
Computing and exploiting tree-decompositions for (Max-)CSP
Philippe Jégou, Samba Ndojh Ndiaye and Cyril Terrioux
LSIS - Université Paul Cézanne (Aix-Marseille 3)
Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)
{philippe.jegou, samba-ndojh.ndiaye, cyril.terrioux}@univ.u-3mrs.fr

Abstract

Methods exploiting the tree-decomposition notion seem to provide the best approach for solving constraint
networks w.r.t. the theoretical time complexity. Nevertheless, they have not shown a real practical interest yet.
So, in this paper, we first study several methods for computing an approximate optimal tree-decomposition before
assessing their relevance for solving CSPs. Then, we propose and compare several strategies to achieve the best
depth-first traversal of the associated cluster tree w.r.t. CSP solving. These strategies concern the choice of the
root cluster (i.e. the first visited cluster) and the order according to which we visit the sons of a given cluster.
Finally, we propose a new decomposition strategy and heuristics which both rely on probabilistic criteria and
which significantly improve the runtime.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful framework for representing and solving
efficiently many problems. Modeling a problem as a CSP consists in defining a set X of variables x1, x2, . . . xn,
which must be assigned in their respective finite domain, by satisfying a set C of constraints which express restric-
tions between the different possible assignments. A solution is an assignment of every variable which satisfies all
the constraints. Determining if a solution exists is a NP-complete problem. In this article, we also consider the
Valued CSP extension (VCSP [1]) which allows us to express and solve over-constrained CSPs (i.e. CSPs without
any solution). In such a case, the problem consists in finding a complete assignment which optimizes a given
criterion on the constraint satisfaction. Of course, it is harder than the decision problem.
The usual method for solving CSPs is based on backtracking search, which, in order to be efficient, must use
both filtering techniques and heuristics for choosing the next variable or value. This approach, often efficient
in practice, has an exponential theoretical time complexity in O(e.dn) for an instance having n variables and e
constraints and whose largest domain has d values. Several works have been developed, in order to provide better
theoretical complexity bounds according to particular features of the instance. The best known complexity bounds
are given by the ”tree-width” of a CSP (often denoted w). This parameter is related to some topological properties
of the constraint graph which represents the interactions between variables via the constraints. It leads to a time
complexity in O(n.dw+1). Different methods have been proposed to reach this bound like Tree-Clustering [2] (see
[3] for a survey and a theoretical comparison of these methods). They rely on the notion of tree-decomposition of
the constraint graph. They aim to cluster variables such that the cluster arrangement is a tree. Depending on the
instances, we can expect a significant gain w.r.t. enumerative approaches. Yet, the space complexity, often linear
for enumerative methods, may make such an approach unusable in practice. It can be reduced to O(n.s.ds) with s
the size of the largest minimal separators of the graph [4]. These theoretical results can be extended to VCSP [5].
Several works based on this approach have been performed. Most of them only present theoretical results. Except
[6, 7, 8], no practical results have been provided.
This paper deals with two different ways of making efficient these methods in practice. On the one hand, we
are interested in computing a good tree-decomposition. As finding an optimal tree-decomposition is NP-Hard,
approximate optimal tree-decompositions are often exploited. However, although this choice is first induced by
runtime reasons, it seems sensible from a practical viewpoint. Indeed, we will show that, in practice, these rough
tree-decompositions are generally better than optimal ones for CSP solving. On the other hand, given a tree-
decomposition, we propose and compare several strategies to achieve the best depth-first traversal of the associated

1

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

cluster tree w.r.t. CSP solving. These strategies concern the choice of the root cluster (i.e. the first visited cluster)
and the order according to which we visit the sons of a given cluster. They rely on topological or semantic features
of the considered instance. Then, we show how heuristics based on a probabilistic assessment of the number of
partial solutions of a decomposed network can significantly improve the runtime. In particular, we introduce a
new algorithm which computes a triangulation by ordering the vertices in order to minimize the mathematical
expectation of the solution number in each cluster associated to a decomposition. Note that we perform this work
by using the BTD method [6] which seems to be one of few structural methods which have been implemented and
used successfully for practical CSP solving.
This paper is organized as follows. Section 2 provides the basic notions about CSPs and tree-decompositions.
Section 3 analyzes several methods for computing tree-decompositions. In section 4, we propose some heuristic
methods for guiding the exploration of the cluster tree and we assess their practical interests. In section 5, we show
how these heuristics can be improved thanks to a probabilistic assessment of the solution number. In section 6, we
outline some future works.

