigned edge among those of the path
in HA covering V and s1 = Eu1 ∩ Eu2 is included in E′i1 because Eu1 ⊂ E′i1 .

If E′i1 ∩ E′i2 = s1, the solving of the subproblem rooted on E′i2 with the
assignment A leads to the recording of one (no)good on the separator s1: A[s1].
Let B be a new assignment that we try to extend on V with the same values in
A[V ] and H ′′A ∈ CAHHA

[S] induce the order in which the variables of B were
assigned. ∃E′′j1 , . . . , E

′′
jr′′

, r′′ ≥ 2, a path in H ′′A such that V ⊂ E′′j1 ∪ . . . ∪ E′′jr′′

and E′′j2 ∪ . . . ∪ E′′jr′′−1
( V (resp. E′′j1 ∩ E′′j2 ( V ) if r′′ ≥ 3 (resp. r′ = 2). Since

s1 ⊂ E′′j1 , as soon as E′′j1 is totally assigned, A[s1] stops the assignment on V .
Thus A[V ] is computed twice only on α + ∆ variables of V at worst.

Now we suppose E′i1 ∩E′i2 6= s1. If A[E′i1 ∩E′i2 ] can be consistently extended
on the subproblem rooted on E′i2 then A[E′i1 ∩E′i2 ] is recorded as a good. Since
s1 ⊂ E′i1 , if this current assignment A can be consistently extended on the
unassigned variables in the subproblem rooted on E′i1 then A[s1] is recorded as
a good. Otherwise, this assignment cannot be consistently extended on at least
one subproblem rooted on E′t′ an edge of H ′A such that E′t′ 6= E′il

, l = 1, . . . , r′

and E′t′ ∩ E′i1 6= ∅. Thus A[E′i1 ∩ E′t′ ] is recorded as a nogood. When we try to
extend B on V , if A[s1] is a good then for the same reasons as previously A[V ]
is computed twice only on α + ∆ variables of V at worst.

If A[s1] is not a good then A[E′i1 ∩E′t′ ] is recorded as a nogood. Nevertheless,
it is possible to compute A[V ] twice if (E′i1 ∩ E′i2) ∪ (E′i1 ∩ E′t′) ⊂ E′′jr′′

. If
B[E′′j1 ∩E′′j2 ] can be consistently extended on the subproblem rooted on E′′j2 then
B[E′′j1 ∩ E′′j2 ] is recorded as a good. Since s1 ⊂ E′′j1 , either B[s1] is recorded as
a good or A[E′′j1 ∩ E′′t′′ ] is recorded as a nogood, with E′′t′′ an edge of H ′′A such
that E′′t′′ 6= E′′jl

, l = 1, . . . , r′′ and (E′′t′′ ∩ E′′j1) 6= ∅. If B[s1] is a good then B[V ]
is computed again only on α + ∆ variables of V at worst.



If B[E′′j1 ∩ E′′t′′ ] is a nogood: two nogoods are recorded on two separators in
V . As soon as the first one of these separators is totally assigned, the nogood
related to this separator stops the assignment on V . Thus A[V ] is not computed
again.

If B[E′′j1 ∩E′′j2 ] cannot be consistently extended on the subproblem rooted on
E′′j2 then B[E′′j1 ∩E′′j2 ] is recorded as a nogood. Since two nogoods are recorded,
A[V ] is not computed again.

If A[E′i1 ∩ E′i2 ] cannot be consistently extended on the subproblem rooted
on E′i2 then we use the same reasoning as in the first part of this proof to
demonstrate that A[V ] is computed only twice at worst.

e prove that any assignment on V is computed only twice at worst. Now, we
suppose that H is covered by a set of Vi which verifies that Vi contains α+∆+1
variables such that ∃Eu1 , . . . , Eur , a branch in H (with r ≥ 2), V ⊂ Eu1∪. . .∪Eur

and Eu2 ∪ . . . ∪ Eur−1 ( V (resp. Eu1 ∩ Eu2 ( V ) if r ≥ 3 (resp. r = 2). It is
sufficient to cover each branch in H by some Vi (they can intersect). On each Vi

covering H an assignment is computed twice at worst. The number of possible
assignments on Vi is dα+∆+1. Thus the number of possible assignments on the
variables of the problem is bounded by numberVi .d

α+∆+1, with numberVi the
number of sets Vi covering H. Since the number of Vi is bounded, then the time
complexity of BDH is in O(exp(α + ∆ + 1)). �

