
Strategies and heuristics for exploiting
tree-decompositions of constraint networks

Philippe Jégou and Samba Ndojh Ndiaye and Cyril Terrioux 1

Abstract. This paper deals with methods exploiting tree-
decomposition approaches for solving constraint networks. We con-
sider here the practical efficiency of these approaches, by defining
three classes of variable orders more and more dynamic which pre-
serve the time complexity bound and an extension of this theoretical
time complexity bound to increase the dynamic aspect of these or-
ders. We propose heuristics in each class to improve the runtime of
the methods. Then, we study empirically the practical interest of the
proposed heuristics in order to point up the most interesting ones.
Finally, the proposed theoretical extension of the time complexity
bound is assessed from a practical viewpoint.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a pow-
erful framework for representing and solving efficiently many prob-
lems. Modelling a problem as a CSP consists in defining a set X of
variables x1, x2, . . . xn, which must be assigned in their respective
finite domain, by satisfying a set C of constraints which express re-
strictions between the different possible assignments. A solution is
an assignment of every variable which satisfies all the constraints.
Determining if a solution exists is a NP-complete problem.

The usual method for solving CSPs is based on backtracking
search, which, in order to be efficient, must use both filtering tech-
niques and heuristics for choosing the next variable or value. This
approach, often efficient in practice, has an exponential theoretical
time complexity in O(e.dn) for an instance having n variables and
e constraints and whose largest domain has d values. Several works
have been developed, in order to provide better theoretical complex-
ity bounds according to particular features of the instance. The best
known complexity bounds are given by the ”tree-width” of a CSP
(often denoted w). This parameter is related to some topological
properties of the constraint graph which represents the interactions
between variables via the constraints. It leads to a time complex-
ity in O(n.dw+1). Different methods have been proposed to reach
this bound like Tree-Clustering [2] (see [4] for a survey and a the-
oretical comparison of these methods). They rely on the notion of
tree-decomposition of the constraint graph. They aim to cluster vari-
ables such that the cluster arrangement is a tree. Depending on the
instances, we can expect a significant gain w.r.t. enumerative ap-
proaches. Yet, the space complexity, often linear for enumerative
methods, may make such an approach unusable in practice. It can
be reduced to O(n.s.ds) with s the size of the largest minimal sep-
arators of the graph [1]. Several works based on this approach have

1 LSIS - UMR CNRS 6168, Université Paul Cézanne (Aix-Marseille 3)
{philippe.jegou, samba-ndojh.ndiaye, cyril.terrioux}@univ-cezanne.fr

been performed. Most of them only present theoretical results. Ex-
cept [7, 8, 3], no practical results have been provided. In [7], the
method BTD based on enumerative approaches allows a more effi-
cient exploitation of structural properties.

While the problem of finding the best decomposition has been
studied in the literature firstly from a theoretical point of view, re-
cently, some studies have been realized in the field of CSP, inte-
grating as quality parameter for a decomposition, its efficiency for
solving the considered CSP [5]. Nevertheless, these studies did not
consider the questions related to an efficient exploitation of the con-
sidered decompositions.

This paper deals with this question. Given a tree-decomposition,
we study the problem of finding good orders on variables for ex-
ploiting this decomposition. In the first version of BTD, the variable
order was static and compatible with a depth first traversal of the as-
sociated cluster tree. Enumerative methods highlight the efficiency
of dynamic variable orders. We give conditions that permit to exploit
in a more dynamic way the tree-decomposition and guarantee the
time complexity bound. We propose three classes of orders respect-
ing these conditions and an extension giving more freedom to order
variables dynamically with a new time complexity bound. Based on
the properties of these classes, we proposed several heuristics which
aim to compute a good order on clusters and more generally on vari-
ables. They rely on topological and semantic properties of CSP in-
stance. Heuristics based on the expected number of solutions enhance
significantly the performances of BTD.

Finally, we report here experiments to evaluate the interest of our
heuristics and for the extensions based on time complexity.

This paper is organized as follows. The next section pro-
vides the basic notions about CSPs and methods based on tree-
decompositions. Then, we define several classes of variable orders in
section 3 and an extension of one class giving a new time complex-
ity bound in section 4. We propose heuristic methods for guiding the
exploration of the cluster tree and variables in section 5. Section 6 is
devoted to experimental results to assess the practical interest of our
propositions. Finally, in section 7, we conclude and we outline some
future works.

2 Preliminaries

A constraint satisfaction problem (CSP) is defined by a tuple
(X, D, C). X is a set {x1, . . . , xn} of n variables. Each variable
xi takes its values in the finite domain dxi from D. The variables
are subject to the constraints from C. Given an instance (X, D, C),
the CSP problem consists in determining if there is an assignment
of each variable which satisfies each constraint. This problem is NP-
complete. In this paper, without loss of generality, we only consider

binary constraints (i.e. constraints which involve two variables). So,
the structure of a CSP can be represented by the graph (X, C), called
the constraint graph. The vertices of this graph are the variables of
X and an edge joins two vertices if the corresponding variables share
a constraint.

