
A generic bounded backtracking framework for
solving CSPs

Samba Ndojh Ndiaye and Cyril Terrioux

LSIS - UMR CNRS 6168
Université Paul Cézanne (Aix-Marseille 3)

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

{samba-ndojh.ndiaye, cyril.terrioux}@univ-cezanne.fr

Abstract. This paper introduces a new generic backtracking framework
for solving CSPs. This scheme exploits semantic and topological proper-
ties of the constraint network to produce goods and nogoods. It is based
on a set of separators of the constraint graph and several procedures
adjustable to exploit heuristics, filtering, backjumping techniques, clas-
sical nogood recording, topological (no)good recording, and topological
complexity bounds inherited from methods based on graph decomposi-
tions like tree-decompositions. According to these choices, we obtain a
family of algorithms whose time complexity is between O(exp(w + 1))
and O(exp(n)) with w the tree-width of the constraint graph and n the
number of variables.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful frame-
work for representing and solving efficiently many problems. A CSP consists of
a set of variables, which must be assigned in their respective finite domain, by
satisfying a set of constraints. Determining if a solution exists is a NP-complete
problem.

The usual method for solving CSPs is based on backtracking search, which,
in order to be efficient, must use both filtering and heuristic techniques. This ap-
proach, often efficient in practice, has an exponential theoretical time complexity
in O(exp(n)) for an instance having n variables. From a practical viewpoint, FC
[1] and MAC [2] are among the most efficient ones. On the other hand, structural
methods (e.g. [3–6]) exploit some topological properties of the constraint graph
and can thus provide better theoretical time complexity bounds. The best known
complexity bounds are given by the ”tree-width” of a CSP (often denoted w) and
lead to a time complexity in O(exp(w + 1)) (w < n). Unfortunately, the space
complexity, often linear for backtracking methods, may make such an approach
unusable in practice.

This paper introduces a new generic backtracking framework for solving
CSPs. This scheme based on a set of separators of the constraint graph, ex-
ploits semantic and topological properties of the constraint network to produce

(no)goods. It uses several adjustable procedures to exploit heuristics, filtering,
backjumping techniques and good topological complexity bounds.

This paper is organized as follows. First, we provide the basic notions about
CSPs and graphs. Then, we present our generic backtracking framework. Section
4 is devoted to a complexity analysis. Finally, we discuss about related works in
section 5 before concluding and outlining future works in section 6.

2 Preliminaries

A constraint satisfaction problem (CSP) is defined by a tuple (X, D,C,R). X is
a set {x1, . . . , xn} of n variables. Each variable xi takes its values in the finite
domain dxi from D. The variables are subject to the constraints from C. Each
constraint c is defined as a set {xc1 , . . . , xck

} of variables. A relation rc (from
R) is associated with each constraint c such that rc represents the set of allowed
tuples over dxc1

× · · · × dxck
. Given Y ⊆ X such that Y = {xi1 , . . . , xik

}, an
assignment on the variables of Y is a tuple A = (vi1 , . . . , vik

) from dxi1
× · · · ×

dxik
. We denote by XA the set of variables assigned in A. An assignment A is

said partial if XA is a subset of X. Given Y ⊆ X and an assignment A, A[Y]
represents the assignment A restricted to the variables of Y . A constraint c is
said satisfied by A if c ⊆ Y,A[c] ∈ rc, violated otherwise. An assignment is said
consistent if it does not violate any constraint, inconsistent otherwise. Given
an instance (X, D,C,R), the CSP problem consists in determining if there is
an assignment of each variable which satisfies each constraint. This problem is
NP-complete. In this paper, without loss of generality, we only consider binary
constraints (i.e. constraints which involve two variables). So, the structure of a
CSP can be represented by the graph (X, C), called the constraint graph. The
vertices of this graph are the variables of X and an edge joins two vertices if the
corresponding variables share a constraint. The usual method for solving CSPs
is based on backtracking search. The basic backtracking method is chronological
Backtracking (denoted BT). It can be significantly improved by using filtering,
heuristics, learning or backjumping techniques [7].

Now, we provide some notions about the graph theory. A graph (X, C) is
connected if there exists a path linking every pair of vertices. Given a subset
X ′ of X, the subgraph induced by X ′ from a graph (X, C) is the graph (X ′, C ′)
with C ′ = {{x, y} ∈ C, x, y ∈ X ′}. A connected component of a graph (X, C)
is a maximal subset V of X such that the graph induced by V from (X, C)
is connected (i.e. there is no subset V ′ of X such that V ⊂ V ′ and the graph
induced by V ′ from (X, C) is connected). Of course, a connected graph has a
single connected component. A separator of a connected graph (X, C) is a subset
S of X such that the subgraph induced by X\S from (X, C) has at least two
connected components. A separator S of a graph (X, C) is said minimal if there
is no separator S′ of (X, C) such that S′ ⊂ S. In the connected graph of figure
1(a), the set {x3} is a minimal separator that disconnects the graph into two
connected components {x1, x2, x4, x10, . . . , x14} and {x5, . . . , x9}.

x
1

x
2

x
4x

3

x
6

x
5

x
7

x
8

x
9

x
10

x
11

x
12

x
14

x
13

x1 x3x4x2

x9x6x5 x7

x3 x6x5

x7 x9x8

x 4 x13x10

x12x11x10 x14x13x12

x13x12x10

(a) (b)

x10 x14x11x12x13x4x3 x6x5 x7x8x9

x1 x4x2x3

C

D

A

B

H

I

G

E

F

L

N

M K

J

(c) (d)

Fig. 1. (a) A graph, (b) a tree-decomposition, (c) a BCC tree, (d) a rooted-tree ar-
rangement / pseudo-tree and (e) a hinge decomposition.