2 Preliminaries

A constraint satisfaction problem (CSP) is defined by a tuple (X, D,C). X is a set {x1, . . . , xn} of n variables.
Each variable xi takes its values in the finite domain dxi from D. The variables are subject to the constraints
from C. Given an instance (X, D,C), the CSP problem consists in determining if there is an assignment of each
variable which satisfies each constraint. This problem is NP-complete. In this paper, without loss of generality, we
only consider binary constraints (i.e. constraints which involve two variables). So, the structure of a CSP can be
represented by the graph (X, C), called the constraint graph. The vertices of this graph are the variables of X and
an edge joins two vertices if the corresponding variables share a constraint.
Tree-Clustering [2] is the reference method for solving CSPs thanks to the structure of its constraint graph. It is
based on the notion of tree-decomposition of graphs [9]. Given a graph G = (X, C), a tree-decomposition of G
is a pair (E, T) with T = (I, F) a tree and E = {Ei : i ∈ I} a family of subsets of X , such that each subset
(called cluster) Ei is a node of T and verifies: (1) ∪i∈IEi = X , (2) for each edge {x, y} ∈ E, there exists i ∈ I
with {x, y} ⊆ Ei, and (3) for all i, j, k ∈ I , if k is in a path from i to j in T , then Ei ∩ Ej ⊆ Ek. The width of a
tree-decomposition (E, T) is equal to maxi∈I |Ei| − 1. The tree-width w of G is the minimal width over all the
tree-decompositions of G.
The time complexity of Tree-Clustering is O(n.dw+1). Unfortunately, computing an optimal tree-decomposition
(i.e. a tree-decomposition with width w) is NP-Hard [10]. So, many works deal with this problem. They often
exploit an algorithmic approach related to triangulated graphs (see [11] for an introduction to triangulated graphs).
A graph is said triangulated if it has a perfect elimination order, i.e. a vertex order σ = (x1, . . . , xn) such
that, for any vertex xi, the vertices in the neighborhood of xi which follow xi in σ form a clique. The link
between triangulated graphs and tree-decompositions is obvious. Indeed, given a triangulated graph, the set of
maximal cliques E = {E1, E2, . . . , Ek} of (X, C) corresponds to the family of subsets associated with a tree-
decomposition. As any graph G is not necessarily triangulated, we can obtain a tree-decomposition by triangulating
G. We call triangulation the addition to G of a set C ′ of edges such that G′ = (X, C ∪ C ′) is triangulated. The
width of G′ is equal to the maximal size of cliques minus one in graph G′. The tree-width of G is then equal to the
minimal width over all triangulations. Generally, when we exploit tree-decompositions for solving CSPs, we only
consider approximations of optimal triangulations. Hence, the time complexity is then O(n.dw++1) with w+ + 1
the size of the largest cluster (w + 1 ≤ w+ + 1 ≤ n). Likewise, the space complexity is O(n.s.ds) with s the size
of the largest minimal separator, i.e. the size of the largest intersection between two clusters (s ≤ w+). So, to
make structural methods efficient, we must a priori minimize the values of bounds w+ and s.
The graph G in figure 1(a) is already triangulated. The maximum size of cliques is 4 and the tree-width of G is 3.
Figure 1(b) presents a tree whose nodes correspond to maximal cliques. It is a possible tree-decomposition for G.
So, we get E1 = {x1, x2, x3}, E2 = {x2, x3, x4, x5}, E3 = {x4, x5, x6}, and E4 = {x3, x7, x8}.
In the literature, the BTD method [6] seems provide empirical results among the best ones obtained by struc-
tural methods. Surprisingly, the results presented in [6, 7], have been obtained without exploiting any heuristic
when computing a tree-decomposition. By heuristic, we mean on the one hand the way of computing a tree-

2

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

x2

x4

x6

x7

x5 x8

x1

x3

x3x7x8

x4x5x6

x2 x5x4x3

x1 x3x2

E3

2

1

4E

E

E

(a) (b)

Figure 1: A constraint graph for 8 variables (a) and a possible tree-decomposition (b).

decomposition which minimizes the parameter w+, and on the other hand, the strategies to achieve a good depth-
first traversal of the cluster tree w.r.t. CSP solving. These strategies concern the choice of the root cluster (i.e.
the first visited cluster) and the ordering according to which we visit the sons of a given cluster. These choices
are essential since they induce a particular variable order when solving the problem and we know the importance
of the variable order for the efficiency of any solving method. Moreover, such a study has never been performed
(likely because, before BTD, few structural methods have been implemented and used successfully).

3 Computing a tree-decomposition

3.1 Methods based on graphic criteria

In this section, we raise the problem of computing ”good” tree-decompositions by exploiting ”good” triangulations.
Several approaches and algorithms have been proposed for triangulations. In any case, they aim to minimize either
the number of added edges, or the size of the cliques in the triangulated graph. We can distinguish four classes of
approaches:

1. Optimal triangulations. As the problem is NP-hard, no polynomial algorithm is known yet. Hence, the
proposed algorithms have an exponential time complexity. Unfortunately, their implementations do not
have much interest from a practical viewpoint. For instance, the algorithm described in [12], whose time
complexity is O(n4.(1.9601n)), has never been implemented due to the weak expected interest in practice
[13]. Moreover, a recent work [14] has shown that the algorithm proposed in [15] cannot solve small graphs
(50 vertices and 100 edges). Finally, the approach of [14] which only computes the tree-width, thanks to a
branch and bound algorithm, seems promising for computing optimal triangulations. So we try to exploit it,
but, unfortunately, we cannot provide any empirical results due to its practical inefficiency.