Tree-Clustering [2] is the reference method for solving CSPs
thanks to the structure of its constraint graph. It is based on the notion
of tree-decomposition of graphs [9]. Let G = (X, C) be a graph, a
tree-decomposition of G is a pair (E, T) where T = (I, F) is a tree
with nodes I and edges F and E = {Ei : i ∈ I} a family of subsets
of X , such that each subset (called cluster) Ei is a node of T and
verifies:

• ∪i∈IEi = X ,
• for each edge {x, y} ∈ E, there exists i ∈ I with {x, y} ⊆ Ei,
• for all i, j, k ∈ I , if k is in a path from i to j in T , then Ei∩Ej ⊆

Ek.

The width of a tree-decomposition (E, T) is equal to maxi∈I |Ei|−
1. The tree-width w of G is the minimal width over all the tree-
decompositions of G.

The time complexity of Tree-Clustering is O(n.dw+1) (denoted
O(exp(w + 1))) while its space complexity can be reduced to
O(n.s.ds) with s the size of the largest minimal separators of the
graph [1]. Note that Tree-Clustering did not provide interesting re-
sults in practical cases. So, an alternative approach, also based on
tree-decomposition of graphs was proposed in [7]. This method is
called BTD and seems to provide empirical results among the best
ones obtained by structural methods.

The BTD method (for Backtracking with Tree-Decomposition)
proceeds by an enumerative search guided by a static pre-established
partial order induced by a tree-decomposition of the constraint-
network. So, the first step of BTD consists in computing a tree-
decomposition.

The obtained tree-decomposition allows to exploit some structural
properties of the graph, during the search, in order to prune some
branches of the search tree, what distinguishes BTD from other clas-
sical techniques. Firstly, the order for the instantiation of the vari-
ables is induced by the considered tree-decomposition of the con-
straint graph. Secondly, some parts of the search space will not be
visited again as soon as their consistency is known. This is possible
by using the notion of structural good. A good is a consistent par-
tial assignment on a set of variables (a separator) such that the part
of the CSP located after the separator is consistent and admits a so-
lution compatible with the good. So, it is not necessary to explore
this part because we know its consistency. Thirdly, some parts of the
search space will not be visited again if we know that the current in-
stantiation leads to a failure. This is possible in applying the notion
of structural nogood. A structural nogood is a particular kind of no-
good justified by structural properties of the constraints network: the
part of the CSP located after the nogood is not consistent (a nogood
is a consistent assignment of a separator of the graph).

To satisfy the bounds of complexity, the ordering exploited in BTD
in the assignment of variables is related to the cluster ordering. For-
mally, consider (E, T) a tree-decomposition of the CSP where T =
(I, F) is a tree. We suppose that the elements of E = {Ei : i ∈ I}
are indexed w.r.t. the notion of compatible numeration. A numera-
tion on E compatible with a prefix numeration of T = (I, F) with
E1 the root is called compatible numeration. An order �X of vari-
ables of X such that ∀x ∈ Ei, ∀y ∈ Ej , with i < j, x �X y is a
compatible enumeration order. The numeration on the clusters gives
a partial order on the variables since the variables in the Ei are as-

signed before those in Ej if i < j. To complete this order, we have
to choose variable ordering heuristics inside a cluster. Finally, a com-
patible enumeration order on the variables is given by a compatible
numeration on clusters and an order on the variables in each cluster.

The experimental results given in [7] were obtained without us-
ing good heuristics to guide the search except for variable order-
ing in clusters which was dynamic. Obviously, the variable order-
ing have a great impact on the efficiency of enumerative methods.
Thus, we study here how the benefits of variable orderings can be
fully exploited in BTD. Nevertheless, to guarantee the time complex-
ity bounds, it is necessary to respect some conditions. So we define
classes of orders guaranteeing complexity bounds.

3 Complexity bounds and orders
The first version of BTD was defined with a compatible static vari-
able ordering. We prove here that it is possible to consider more
dynamic orders without loosing complexity bounds. The defined
classes contain orders more and more dynamic. These orders are in
fact provided by the cluster order and the variable ordering in each
cluster.

• Class 1. Enumerative static order. It is a static order of assign-
ment of variables which is compatible.

• Class 2. Static cluster order and dynamic variable order. The
cluster order is a compatible order (thus static). Yet, inside each
cluster, the variable order is dynamic. Let Y be a set of variables,
if xi ∈ Ei is the last assigned variable in Y , then ∀Ej ∈ E, j < i,
∀xj ∈ Ej , xj ∈ Y . So, a variable xi ∈ Ei is assigned if and only
if all the variables in clusters Ej , j < i, are already assigned. In
[7], the experiments use this kind of orders.

• Class 3. Dynamic cluster order and dynamic variable order.
Let Y be a set of variables, xi ∈ Ei, if xi ∈ Y , then ∀Ej ∈ E,
i 6= j such that Ej is on the path from the root cluster E1 to Ei,
∀xj ∈ Ej , xj ∈ Y . So, a variable xi ∈ Ei is assigned if and only
if all the variables in clusters on the path from the root cluster E1

to Ei are assigned first.
• Class 4. Enumerative dynamic order. The variable ordering is

completely dynamic. Consequently, the assignment order is not
necessarily an enumerative compatible order. There is no restric-
tion due to cluster tree.