3 A generic backtracking framework

3.1 Theoretical foundations

In this section, we propose a new generic scheme of enumerative algorithms called
SBBT (for Separator Based BackTracking). It exploits the separators of the con-
straint graph of the CSP to record structural (no)goods. Therefore, some parts
of the problem will not be visited again since their (in)consistency is known.
In this section, we consider a CSP P = (X, D,C,R) and its constraint graph
G = (X, C). Let Si be a separator of G, CCk,Si

denotes one of the connected com-
ponents of the subgraph induced by X\Si from G. A connected overcomponent
related to Si is the set SPk,Si = CCk,Si∪Si. The CCk,Si sets induce independent
subproblems. There is no constraint linking two variables in two independent
subproblems. For the graph of figure 1(a), S1 = {x3} is a separator that dis-
connects G into two connected components CC1,S1 = {x1, x2, x4, x10, . . . , x14}
and CC2,S1 = {x5, . . . , x9}. The connected overcomponents related to S1 are
SP1,S1 = {x1, x2, x4, x10, . . . , x14, x3} and SP2,S1 = {x5, . . . , x9, x3}.

We can define a directed set of separators by only providing the direction
of one separator (root separator): let Sj be a separator directed from SPk,Sj

,
each other separator Si of the set is directed from the connected overcomponent
SPl,Si containing Sj . Let Si be a separator directed from SPl,Si in a directed set
of separators, a directed connected overcomponent related to Si is a connected
overcomponent SPt,Si related to Si different from SPl,Si .

Theorem 1 states that the interactions between the subproblems induced by
the connected overcomponents pass through the separator. Thus, assignments
on these subproblems are compatible if they are equal on the separator.

Theorem 1 Let Si be a separator, SPk1,Si and SPk2,Si two connected overcom-
ponents related to Si, A1 and A2 two assignments on SPk1,Si and SPk2,Si , A1

and A2 are compatible iff A1[Si] = A2[Si].

Proof: Since CCk1,Si and CCk2,Si induce independent subproblems, the com-
patibility of the two assignments pass through the variables of Si. Therefore,
they are compatible iff they are equal on Si. �
Let us consider an assignment A on a separator Si and a SPk,Si . Two cases can
arise. If A has no consistent extension on CCk,Si , the reasons of this inconsis-
tency is only due to constraints joining two variables in CCk,Si or a variable in Si

and another in CCk,Si
, because CCk,Si

is only connected to the rest of the prob-
lem by Si. So, this assignment on Si can be considered as a structural nogood
since any partial assignment B s.t. B[Si] = A cannot be extended consistently
on CCk,Si . Likewise, if A has a consistent extension on CCk,Si , this assignment
on Si can be considered as a structural good since any partial assignment B s.t.
B[Si] = A can be extended consistently on CCk,Si .

We define formally below the notions of structural goods and nogoods related
to connected overcomponents.

Definition 1 Let Si be a separator, a structural good (resp. nogood) related to a
connected overcomponent SPk,Si is a consistent assignment on Si that can (resp.
cannot) be consistently extended on the subproblem induced by CCk,Si .

A variable x is said assignable by a good A related to an overcomponent SPk,Si

if x ∈ CCk,Si . Theorem 2 proves that some parts of the search space can be
pruned by structural (no)goods.

Theorem 2 Let Si be a separator, A an assignment on Si and B a partial
consistent assignment on X−CCk,Si , If A is a good (respectively a nogood) and
B[Si] = A, then B can (resp. cannot) be consistently extended on CCk,Si .

Proof: If A is a good, it can be extended consistently on CCk,Si . We denote
by SolA,SPk,Si

the solution on SPk,Si related to the good. Since B[Si] = A,
SolA,SPk,Si

and B are compatible (according to theorem 1). Thus, B can be
extended consistently on CCk,Si

.
If A is a nogood, it cannot be extended consistently on CCk,Si . Since B[Si] =

A, if there is a consistent extension of B on SPkSi , it would be a consistent
extension of the nogood (according to theorem 1): this is impossible. Thus, there
is no consistent extension of B on CCk,Si

. �

3.2 The generic scheme SBBT

In SBBT, A denotes the current partial assignment (which is consistent), V the
set of unassigned variables, Vg the set of assignable variables thanks to goods,
x the current variable, dx the initial domain of x, d its current domain, v the
current value of x, J the set of variables involved in the failures which have
occurred during the extension of the current partial assignment. SBBT includes
several functions and procedures. Heuristicvar is the variable ordering heuristic.
It can be defined in different ways to exploit more or less the problem structure.
Heuristicval is the value ordering heuristic. Check Good Nogood(A′, x, V, V ′g , J)
checks, for each separator Sj becoming fully assigned in the new current assign-
mentA′, whether A′[Sj] is a good or a nogood related to a subproblem SPk,Sj . In