2. Approximation algorithms. These algorithms approximate the optimum by a constant factor. Their com-
plexity is often polynomial in the tree-width [16]. However, this approach seems unusable. Indeed, the last
algorithm proposed by Amir has a time complexity in O(n3. log4(n).k5. log(k)) with an hidden constant
greater than 850 [17]. Moreover, according to [18], it requires a runtime between 6 minutes and 6 days
depending on the considered instance while a naive heuristic triangulation obtains better results (w.r.t. the
tree-width) in at most two minutes.

3. Minimal triangulation. A minimal triangulation computes a set C ′ such that, for every subset C” ⊂ C ′,
the graph G′ = (X, C ∪C”) is not triangulated. Note that a minimal triangulation is not necessarily optimal
(minimum). The main interest of this approach is related to the existence of polynomial algorithms. For
instance, the algorithms LEX-M [19] and LB [20] have a time complexity in O(ne′) with e′ the number of
edges in the triangulated graph.

4. Heuristic triangulation. These methods generally build a perfect elimination order by adding some edges
to the initial graph. They often achieve this work in polynomial time (generally between O(n + e′) and

3

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

Instance n e n-LEX-M n-LB n-min-fill n-MCS
w+ time w+ time w+ time w+ time

CELAR02 100 311 10 0.42 10 0.36 10 0.53 10 0.33
CELAR03 200 721 17 4.71 17 3.71 14 5.78 17 4.32
CELAR06 100 350 11 0.42 11 0.37 11 0.58 11 0.37
CELAR07 200 817 19 4.42 18 3.80 16 6.44 18 4.20
CELAR08 458 1655 20 55.85 19 82.73 16 73.57 19 51.74
CELAR09 340 1130 18 39.96 18 38.89 16 31.43 19 36.36
GRAPH05 100 416 28 1.00 26 0.68 25 1.34 31 0.97
GRAPH06 200 843 58 15.56 53 7.92 54 19.64 58 15.65
GRAPH11 340 1425 106 146.16 90 39.63 91 162.90 104 150.13
GRAPH12 340 1256 99 140.09 85 45.19 85 148.28 96 142.62
GRAPH13 458 1877 146 558.38 120 115.43 126 710.06 131 640.62

Table 1: Tree-width obtained after triangulation and triangulation time (in s) for graphs from ”CALMA” archive.

n p n-LEX-M n-LB n-min-fill n-MCS
w+ time w+ time w+ time w+ time

50 20% 10.60 0.02 10.20 0.03 10.02 0.14 13.96 0.01
50 40% 11.70 0.02 10.28 0.03 10.00 0.11 15.00 0.01
50 60% 12.52 0.02 10.72 0.02 9.96 0.06 14.68 0.01

100 20% 11.86 0.18 10.24 0.34 10.22 2.15 13.92 0.06
100 40% 13.52 0.22 10.44 0.32 10.30 1.47 16.06 0.06
100 60% 15.34 0.19 10.30 0.28 10.08 0.79 17.44 0.05
200 20% 13.60 1.33 10.66 2.17 10.62 36.99 14.64 0.32
200 40% 17.78 2.20 10.68 2.90 10.72 29.61 17.48 0.42
200 60% 22.98 1.86 10.66 2.80 10.48 12.09 19.48 0.36

Table 2: Tree-width obtained after triangulation and triangulation time (in s) for random partial k-trees.

O(n(n + e′))) but they do not provide any minimality warranty. Nonetheless, in practice, they can be easily
implemented and their interest seems justified [21]. In effect, Kjærulff has observed that these heuristics
compute triangulations reasonably close to the optimum. In the following, we consider two heuristics: MCS
and min-fill. MCS relies on the order computed by the algorithm of [22] which recognizes the triangulated
graphs. Min-fill orders the vertices from 1 to n by choosing as next vertex one which leads to add a minimum
of edges when completing the subgraph induced by its unnumbered neighbors.

3.2 Experimental study of triangulation

According to the experimentations presented in the literature, the two first approaches do not appear very interest-
ing as a first step of a CSP solving method. Indeed, their runtime seems too expensive w.r.t. the improvement we
could expect for the value w+. Hence, we prefer to focus our attention on the two other approaches. To assess their
interest, we experiment them on two kinds of benchmarks: graphs from real-world problems and random graphs
which are subgraphs of graphs with suitable features w.r.t. tree decomposition. We discard classical random graphs
since structural solving methods must only be applied on problems with suitable topological properties. Moreover,
their tree-width is often important. For instance, for n = 50 and e = 300, the tree-width observed in [14] is about
27.
Table 1 presents empirical results1 for some graphs of the CALMA archive2 (real-world frequency assignment
1All the experimentations are performed on a Linux-based PC with a Pentium IV 2.4 GHz and 512 MB of memory. Except in table 1, the
results we present are the mean results on 30 instances.
2For more details, see http://fap.zib.de/problems/CALMA