5 Experimental study

In this section, we assess the efficiency of BDH on benchmarks (structured ran-
dom CSPs) presented in [18] with the same empirical protocol and PC. The
reference hypergraph is computed thanks to the triangulation of the constraint
graph H performed in [18]. We also use the best heuristics given in this paper
for an efficient traversal of a hypergraph: minexp. Now, we define some heuris-
tics for computing the covering hypergraphs dynamically. In order to reduce the
space complexity, we merge edges in the following heuristics only if their inter-
section size is greater than 5 unless the size of the resulting edge is greater than
1.5α (∆ is bounded by 0.5α). According to the order edges are considered, dif-
ferent covering hypergraphs are computed. We define an order on edges based on
the traversal heuristic minexp. Br: the current edge is merged with its first son
(w.r.t. minexp), the first son of this one and so on, if the size of their separator is
greater than 5 and while the size of the resulting edge is less than 1.5α. Br+vp:
first, the reference hypergraph is modified such that edges with less than 3 vari-
ables not included in their parent are merged to it. Then the heuristic Br is
used to compute dynamically covering hypergraphs. Table 1 shows the runtime
of BDH with heuristics Br, Br + vp, as well as with heuristics based on minexp
in the Classes 3 and 4 defined in [18] (with a hypergraph with maximum size
of edge intersections bounded by 5 for the Class 4). The Class 4 obtains better
results than the Class 3. The heuristic Br has very good results, close to Class 4
ones, and succeeds in solving all the instances in (250, 20, 20, 99, 10, 25, 10) while
two are not solved in the Class 4 within 1,800 s. Having a better reference hyper-



Table 1. Runtime (in s) on random partial structured CSPs: (a) Class 3, (b) Class
Br, (c) Class Br + vp and (d) Class 4.

CSP (n, d, w, t, s, ns, p) (a) (b) (c) (d)

(150, 25, 15, 215, 5, 15, 10) 2.04 1.78 1.93 1.76
(150, 25, 15, 237, 5, 15, 20) 8.84 1.23 1.12 1.10
(150, 25, 15, 257, 5, 15, 30) 4.20 1.40 1.30 3.19
(150, 25, 15, 285, 5, 15, 40) 3.08 1.17 0.27 0.23
(250, 20, 20, 107, 5, 20, 10) 14.87 10.49 12.89 13.14
(250, 20, 20, 117, 5, 20, 20) 11.43 6.97 13.18 5.98
(250, 20, 20, 129, 5, 20, 30) 29.24 3.62 2.80 2.87
(250, 20, 20, 146, 5, 20, 40) 12.26 6.99 3.97 7.89
(250, 25, 15, 211, 5, 25, 10) 7.18 4.19 3.79 4.64
(250, 25, 15, 230, 5, 25, 20) 3.86 2.76 1.69 2.36
(250, 25, 15, 253, 5, 25, 30) 3.86 3.73 2.61 2.08
(250, 25, 15, 280, 5, 25, 40) 56.66 13.87 11.88 12.33
(250, 20, 20, 99, 10, 25, 10) 112.88 82.07 78.16 144.20
(500, 20, 15, 123, 5, 50, 10) 7.11 2.23 2.00 3.12
(500, 20, 15, 136, 5, 50, 20) 6.11 3.01 3.23 4.13

graph w.r.t. the solving allows the heuristic Br +vp to obtain generally the best
results. These experiments highlight the great importance of a good reference
hypergraph (w.r.t. the solving) for the search. Furthermore a dynamic exploita-
tion of this hypergraph structure leads to significant improvements. Let us note
that BDH with heuristics in Classes 3 and 4 is identical to BTD so it obtains
similar results to BTD’s ones in [18] for these classes. Moreover, the methods
FC and MAC fail in solving most of these instances within 1,800 s. Likewise,
TC and so the hypertree-decomposition method do not succeed in solving most
of these instances due to an expensive time and space consumption.

6 Conclusion

In this paper, we have proposed a framework based on an old concept: the
covering of a problem by acyclic hypergraphs. We have shown that such an
approach seems to be more useful than the tree-decomposition based one. In
particular, this approach offers more flexibility to the variable ordering heuristic
and obtains better theoretical and practical results. Moreover, it turns to be
operational in practice, what is not the case for the hypertree-decomposition
method and its generalizations.

Firstly, these coverings have been studied theoretically in order to determine
their characteristics and properties. After, we have focused our study on a partic-
ular class of coverings that preserves time and space complexity results and also
improves some of them. One of the major results presented in this paper is the
theorem indicating that the addition of ∆ variables to offer freedom in a dynamic
variable ordering, induces a limited time complexity in O(exp(α+∆+1)), which
outperforms previous results significantly (namely O(exp(2(w + ∆ + 1) − s−))



with s− the minimum size of separators [18] and α = w + 1). Furthermore, we
have shown that our approach makes easier the implementation and permits to
improve practical efficiency showing thus the practical interest of this approach.
This work, introduced within the framework of CSPs, must now be extended to
other formalisms like SAT, MAX-SAT, VCSP or probabilistic networks.
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