Algorithm 1: SBBT(in: A, V , in/out: Vg)

if V − Vg = ∅ then return ∅1
else2

x← Heuristicvar(V − Vg)3
d← dx; J ← ∅; Backjump← false4
while d 6= ∅ and Backjump = false do5

v ← Heuristicval(d)6

d← d− {v}; A′ ← A∪ {x← v}7

if A′ satisfies all constraints then8
if Check Good Nogood (A′, x, V, V ′

g , J) then9
Vg ← Vg ∪ V ′

g10

Good Recording(A′, x, V, Vg)11

J′ ←SBBT(A′, V − {x}, Vg)12
Good Cancel(x, V, Vg)13

if x ∈ J′ then J ← J ∪ J′14

else J ← J′; Backjump← true15

else J ← J ∪ Failure(A′, x)16

Nogood Recording (A, x, V)17
return J18

Algorithm 2: Failure(in:A′, x)

return {x} ∪ {y /∈ V |c = {x, y} ∈ C and A′ violates c}1

case A′[Sj] is a nogood related to SPk,Sj , the variables in SPk,Sj are added to J
because SPk,Sj contains the variables causing actually this failure. Then, false is
returned meaning that, since A′ contains a nogood, it cannot lead to a solution.
In case A′[Sj] is a good related to SPk,Sj

, the variables in SPk,Sj
are added to

V ′g . This set is returned to SBBT if there is no nogood in A′ and thus they
become assignable variables thanks to goods. Good Recording(A′, x, V, Vg, J)
recordsA′[Sj] as a good related to SPk,Sj for each SPk,Sj becoming fully assigned
in the current assignment. Good Cancel(x, V, Vg) removes from Vg all assignable
variables thanks to goods containing the variable x whose value is about to be
unassigned in SBBT. The procedure Failure(A′, x) returns a set of variables
containing those that actually cause the failure. Nogood Recording(A, x, V, J)

Algorithm 3: Check Good Nogood(in:A′, x, V ,in/out:V ′
g , J)

V ′
g ← ∅1

forall Sj ∈ Sep s.t. Sj ∩ V = {x} do2
forall SPk,Sj

do3
switch A′[Sj] do4

case good related to SPk,Sj5
V ′

g ← V ′
g ∪ CCk,Sj6

case nogood related to SPk,Sj7
J ← J ∪ SPk,Sj

; return false8

return true9

Algorithm 4: Nogood Recording (in:A, x, V)

forall Sj ∈ Sep s.t. Sj ∩ V = ∅ do1
forall CCk,Sj

s.t. x ∈ CCk,Sj
do2

if J ∩ CCk,Sj
6= ∅ and CCk,Sj

⊆ V then3
Record A[Sj] as a nogood related to SPk,Sj4

Algorithm 5: Good Recording (in:A′, x, V , in/out:Vg)

forall SPk,Sj
s.t. SPk,Sj

∩ (V − Vg) = {x} do1
Record A′[Sj] as a good related to SPk,Sj2

Vg ← Vg ∪ CCk,Sj3

records A[Sj] as a nogood related to SPk,Sj
for each separator Sj fully assigned

in A such that x ∈ CCk,Sj and CCk,Sj is fully unassigned and is involved in
the reasons of the failure (in J). For example, the functions and procedures
described in algorithms 1-6 propose a possible implementation of our generic
scheme SBBT. Of course, they respect the specifications provided above. Note
that this implementation defines a new enumerative algorithm.

SBBT solves recursively the subproblem with the inputs A, V and Vg. It
relies on a set of separators and the related connected overcomponents. In case
this set is directed, only the directed connected overcomponents are consid-
ered. It returns ∅ if the assignment A admits a consistent extension on V , a
set J of variables causing the failures otherwise. Heuristicvar chooses the next
variable x to assign in V (line 3). If the current domain d of x is not empty,
Heuristicval chooses a value v in d. In case the extension A′ of A is not con-
sistent, Failure adds to J the set (or a superset) of variables involved in the
failure (line 16) and Heuristicval chooses a new value (if any). If A′ is consis-
tent, Check Good Nogood(A′, x, V, V ′g , J) returns false if A′ contains a nogood
with the current value of x. Heuristicval chooses a new value if the domain
is not empty. If no nogood is found, Check Good Nogood returns true with the
set V ′g containing the assignable variables thanks to goods with the current
assignment of x. These variables are added in Vg. At line 10, Good Recording
records the possible new goods containing x. Then SBBT is recursively called
on SBBT(A′, V − {x}, Vg). If A′ has no consistent extension, the set J ′ of vari-
ables involved in the failure is returned and the current value of x must be
changed. So, first, Good Cancel removes from Vg the assignable variables thanks
to goods containing x. If x is involved in the failure, SBBT adds J ′ to J and a
new value is chosen for x (if any). Otherwise, J = J ′ and a backjump occurs to

Algorithm 6: Good Cancel (in:x, V , in/out:Vg)

forall Sj ∈ Sep s.t. Sj ∩ V = {x} do1
Vg ← Vg −

S
k

CCk,Sj2

a variable involved in the failure (according to J). Finally, when the current do-
main of x is wiped-out or a backjump is triggered, Nogood Recording(A, x, V, J)
records new nogoods containing x (if any) and J is returned.