4

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

problems). We compare four triangulation algorithms, namely n-LEX-M, n-LB, n-min-fill and n-MCS, defined
respectively from LEX-M, LB, min-fill and MCS. Precisely, each algorithm n-X fixes the choice of the first vertex
and then uses the method X to order the remaining vertices. It repeats this process by choosing each vertex as the
first vertex. We observe that n-LB and n-min-fill obtain the best results. These results appear generally better than
ones obtained by the MSVS heuristic [23] (based on network flow techniques instead of triangulation).
Then, we apply n-LEX-M, n-LB, n-min-fill and n-MCS on random partial k-trees. These partial k-trees are pro-
duced by removing p% edges (p = 20, 40 or 60) from random k-trees with n vertices (i.e. triangulated graphs
whose each maximal clique has k + 1 vertices). We exploit here a model close to one proposed in [14]. We note
that the most interesting results w.r.t. tree-width (see table 2) are performed by n-min-fill, while n-LB offers a
promising trade-off between the runtime and the quality of w+.
As an indication, a random choice of the first vertex leads, of course, to worse results. However, these results are
often very close to the previous ones. They are obtained in a time divided by n w.r.t. the times provided in tables
1 and 2. For instance, for CALMA problems, the time does not exceed 2 s.
Finally, note that, here, we only assess the quality of a decomposition w.r.t. the value of the parameter w+.
Nonetheless, from the viewpoint of (V)CSP solving, the most relevant criterion is related to the solving efficiency
obtained thanks to the computed tree-decomposition. Of course, this computation must be achieved in reasonable
time. The next section deals with this question and the way of exploring the trees associated to tree-decomposition.

4 Strategies for computing and exploring a tree-decomposition

This section aim to compare the decomposition techniques based on triangulation w.r.t. the efficiency of (V)CSP
solving whereas, usually, such works only rely on the comparisons of graphical criteria like w+. Hence, in order
to fairly compare the runtime achieved from each decomposition techniques, we must determine the more relevant
heuristics for exploring the cluster tree since the quality of a decomposition also depends on the way it is visited.
Indeed, without suitable variable heuristics for guiding the search, we cannot expect backtracking algorithms like
FC or MAC to solve efficiently any problem. It is the same for structural methods. For them, the variable order
is induced by the used tree-decomposition and so the variable heuristics correspond to heuristics for achieving an
interesting depth-first traversal of the cluster tree w.r.t. CSP solving. They consist in choosing the first visited
cluster (called the root cluster) and ordering the sons of each cluster.

4.1 Choosing a root cluster and ordering the son clusters

At least, two kinds of criterion can be considered for choosing a root cluster. On the one hand, the local criteria
only assess the relevance of a candidate cluster without taking into account the interactions with the other clusters.
For instance, a possible local criterion is the size of the cluster (noted Size). On the other hand, the global criteria
assess the relevance w.r.t. the location of the cluster in the tree. For such criteria, we use the notion of distance,
noted dist(x, y), between two vertices x and y of a graph G, which is defined by the length of a shortest path
between x and y.
Let G = (X, C) be a graph. The centre (CTR) of G is a vertex x s.t. x minimizes max{dist(x, y) : y ∈ X}. The
barycentre (BARY) of G is a vertex x s.t. x minimizes Σy∈Xdist(x, y). A vertex x is said peripheral (PERI) in
G if x maximizes max{dist(x, y) : y ∈ X}. A vertex x is said strongly peripheral (SPERI) in G if x maximizes
Σy∈Xdist(x, y). Note that, for a tree, finding these different vertices can be achieved in O(n2). Applied to
the tree associated with a tree-decomposition, these definitions must be extended. A natural extension consists in
weighting the distance dist(x, y) by the size of the cluster Ey . So, in the previous definitions, we replace dist(x, y)
by dist(x, y).|Ey|. We denote Xw the weighted version of criterion X.
After having chosen a root cluster, we now study the order used for visiting the sons of a given cluster. On the
one hand, we define two criteria based on the size of the clusters: we first choose the largest cluster (LC) or the
smallest one (SC). On the other hand, we order the clusters according to the increasing size of their separator with
their parent (SEP). The strategy NO consists in exploiting no heuristic for ordering the sons.
We have experimented the different criteria on random structured (V)CSPs whose graph is a clique tree (with a
limited size for cliques and separators). Each random structured instances of class (n, d, r, t, s, ns) is built from the

5

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

Class Runtime in seconds
(n, d, r, t, s, ns) Size BARY PERI SPERI

(75,15,10,98,2,10) 25.34 23.06 48.77 70.09
(100,10,15,30,3,15) 40.98 63.42 523.72 454.75
(125,10,15,30,3,20) 72.78 86.03 460.77 448.17
(150,10,15,29,3,25) 73.26 139.36 280.19 278.63

Table 3: [VCSP] Choosing a root cluster (results obtained without ordering sons).