Theorem 3 SBBT is sound, complete and terminates.

Proof: The scheme SBBT is based on BT which is sound, complete and termi-
nates. So, we are going to prove that these properties of BT are not endangered
by the pruning thanks to (no)goods and the backjumping of SBBT. A good is
recorded when a subproblem induced by a SPk,Si is fully assigned in the cur-
rent assignment A. So A[Si] has a consistent extension on CCk,Si

. Thus A[Si]
is a structural good related to the subproblem SPk,Si . For any assignment B
s.t. B[Si] = A[Si], we know that B can be extended consistently on CCk,Si

(theorem 2). So, we can safely continue the search on V \SPk,Si . Regarding the
nogood recording, we know that if some variables in CCk,Si are assigned before
all the variables in Si we cannot record the assignment on Si as a nogood in
case it cannot be extended consistently in CCk,Si . This is due to the fact that
SBBT does not try all the possible assignments on CCk,Si when it backtracks
in Si. So a nogood is recorded when a separator Si is fully assigned before any
variable in a subproblem induced by a CCk,Si in the current assignment A and
the reasons we fail in extending A on CCk,Si are in the subproblem induced by
SPk,Si . So A[Si] cannot be extended consistently on CCk,Si : A[Si] is a structural
nogood. For another assignment B s.t. B[Si] = A[Si], we know that B cannot
be extended consistently on CCk,Si (theorem 2). So, we can backtrack because
the current assignment cannot lead to a solution. Finally, when SBBT fails to
extend consistently the current assignment with the variable x, it backjumps to
the last assigned variable in J , the set (or superset) of variables involved in the
failure. Since the reasons of this failure are in J , backtracking everywhere else
will lead to the same failure. Since the additional prunings does not endanger
the properties of BT, SBBT is sound, complete and terminates. �

4 Complexity analysis

The complexity of SBBT depends on the set of separators and the procedures
it contains. For instance, BT can be obtained from SBBT by using empty
Good Recording and Nogood Recording procedures and a naive Failure function
returning X ′A. A chronological backtrack can lead to encounter several times
the same failures. In SBBT, these redundancies can be avoided by defining and
backtracking in a set containing the variables causing actually the failures (Back-
jump structure (lines 14-15) and Failure). This returned set can be computed
in different ways (e.g. formulae of CBJ [8] or GBJ [9]). Furthermore, the set
of separators and Check Good Nogood, Good Cancel, Good Recording and No-
good Recording also reduce the size of the search space by using some structural
and semantic properties of the problem. Some parts of the search space will be
pruned as soon as their (in)consistency is known. Overall, the variable ordering
heuristic (function Heuristicvar) is extremely important for the efficiency of the

algorithms. Its freedom degree can be bounded more or less to derive benefit
from the structure of the problem or the efficiency of dynamic heuristics. It is
possible to make several combinations of these techniques in order to define new
algorithms and to capture in a very easy way well known ones like BTD [6],
BCC [10, 11], pseudo-tree search [12], Tree-solve and Learning Tree-solve [13],
AND/OR Search Tree and AND/OR Search Graph [14]. In the following, we
will present these methods and the way they can be captured by SBBT.

4.1 Separator set based on a tree-decomposition

BTD (for Backtracking with Tree-Decomposition) relies on a tree-decomposition
of the constraint graph. Let G = (X, C) be a graph, a tree-decomposition [15]
of G is a pair (E, T) where T = (I, F) is a tree with nodes I and edges F and
E = {Ei : i ∈ I} a family of subsets of X, such that each subset (called cluster)
Ei is a node of T and verifies: (i) ∪i∈IEi = X, (ii) for each edge {x, y} ∈ C,
there exists i ∈ I with {x, y} ⊆ Ei, and (iii) for all i, j, k ∈ I, if k is in a path
from i to j in T , then Ei∩Ej ⊆ Ek. The width of a tree-decomposition (E, T) is
equal to maxi∈I |Ei|−1. The tree-width w of G is the minimal width over all the
tree-decompositions of G. In figure 1(b), we have a possible tree-decomposition
of the graph in figure 1(a). BTD assigns the variables w.r.t. an order induced by
the considered tree-decomposition of the constraint graph. Moreover, some parts
of the search space will not be visited again as soon as their (in)consistency is
known. This is possible by using the notion of structural (no)good. A good (resp.
nogood) is a consistent partial assignment on a set of variables (a separator)
that can (resp. cannot) be consistently extended on the part of the CSP located
after the separator. The variable order is computed as follows. Let Y be a set
of assigned variables, xi ∈ Ei, if xi ∈ Y , then ∀Ej ∈ E, such that i ≥ j
∀xj ∈ Ej , xj ∈ Y . So, BTD assigns a variable xi ∈ Ei iff all the variables in
clusters preceding Ei in the cluster order are assigned first. Its time complexity
is O(exp(w + 1)).