Class Runtime in seconds
(n, d, r, t, s, ns) Size BARY BARYw CTR CTRw PERI PERIw SPERI SPERIw

(150,25,15,200,5,15) 6.95 7.57 7.62 6.91 6.75 9.22 10.56 10.93 12.22
(150,30,15,300,5,15) 18.15 19.29 19.30 18.21 18.00 21.91 23.08 23.97 28.14
(150,25,20,171,5,15) 26.87 92.88 87.97 88.36 79.19 103.67 161.91 147.63 148.58
(200,25,15,200,5,20) 10.64 14.01 12.79 12.85 12.90 10.79 12.60 12.62 14.50
(200,25,15,204,5,25) 6.65 12.51 11.47 11.15 11.63 14.14 18.09 12.78 17.78
(225,25,15,205,5,30) 6.60 11.26 11.32 10.89 11.95 14.68 19.60 24.34 26.44

Table 4: [CSP] Choosing a root cluster (results obtained without ordering sons).

model described in [6]. It consists of n variables having d values in their domain. Its constraint graph is a clique
tree with ns cliques whose largest size is r and whose separator size does not exceed s (so it is triangulated and its
tree-width is r). Each constraint forbids t tuples. For VCSPs, we consider, in practice, Max-CSPs. The empirical
results of tables 3-5 have been obtained from the triangulation method MCS. Of course, as the graphs are already
triangulated, we have observed similar trends for the other triangulation methods, that is the best results are always
performed by the same heuristics for choosing the root and ordering the sons.
Tables 3 and 4 present the results obtained for different choices of a root cluster for VCSPs and CSPs respectively.
In both cases, we observe that a (strongly) peripheral root must be avoided. In contrast, the strategies BARY and
CTR appear interesting even if the Size strategy seems be the best one. Regarding the weighted versions, the
weighting increases the effect of the root location. Indeed, choosing a weighted (strongly) peripheral root leads to
worse results than PERI and SPERI’s ones while by choosing a weighted (bary)centre we obtain similar or better
results than BARY and CTR’s ones. So we can choose as root cluster either a (bary)centre of the tree, or the largest
cluster, even if the latter seems to provide the most promising results. Here, the intuition seem to agree with the
observation. Indeed, in the both cases, the cluster is chosen such that we first visit the most constrained part of the
problem. In other words, these heuristics satisfy the famous first-fail principle.
In table 5, we compare the son ordering heuristics on random structured CSPs. The strategy SC appear to be a
relevant criterion. Indeed, unlike the choice of a root cluster, it seems more interesting to choose first the smallest
cluster. We can also note that the results obtained with the strategy SEP are close to ones of SC, what is mostly
explained by the fact that, in practice, small clusters often have small separators.

Class Runtime in seconds
(n, d, r, t, s, ns) NO LC SC SEP

(150,25,15,200,5,15) 6.95 6.73 5.08 5.11
(150,30,15,300,5,15) 18.15 17.90 12.79 12.82
(150,25,20,171,5,15) 26.87 27.17 21.47 21.42
(200,25,15,200,5,20) 10.64 10.59 6.26 6.22
(200,25,15,204,5,25) 6.65 6.70 5.60 5.59
(225,25,15,205,5,30) 6.60 6.67 6.23 6.10

Table 5: [CSP] Ordering the cluster sons (with the Size heuristic).

6

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

Instance d t Time for unlimited s Time for s limited to 10
LEX-M LB min-fill MCS LEX-M LB min-fill MCS

CELAR02 50 1216 2.72 2.81 2.73 2.80 2.74 2.82 2.72 2.80
CELAR03 30 373 2.22 57.71 M 1.95 2.23 2.60 1.45 1.51
CELAR06 50 1155 3.40 3.52 3.41 3.50 3.43 3.53 3.41 3.48
CELAR07 25 209 12.79 M 13.23 4.66 4.92 4.83 4.86 4.69
CELAR09 25 209 12.47 T 11.82 6.72 4.69 4.88 4.66 4.76

Table 6: [CSP] Runtime (in s) for solving CSPs respectively for an unlimited separator size s and for a size s limited
to 10. T and M indicate that some instances cannot be solved either for time reason or for a lack of memory.

p t LEX-M LB min-fill MCS min-exp
w+ time w+ time w+ time w+ time w+ time

10% 215 18.50 5.53 14.00 3.95 15.97 10.66 14.03 4.06 23.50 4.34
20% 237 22.00 4.07 14.00 4.37 16.33 6.74 14.00 3.53 23.03 3.81
30% 257 23.30 82.79 14.00 2.85 17.20 5.49 15.03 3.81 20.37 1.20
40% 285 24.90 78.22 14.00 1.11 15.33 1.21 15.33 5.88 17.10 1.57

Table 7: [CSP] Runtime (in s) and value of w+ for class (150, 25, 15, t, 5, 15) after removing p% edges (with s
limited to 5).

According to these results, we exploit, in subsection 4.2, the heuristics Size for the root choice and SC for ordering
sons. By so doing, we expect to fairly compare the considered decomposition methods.