SBBT can capture BTD, by using as a directed separator set, the set of
cluster intersections in the given tree-decomposition directed from the connected
overcomponent containing the root cluster and enforcing the Heuristicvar to
choose the variable in the same order BTD does. Given a numeration on clusters
s.t. E1 is the root cluster, Heuristic1,var chooses as the next variable to assign
xi ∈ Ei s.t. all the variables in clusters Ej with j ≤ i are already assigned or
assignable by a good. So, SBBT records at least the same structural (no)goods
BTD does. That allows to guarantee the same time complexity bound.

Theorem 4 The time complexity of SBBT with the configuration described above
is O(exp(w + 1)).

Heuristic2,var is similar to Heuristic1,var, but it is allowed to choose the next
variable in a whole branch of the tree-decomposition (a branch is path from
the root cluster to a leaf). We can consider that the clusters in a same branch

are grouped in a single cluster. And we run Heuristic1,var on this new tree-
decomposition whose width is h−1, where h is the maximum number of variables
in a branch of the basic tree-decomposition.

Theorem 5 The time complexity of SBBT with the configuration described above
is O(exp(h)).

Heuristic3,var is similar to Heuristic1,var, but we can choose the next vari-
able among w + k + 1 variables in a path included in a branch of the tree-
decomposition where k is a constant to parameterize [16].

Theorem 6 The time complexity of SBBT with the the configuration described
above is O(exp(2(w + k + 1) − s−)), with s− the minimum size of the cluster
intersections.

4.2 Separator set based on biconnected components

Regarding BCC (for Biconnected Component Backtracking), it relies on the bi-
connected components of the constraint graph. A biconnected component (or
bicomponent) of a graph G is a maximum subgraph of G which is not discon-
nected by the removal of any vertex. The graph of bicomponents, obtained by
representing each bicomponent as a node, then adding an edge between two
components if they share a vertex, is a tree (we suppose that the constraint
graph is connected) called the BCC tree of G. In figure 1(c), we have a possible
BCC tree of the graph in figure 1(a). BCC is based on this tree whose nodes
are naturally ordered s.t. the children are greater than their parent. Both DFS
and BFS traversals result in a natural ordering. BCC assigns the variables of
the problem w.r.t. a static BCC-compatible order (compatible with the natural
ordering of its BCC tree): the variables in Vi are assigned before those in Vj if Vi

and Vj are bicomponents s.t. i < j. Given a BCC-compatible ordering, the acces-
sor of a bicomponent is its smallest variable. This variable order allows to avoid
some redundancies. In fact, some values of the accessors of the bicomponents are
marked if it is known that they can be extended consistently on a subset of the
next variables according to the order. So the next time these same values are
assigned to those variables, a forward-jump is performed to the unvisited part
of the problem. If a value of an accessor cannot be consistently extended on a
subset of the next variables according to the order, it is removed from the prob-
lem. Moreover, if a failure occurs, BCC backjumps to the last assigned variable
whose value could explain this failure. Its time complexity is O(exp(k)) with k
the size of the largest bicomponent.

SBBT can also capture the BCC method, by using as a directed separator
set the set of bicomponent intersections of the given BCC tree, the same set of
variables causing the failures in Failure and a BCC-compatible variable order-
ing for Heuristicvar (HeuristicBCC,var). So, SBBT records at least the values
marked (resp. removed) by BCC as structural goods (resp. nogoods). Besides,
SBBT performs the same backjumping when a failure occurs as BCC does. That
allows to guarantee the same time complexity bound.

Theorem 7 The time complexity of SBBT with the the configuration described
above is O(exp(k)) with k the size of the largest bicomponent.

4.3 Separator set based on a hinge decomposition

The hinge decomposition is based on the notion of hinge set [17]. Let G = (X, C)
be a connected graph, C ′ ⊆ C containing at least two edges, CC1, . . . , CCm the
connected components induced by C ′ of G′ = (X, C − C ′). C ′ is hinge if for all
i = 1, . . . ,m, there is an edge ci ∈ C ′ such that CCi∩var(C ′) ⊆ ci with var(C ′)
the set of variables linked by the edges in C ′. A hinge is minimal if it does not
contain any other hinge. A hinge decomposition of G is a tree T that verifies:
(i) the nodes of T are minimal hinges of G, (ii) each edge in C is at least in one
node of T , (iii) two neighbouring nodes A and B of T share exactly one edge
ci ∈ C, ci = A ∩ B, (iv) the variables in the intersection between two nodes of
the tree T are in each node in the path linking these two nodes. The Hinge width
(denoted wH) of a constraint graph G is equal to the maximum size of the nodes
in a hinge decomposition: it is an invariant of G named cyclicity degree. Indeed,
for a given hinge decomposition, the nodes of the tree are minimal hinges. They
define connected components CCi separated from the rest of the problem by
an unique edge ci. These ci can be considered as separators. In the framework
of binary CSPs, a hinge decomposition can be seen as a tree-decomposition by
replacing the set of edges in each node of the tree by the set of variables linked by
these edges. Thus, the intersections between the nodes of the tree are separators
of the constraint graph. So, SBBT can use the structure derived from a hinge
decomposition of the constraint graph in the same way it does with a tree-
decomposition. The intersections between nodes of the tree form the directed
separator set like previously for the BTD method. It is also possible to use the
heuristic Heuristic1,var defined for BTD. The complexity of SBBT is given by
the following theorem.