4.2 Experimental study

In the frame of CSP solving, the quality of a decomposition mostly depends on the practical efficiency we obtain
by exploiting it. So we experiment and compare LEX-M, LB, min-fill and MCS w.r.t. CSP solving. We consider
random CSPs whose graph is one of some CALMA instances (cf. table 6). Surprisingly, the most interesting
decompositions are computed by MCS. Furthermore, when we modify the decompositions by limiting the maximal
size of separators, the gap between the triangulations significantly decreases. Note that, for efficiency reasons, it is
our interest to reduce the value of s, by aggregating the clusters which share a large intersection.
Then, we study the triangulation interest when solving partial random structured (V)CSPs. For each instance, we
randomly produce a random structured (V)CSP and then we remove p% edges like for partial k-trees. For the
decision problem (see table 7), the least promising method, namely MCS, obtains interesting results. Only LB
obtains similar or better results w.r.t. the value of w+ or the CSP solving. On VCSP instances (see table 8), MCS
clearly outperforms the other methods including LB although LB and MCS compute tree-decompositions with
close value for w+. Therefore, on the whole, MCS seems the most robust heuristic since it often provides the best
approximation of w+ while offering a limited value of s and solving efficiently (V)CSP.
In conclusion, we can think that the study about finding a good decomposition w.r.t. (V)CSP solving must be

p t LEX-M LB min-fill MCS
w+ time w+ time w+ time w+ time

10% 103 10.70 69.08 9.70 40.83 10.23 22.50 9.00 5.54
20% 110 11.27 150.41 9.60 4.24 11.87 140.33 9.00 4.34
30% 119 13.00 203.40 9.76 22.45 10.93 81.28 9.00 10.31

Table 8: [VCSP] Runtime (in s) and value of w+ for class (75, 15, 10, t, 2, 10) after removing p% edges (with s
limited to 5).

7

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

carried on. Our results suggest several orientations. First, for solving CSPs, the heuristic triangulations in poly-
nomial time might be sufficient to produce a suitable decomposition. Indeed, the optimal triangulations appear
too expensive in time w.r.t. the improvement we can expect for the solving. In contrast, for VCSP solving, as
the problem is significantly harder, a better decomposition might allow us to significantly reduce the runtime of
the solving method. Hence, some works need to be done to propose new methods which would compute a better
tree-decomposition for solving VCSPs. Finally, we have observed that the value of s is an important criterion for
the practical solving efficiency. Table 6 illustrates this fact since LB or min-fill cannot success in solving efficiently
some classes when they exploit an unlimited value for s. However, when s is bounded, LB and min-fill may obtain
results close to ones of MCS. Likewise, bounding the value of s significantly increases the results obtained by TM.
A finer observation of our results shows that the behavior of the decomposition algorithms mostly depends on the
size and the density of the produced clusters. Hence, we note that MCS obtains small clusters whose density is
important, what allows to well approximate the famous first-fail principle. This principle consists in doing the
choices which lead to failures as quickly as possible. By so doing, one can hope reducing the cost of failures. As
this principle has significantly improved the backtracking algorithms, it could be interesting to fully introduce it
in the computation of a tree-decomposition at the triangulation step or when we choose the way of exploring the
cluster tree. With this aim in view, we exploit, in the next section, the mathematical expectation of the number of
solution of an instance [24].

5 Heuristics based on the expected number of partial solutions

The assessment of the number of solutions by computing its mathematical expectation allows us to define new
heuristics for guiding the choices done when we compute a tree-decomposition. Indeed, this criterion takes into
account the problem density, the domain size and the constraint tightness. Hence, it allows us to make some choices
at the triangulation step in order to produce clusters generally easier to solve and then to traverse the cluster tree
by choosing first the clusters which have a minimum number of solutions. By so doing, we can expect the failures
to occur earlier. In this section, we introduce this notion for proposing new triangulation and traversal heuristics.

5.1 Estimating the number of partial solutions

The mathematical expectation of the number of solutions of a CSP has been introduced in [24]. Let us consider a
CSP P = (X, D,C) and, for 1 ≤ i < j ≤ n, the tightness tij of the constraint between xi and xj . In the following
formula, the tightness tij is defined as the ratio between the number of forbidden tuples and the number of possible
tuples, if the constraint exist, otherwise tij = 0. The mathematical expectation of the number of solutions of P
is E(P) = dn

∏
1≤i<j≤n(1 − tij). It represents a probabilistic number of solutions. If we consider a complete

assignment a = (a1, . . . , an), a is a solution of P if 1 ≤ i < j ≤ n, ai and aj are compatible w.r.t. the constraint
cij . The probability of this event is (1 − tij). So the probability that a is a solution is

∏
1≤i<j≤n(1 − tij). As

the total number of assignments is dn, the expected number of solutions is E(P) = dn
∏

1≤i<j≤n(1 − tij). This
assessment provides a better estimation of the difficulty of the problem and the runtime than the density of the
constraint graph or the number of constraints.
In our case, we are not interested in the expectation of the whole problem, but only in ones of the produced clusters.
So, we consider the solutions of these subproblems, what explains the term of partial solutions. This assessment
of the number of partial solutions allows us to improve the comparison of the decomposition heuristics.

5.2 Integration in the comparisons of tree-decomposition heuristics

The expected number of solutions is an additional criterion to fairly compare the different heuristics. Regarding the
triangulation, we exploit the product of the expected number of partial solutions of each cluster as a comparison
criterion. Table 9 presents the results obtained on the partial random structured CSPs of table 7. This criterion
seems to be the more relevant since each consistent assignment on a cluster is a partial solution of the whole
problem and, in the solving step, we try to extend the partial assignments to produce a global consistent assignment.