Theorem 8 The time complexity of SBBT with the configuration described above
is O(exp(wH)).

4.4 Separator set based on a pseudo-tree or on a rooted-tree
arrangement

The Pseudo-Tree Search method (PTS [12]) uses the notion of pseudo-tree (figure
1(d)) which allows to take in account the structure of the problem: as soon as
some parts of the problem become independent during the solving, they are
solved independently. A pseudo-tree T = (X, C ′) of G = (X, C), is a directed
rooted tree such that each edge in C which is not included in C ′ links a vertex
in X with one of its ancestors in T . The variables are assigned w.r.t. an order
induced by T : the solving begins at the root and the subproblems rooted on the
sons of the current variable are solved recursively and independently.

The Tree-Solve method [13] is very close to PTS and relies on the notion of
rooted-tree arrangement [18]. A rooted-tree arrangement (figure 1(d)) of a graph

G = (X, C), is a directed rooted tree T = (X, C ′) such that two neighbouring
vertices of G are in a same branch of T (which is a path from the root to a leaf
of the tree). Tree-Solve proceeds in the same way PTS does on a rooted-tree
arrangement of the constraint graph.

The AND/OR Search Tree method [14] relies on the computation of an
AND/OR search space based on a pseudo-tree of the constraint graph. The
independences between the produced subproblems allow to reduce exponentially
the size of the search space. Let T = (X, C ′) be a pseudo-tree of G = (X, C),
the AND/OR search tree related to T , ST (P) has alternating levels of AND
and OR nodes. The OR nodes xi are variables while the AND nodes < xi, vi >
(or vi) correspond to the values assigned to variables in their domain. The root
of the AND/OR tree is the node OR given by the root of T . An OR node xi

has a child AND node < xi, vi > iff < xi, vi > is consistent with the partial
assignment defined on the path from the root of the tree to the node xi. An
AND node < xi, vi > has a child OR node xj iff xj is a son of xi in the pseudo-
tree. A solution of P is a subtree of the AND/OR search tree containing its root
and that verifies: if it contains an OR node then it also contains at least one of
its children, if it contains an AND node then it contains all its children and all
its leaves are consistent. The AND/OR Search Tree solving method is based on
the computing of a pseudo-tree of the constraint graph and the construction of
the related AND/OR search tree. Thus, a depth first search to find a solution
subtree is sufficient to solve the problem.

SBBT captures PTS, Tree-solve and AND/OR Search Tree by using a vari-
able ordering heuristic induced by a pseudo-tree (PTS and AND/OR Search
Tree) or a rooted-tree arrangement (Tree-Solve) of the CSP constraint graph. Be-
sides, the procedures Good Recording and Nogood Recording are defined empty
and the function Failure returns XA′ . The set of separators can be chosen freely.

Theorem 9 The time complexity of SBBT with the configuration described above
is O(exp(h)) with h the depth of the pseudo-tree or the rooted-tree arrangement.

The Tree-Solve and AND/OR Search Tree methods can be improved by
recording informations which allow to avoid many redundancies and so to reduce
the size of the search space. The notion of parent-separators defined in [14]
for a pseudo-tree is quasi-similar to one of definition set of a subproblem for
a rooted-tree arrangement [13]. These two notions define a separator set of the
constraint graph. For a node xi in T , a pseudo-tree or a rooted-tree arrangement,
the parent-separators set of xi contains xi and its ancestors in T which are
neighbours in G of its descendants in T while the definition set of xi includes
only these ancestors. Identical assignments on a separator lead to the solving of
the same subproblem. To avoid these redundancies, it is possible to record these
assignments ((no)goods: Learning Tree-solve). For an AND/OR search tree, it
has been proved in [14] that two nodes with the same parent-separators set root
identical subproblems if the assignments on the variables of the parent-separators
set are the same. So it is possible to merge these nodes, this operation leads to
a fix-point named minimal context AND/OR search graph (AND/OR Search
Graph).

While the basic Tree-Solve and AND/OR Search Tree methods have a linear
space complexity, these versions have an exponential space complexity in the
induced width w∗ of the pseudo-tree or rooted-tree arrangement. Let G = (X, C)
be a graph and T = (X, C ′) a pseudo-tree or a rooted-tree arrangement of G,
the induced width of T is the width of G = (X, C ∪ C ′). For a given order on
nodes of the tree, the width of a node is the number of its neighbours preceding
it in the order. The width of the order is the maximum width over all nodes.
The width of a graph is the minimum width over all possible orders.