8

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

Note that this product considers several times the variables of each separator. However, in practice, the values it
obtains corroborate the runtimes observed in table 7. Indeed, the behavior of the different heuristics for this product
is close to one observed for the runtime, except for LEX-M. LEX-M produces fewer clusters but these clusters are
larger. So, it is clear that the imprecisions due to separators are less important than for the other methods.

p t LEX −M LB min− fill MCS min− exp

10% 215 1.84× 1090 7.59× 1094 1.06× 10103 7.64× 1090 6.96× 10105

20% 237 1.28× 10105 1.30× 10124 8.04× 10120 6.20× 10114 1.73× 10129

30% 237 4.24× 10157 1.69× 10160 3.17× 10166 3.03× 10138 1.39× 10158

40% 285 5.37× 10195 2.99× 10209 8.79× 10221 1.01× 10202 1.68× 10218

Table 9: [CSP] Product of the expected number of partial solutions of each cluster.

Likewise, the expected number of solutions can be exploited to improved the traversal of the cluster tree. According
to the first-fail principle, it seems better to start the exploration with the clusters with the smallest number of
solutions. So, as this new criterion explains the behavior of the decomposition heuristics, it seems quite natural to
use it to propose a more efficient decomposition heuristic.

5.3 A decomposition heuristic based on the expected number of solutions

We now define a new triangulation heuristic, denoted min-exp which rely on the expected number of solutions.
This heuristic aims to produce cliques with a reduced number of solutions. It proceeds by ordering dynamically
the vertices from 1 to n. At each step, the selected vertex is one which produces a clique whose expected number
of solutions is minimum. If two vertices have the same expected number of solutions, we choose one which add
the smallest number of edges. We must note that the clique produced from a vertex consists of this vertex and all
its unnumbered neighbors, like for min-fill. Finally, note that the time-complexity of our approach is close to one
of min-fill.
Furthermore, we have also defined a new heuristic for exploring the cluster tree. This heuristic is based both on the
expectation and on the size of clusters. Indeed, our experiments have shown that it is always better to choose as
root cluster a cluster with a large size while taking into account its density. Precisely, our new heuristic (denoted
MRC) choose as root cluster one which minimizes the ratio between the expected number of solutions and the size
of the cluster. Likewise, we order the sons according to the increasing value of this ratio. We denote MRS this
heuristic. These heuristics allow to start the exploration with large clusters having few solutions.
We assess the practical interest of these new heuristics on the partial random structured CSPs of table 7. The last
column of table 7 shows that min-exp is always close the best result (w.r.t. the CSP solving), despite of a larger
value of w+. Using the expected number of solutions during the triangulation step leads to add more edges and so
to increase the size of clusters and separators. Furthermore, in table 7, we exploit the Size heuristic which is not
the best one for this triangulation. Moreover, the columns (a) (respectively (b)) of table 10 present the runtime of
each decomposition method by using the MRC heuristic for choosing the root and the SC heuristic (resp. MRS
heuristic) for ordering the sons. In the both cases, we note a significant improvement for each method w.r.t. the
results presented in table 7. However, MCS and min-exp remain the most efficient.
We note that the heuristics based on the expected number of solutions allow us to significantly improve the solving
efficiency. Moreover, the quality of the min-exp triangulation could be improved thanks to more sensible choices
in order to reduce the value of the parameter w+.

9

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

p t LEX-M LB min-fill MCS min-exp
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

10% 215 4.72 4.31 4.04 3.46 11.04 6.55 3.23 2.85 3.78 3.34
20% 237 9.97 10.29 2.65 2.57 5.13 4.50 2.91 1.87 3.35 3.33
30% 237 18.26 18.38 18.22 17.80 2.62 3.15 1.74 1.70 1.12 1.02
40% 285 1.10 0.87 1.16 0.99 1.98 2.01 0.81 0.52 0.95 0.66

Table 10: [CSP] Runtime for solving partial random structured CSP with (a) MRC and SC heuristics, (b) MRC
and MRS heuristics.