SBBT captures the Learning Tree-Solve and the AND/OR Search Graph
methods by using as directed separator set, the set of subproblem definition
sets induced by the rooted-tree arrangement (Learning Tree-Solve) or the set of
parents-separators induced by the pseudo-tree (AND/OR Search Graph) and a
variable ordering induced by a prefix numeration on the tree for Heuristicvar.
This time, the procedures Good Recording and Nogood Recording and the func-
tion Failure must be defined in the usual way. The (no)goods recorded on the
separators are the same recorded by the Learning Tree-Solve method. They con-
stitute as well the set of merged nodes in the minimal context graph of the
AND/OR Search Graph method.

Theorem 10 The time complexity of SBBT with the configuration described
above is O(exp(w∗)).

4.5 General case

We see that SBBT can easily capture several well known methods. Furthermore,
it defines a family of new methods like the possible implementation proposed in
section 3. This new scheme allows to compute directly a set of separators and
so to ensure some suitable properties on it (e.g. the separator size or number, or
the connected component size). Since a set of separators defines a family of tree-
decompositions, it gives a more general structure. It is also easier to compute
a structure with suitable properties than for tree-decompositions on which an
additional work must often be performed to obtain these properties. The SBBT
scheme also uses backjumping techniques, the notions of structural (no)goods
to reduce the size of the search space by avoiding many redundancies. Besides,
the Heuristicvar has a significant impact on the number of (no)goods recorded.
Unlike methods like BTD or BCC which limit the possible Heuristicvar, SBBT
gives a total freedom in this choice and continues to exploit (no)goods. Yet, we
have no guarantee on the number of structural (no)goods recorded by SBBT.
So, it is not possible to preserve good theoretical time complexity bounds that
depend on the redundancies avoided by using the (no)goods. In practice, it may
be possible to record a considerable number of (no)goods, but theoretically, we
have the same time complexity as BT.

Theorem 11 In the general case, the time complexity of SBBT is O(exp(n)).

The space complexity of SBBT only depends on the separator set, since all
the informations recorded are assignments on the separators. The number of

(no)goods recorded on a separator Si is bounded by d|Si|. Thus, the memory
space required is bounded by the maximum number of (no)goods that can be
recorded on the separators.

Theorem 12 Let s be the maximum size of the separators, the space complexity
of SBBT is O(n.s.exp(s)).

We show that the time complexity bound of SBBT depends on the separator
set, the variable ordering heuristic and on the functions and procedures used.
Furthermore, according to the choices, we have seen that SBBT is able to capture
in different ways several well known methods exploiting the problem structure.

5 Related works

The generic framework we propose in this paper allows us to cover a large spec-
trum of algorithms according to the choice made for the separator set and the in-
cluded procedures and functions. This spectrum includes algorithms from struc-
tural methods (e.g. BTD, BCC, PTS, Tree-Solve, Learning Tree-Solve, AND/OR
Search Tree, AND/OR Search Graph) to backtracking ones like BT. Moreover,
whereas the SBBT presentation is based on BT, we can safely exploit filtering
techniques which do not modify the constraint graph. For instance, SBBT can
rely on FC or MAC. Yet, a filtering like path-consistency cannot be used since
it may add some constraints and so some separators may not remain separators
of the new constraint graph.

We show as well that SBBT can easily capture GBJ [9] and CBJ [8] by
defining the function Failure in the right way. Regarding learning algorithms,
SBBT turns to be related to the Nogood Recording algorithm (NR [19]). In fact,
the structural nogoods of SBBT are a special case of classical nogoods exploited
in NR. They mostly differ in their justifications. For structural nogoods, the
justifications rely on the separators and the induced subproblems (i.e. on the
structure of the constraint graph) instead of the encountered conflicts for classical
nogoods.

Finally, the spectrum covered by SBBT includes structural methods. For
instance, SBBT captures PTS and AND/OR Search Tree if the variable ordering
is induced by a pseudo-tree of the constraint graph, Tree-Solve if it is induced by
a rooted-tree arrangement. In case the set of separators is computed from a tree-
decomposition of the constraint graph, SBBT is equivalent to BTD. If this set
is based on biconnected components of the constraint graph, it is equivalent to
BCC. Likewise, our generic framework captures the Learning Tree-solve method
if the set of separators is computed from a rooted-tree arrangement and the
AND/OR Search Graph method in case the separator set is computed from a
pseudo-tree. Nevertheless, while the most of structural methods exploit static
variable orders, SBBT does not suffer from this drawback. It results that the
time complexity and the ability to record nogoods depend on the degree of
freedom of the used variable ordering. Indeed, nogoods are only recorded when
this recording is safe, what may decrease the number of recorded nogoods w.r.t.

structural methods which exploits static variable order like BTD or BCC. Note
that the recording of goods is independent of the variable order.