6 Discussion and Conclusion

In this article, we have studied several heuristics with a view to improve the efficiency of CSP solving methods
based on a tree-decomposition of the constraint network. This study, which could not be achieved previously, takes
now on importance for solving hard instances with suitable structural properties. For example, the instances we
have used have a suitable structure and are seldom solved by backtracking methods like FC or MAC.
First, we have considered several approaches for computing a tree-decomposition by triangulating the constraint
graph. The methods which compute an optimal decomposition or approximate it by a constant factor turn to be
unusable as a first step for CSP solving due to runtime reasons or implementation difficulties. In contrast, some
algorithms with a polynomial time complexity (easily implemented and often relied on heuristics) compute suitable
tree-decompositions w.r.t. the structural criteria and the CSP solving. However, we have noted that limiting the
value of a structural parameter, namely the size s of the largest minimal separator of the used tree-decomposition,
allows us to improve the solving runtime. This fact contradicts the theory (i.e. the time complexity) which requires
to minimize w+ rather than s.
Then, we have proposed and compared several strategies to achieve the best depth-first traversal of the associated
cluster tree w.r.t. CSP solving. These strategies concerned the choice of the root cluster (i.e. the first visited
cluster) and the order according to which we visit the sons of a given cluster. Our conclusions strengthens the
famous ”first-fail” principle. Indeed, the best choice for the root cluster consists in choosing the largest cluster
or a (bary)centre of the cluster tree (this notion considers the (weighted) location of a given cluster in the tree).
Regarding the order used for visiting the sons of a given cluster, two heuristics (namely choosing the smallest
cluster first and choosing first the cluster with the smallest intersection with its parent) provide the more interesting
results. In practice, the gains are about 30% on the considered instances.
Finally, we have exploited the notion of expected number of partial solutions in order to propose better heuristics
for computing a tree-decomposition and for guiding the traversal of the cluster tree during the solving. This
expectation approximates, in fact, the number of solutions of a subproblem and takes into account the size of
domains, the number of constraints and their tightness. Hence, we have a more relevant criterion for exploiting
the first-fail principle. Its use has allowed us to define a new triangulation algorithm (namely min-exp) which is
more efficient in practice w.r.t. CSP solving. Likewise, we have proposed two new heuristics for choosing the root
cluster and ordering the sons. These two heuristics have led to significant improvements of every triangulation
heuristic while confirming the great efficiency of MCS and min-exp.
The promising gains we have observed and the limits of our study let us think that this work must be extended in
at least two ways. The first way consists in improving the computation of tree-decompositions. There exist many
works related to this computation. Unfortunately, most of them aim to produce a tree-decomposition with the
value w+ as small as possible. As our experiments have shown that this criterion is not relevant enough for CSP
solving, new methods for computing tree-decompositions well-adapted for CSP solving, like min-exp, should be
proposed. On the other hand, one can improve the efficiency of structural methods like BTD by freeing them from
the variable order induced by the tree-decomposition. Indeed, the correctness of BTD requires the use of partial
variable order induced by the traversal of the cluster tree. Hence, freeing structural methods from the induced order
allows us to better exploit the notion of heuristic for choosing variables. Such an approach is not isolated since a
recent work [25] has led to the definition of an efficient structural method for SAT.

10

LSIS (UMR CNRS 6168) Research Report number LSIS.RR.2005.005, Marseille France

Bibliography

1. T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems: hard and easy problems. In
Proceedings of IJCAI, pages 631–637, 1995.

2. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial Intelligence, 38:353–366, 1989.
3. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition Methods. Artificial

Intelligence, 124:343–282, 2000.
4. R. Dechter and Y. El Fattah. Topological Parameters for Time-Space Tradeoff. Artificial Intelligence, 125:93–

118, 2001.
5. C. Terrioux and P. Jégou. Bounded backtracking for the valued constraint satisfaction problems. In Proceed-

ings of CP, pages 709–723, 2003.
6. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint networks. Artifi-

cial Intelligence, 146:43–75, 2003.
7. P. Jégou and C. Terrioux. Decomposition and good recording for solving Max-CSPs. In Proceedings of ECAI,

pages 196–200, 2004.
8. G. Gottlob, M. Hutle, and F. Wotawa. Combining hypertree, bicomp and hinge decomposition. In Proceedings

of ECAI, pages 161–165, 2002.
9. N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of tree-width. Algorithms, 7:309–322,

1986.
10. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM Journal

of Discrete Mathematics, 8:277–284, 1987.
11. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press. New-York, 1980.
12. F. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth and minimum fill-in. In

Proceedings of ICALP, pages 568–580, 2004.
13. I. Todinca. Private communication. 2005.
14. V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In Proceedings of UAI, pages 201–

208, 2004.
15. K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangulation. In Proceedings of AAAI,

pages 185–190, 1997.
16. E. Amir. Efficient approximation for triangulation of minimum treewidth. In Proceedings of UAI, pages 7–15,

2001.
17. V. Bouchitté, D. Kratsch, H. Muller, and I. Todinca. On treewidth approximations. Discrete Appl. Math.,

136(2-3):183–196, 2004.
18. E. Amir. Approximation algorithms for treewidth, 2002. http://reason.cs.uiuc.edu/eyal/paper.html.
19. D. Rose, R. Tarjan, and G. Lueker. Algorithmic Aspects of Vertex Elimination on Graphs. SIAM Journal on

computing, 5:266–283, 1976.
20. A. Berry. A Wide-Range Efficient Algorithm for Minimal Triangulation. In Proceedings of SODA, january

1999.
21. U. Kjaerulff. Triangulation of Graphs - Algorithms Giving Small Total State Space. Technical report, Judex

R.R. Aalborg., Denmark, 1990.
22. R. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of

hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing, 13 (3):566–579, 1984.
23. A. M. C. A. Koster, H. L. Bodlaender, and C. P. M. van Hoesel. Treewidth: Computational Experiments.

Technical Report 01–38, Berlin, Germany, 2001.
24. B. Smith. The Phase Transition and the Mushy Region in Constraint Satisfaction Problems. In Proceedings of

ECAI, pages 100–104, 1994.
25. W. Li and P. van Beek. Guiding Real-World SAT Solving with Dynamic Hypergraph Separator Decomposi-

tion. In Proceedings of ICTAI, pages 542–548, 2004.

11