6 Conclusion and future works

In this paper, we have described a generic framework called SBBT which ex-
ploits semantic and topological properties of the constraint network to produce
(no)goods. In particular, SBBT exploits a separator set of the constraint graph.
It can be modulated to exploit heuristics, filtering, classical nogood recording,
topological (no)good recording, and topological complexity bounds inherited
from graph decompositions like tree-decompositions. By so doing, the spectrum
of algorithms described by SBBT includes algorithms from structural methods
(e.g. BTD, BCC, PTS, Tree-Solve, Learning Tree-Solve, AND/OR Search Tree,
AND/OR Search Graph) to backtracking ones like BT. Hence, the time complex-
ity varies between O(exp(w +1)) and O(exp(n)) for a constraint graph having a
tree-width w and n variables. The space complexity is O(n.s.exp(s)) with s the
size of the largest separator.

Even if the time complexity of SBBT depends on the used separator set and
variable ordering heuristic, SBBT does not require any particular feature for the
separators. In other words, any set of separators may be exploited in SBBT. Yet,
if the separator set relies on some topological properties of the constraint graph
(e.g. a tree-decomposition or bicomponents), we can obtain a more powerful
algorithm with a better time complexity bound. As no condition is required on
the separator set, we may easily derive hybrid algorithms exploiting different
topological features according to the considered part of the constraint graph.
For instance, on one part of the problem, the separators can be computed from
a tree-decomposition and on the other from bicomponents.

Furthermore, the exploited variable ordering heuristic has also an influence
on the ability to record nogoods. The more free the heuristic is, the less struc-
tural nogoods are recorded. As the recorded nogoods allow SBBT to avoid some
redundancies, their recording and use may have a significant impact on the solv-
ing efficiency. Likewise, it is well known that variable ordering heuristics play
a central role in the efficiency of solving methods. So, from a practical view-
point, it could be interesting to exploit some trade-off between the freedom of
the variable ordering heuristic and the ability of recording structural nogoods.
Our generic framework is powerful enough to capture such trade-offs.

Concerning the future works, the influence of the variable heuristic on the
ability to record safe nogoods must be reduced. A solution could rely on the ex-
ploitation of some techniques from Dynamic Backtracking [20]. Then, we must
compare SBBT to other structural or backtracking methods. Regarding the sep-
arator set, in this article, SBBT is presented by using a static separator set which
is computed before the solving. So a promising extension consists in computing
it dynamically. Finally, it could be useful to extend this work to optimization
problems modeled as soft constraints [21].

References

1. R. Haralick and G. Elliot. Increasing tree search efficiency for constraint satisfac-
tion problems. Artificial Intelligence, 14:263–313, 1980.

2. D. Sabin and E. Freuder. Contradicting Conventional Wisdom in Constraint Sat-
isfaction. In Proc. of ECAI, pages 125–129, 1994.

3. R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks. Artificial In-
telligence, 38:353–366, 1989.

4. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decom-
position Methods. Artificial Intelligence, 124:343–282, 2000.

5. G. Gottlob, M. Hutle, and F. Wotawa. Combining hypertree, bicomp and hinge
decomposition. In Proc. of ECAI, pages 161–165, 2002.

6. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence, 146:43–75, 2003.

7. R. Dechter. Constraint processing. Morgan Kaufmann Publishers, 2003.
8. P. Prosser. Hybrid Algorithms for the constraint satisfaction problem. Computa-

tional Intelligence, 9:268–299, 1993.
9. R. Dechter. Enhancement Schemes for Constraint Processing: Backjumping, Learn-

ing, and Cutset Decomposition. Artificial Intelligence, 41:273–312, 1990.
10. J.-F. Baget and Y. Tognetti. Backtracking Throught Biconnected Components of

a Constraint Graph. In Proc. of IJCAI, pages 291–296, 2001.
11. E. Freuder. A Sufficient Condition for Backtrack-Bounded Search. JACM, 32:755–

761, 1985.
12. E. Freuder and M. Quinn. Taking Advantage of Stable Sets of Variables in Con-

straint Satisfaction Problems. In Proc. of IJCAI, pages 1076–1078, 1985.
13. R. J. Bayardo and D. P. Miranker. A Complexity Analysis of Space-Bounded

Learning Algorithms for the Constraints Satisfaction Problem. In Proc. of AAAI,
pages 298–304, 1996.

14. R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Arti-
ficial Intelligence, 171:73–106, 2007.

15. N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of tree-
width. Algorithms, 7:309–322, 1986.

16. P. Jégou, S.N. Ndiaye, and C. Terrioux. ‘Dynamic Heuristics for Backtrack Search
on Tree-Decomposition of CSPs. In Proc. of IJCAI, pages 112–117, 2007.

17. M. Gyssens, P. Jeavons, and D. Cohen. Decomposing constraint satisfaction prob-
lems using database techniques. Artificial Intelligence, 66:57–89, 1994.

18. F. Gavril. Some NP-complete Problems on Graphs. In Proc. of the Conference on
Information Sciences and Systems, pages 91–95, 1977.

19. T. Schiex and G. Verfaillie. Nogood Recording for Static and Dynamic Constraint
Satisfaction Problems. IJAIT, 3(2):187–207, 1994.

20. M. Ginsberg. Dynamic Backtracking. Journal of Artificial Intelligence Research,
1:25–46, 1993.

21. S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie.
Semiring-based CSPs and valued CSPs: Basic properties and comparison. LNCS,
1106, 1996.