The defined classes form a hierarchy: Class i ⊂ Class j, if i < j.
Formally, only the orders of the Class 1 are compatible. Neverthe-
less, for an unique assignment, one can find an order in the Class 1
that coincide with the order of the Class 3. This property gives to
the Class 3 (thus Class 2) orders the ability of recording goods and
nogoods and using them to prune branches in the same way Class
1 orders do. The Class 4 gives a complete freedom. Yet, it does not
guarantee the time complexity bounds because sometimes it is im-
possible to record goods and nogoods. Indeed, let the cluster Ej be a
son of the cluster Ei, we suppose that the enumerative order assigns
the variables in Ei except those in Ei ∩ Ej , as well as the variables
in the clusters which are on the path from the root cluster to Ei. Let
x, the next variable to assign, be in Ej and not in Ei ∩Ej . If the res-
olution of the subtree rooted on Ej leads to a failure, it is impossible
to record a nogood on Ei ∩ Ej because the instantiations following
the assignment of x, depend on it and the filtering induced. If the
subproblem has a solution, we can record a good. Actually, this so-
lution is a consistent extension of the assignment on Ei ∩ Ej which
is a good. A nogood not recorded could be computed again and en-
abled a pruning of branches. Thus the time complexity bound is not

guaranteed anymore. Meanwhile, the Class 3 orders guarantee this
bound.
Theorem Let the enumerative order be in the Class 3, the time com-
plexity of BTD is O(exp(w + 1)).
Proof We consider a cluster Ej in the cluster tree, and we must prove
that any assignment on Ej is computed only once. Let Ei be the
cluster parent of Ej and suppose that for a current assignment the
last assigned variables are in Ei. Since the order is in the Class 3, the
variables of the clusters on the path from the root to Ei are already
assigned and those in the subtree rooted on Ej not yet. A consistent
assignment A on Ei ∩ Ej is computed when the variables in Ei are
assigned and before those in the subproblem rooted in Ej . Solving
this subproblem leads to a failure or a solution. In each case, A is
recorded as a good or nogood. Let A′ be the assignment on Ej . The
next assignment of variables in Ei leading to A on Ei ∩ Ej will
not be pursued on the subproblem rooted on Ej . A′ is not computed
twice, only the variables in Ei∩Ej are assigned again. Thus the time
complexity is O(exp(w + 1)). 2

The properties of the Class 3 offer more possibilities in the variable
ordering. So it is possible to choose any cluster to visit next since
variables on the path from the root cluster to that cluster are already
assigned. And in each cluster, the variable ordering is totally free. In
the next section, we propose an extension of the complexity bound.

4 An extension of the dynamic order which
preserves complexity bounds

We propose an extension based on the ability given to the heuristics
to choose the next variables to assign not only in one cluster, but also
among k variables in a path rooted on the cluster that verifies some
properties. So, we define a new class of orders similar to Class 3.

Let G = (X, C) be a graph, the set of generalized tree-
decompositions related to a tree-decomposition (E, T) with root E1

of G and k a no nil positive integer, is defined by the set of the tree-
decompositions (E′, T ′) of G that verify: for all E′

i a subset of X ,
there are Ei1 . . . EiK , subsets of X on a path of (E, T) such that:

• Ei1 . . . EiK is a path,
• E′

i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiK ,
• |E′

i| ≤ w + k.

Let (X, D, C) be a CSP, (E, T) a tree-decomposition with E1

the root cluster of the graph (X,C) and k positive integer no nil. A
variable order is in the Class 3 k-extended, if for any assignment,
its order is in the Class 3 for some generalized tree-decomposition
related to (E, T) and k.
This definition enforces the order of one assignment to be in the Class
3. The dynamic computing of the tree-decomposition changes the
time complexity bound because sometimes it would be impossible to
record goods and nogoods. Nevertheless, the use of the parameter k
allows another time complexity bound.
Theorem Let the enumerative order be in the Class 3 k-extended, the
time complexity of BTD is O(exp(2(w + k))).

The proof can be found in [6].
We have several approaches to choose variables to group. A good

one consists in trying to reduce the value of the parameter s, by this
way to enhance the space complexity bound. Grouping clusters with
large separators permits to achieve a significant reduction of s.

5 Heuristics
In this section we define several heuristics that improve often in sig-
nificant way the performances of BTD w.r.t. runtime. Firstly, we de-

fine the notion of expected number of solutions that appears in sev-
eral heuristics.

5.1 Estimating the number of partial solutions
The assessment of the number of solutions by computing its math-
ematical expectation takes into account the problem density, the do-
main size and the constraint tightness. Hence, it allows us to make
some choices to traverse the cluster tree by choosing first the clusters
which have a minimum number of solutions. By so doing, we can
expect the failures to occur earlier. The mathematical expectation of
the number of solutions of a CSP has been introduced in [11]. Let
us consider a CSP P = (X, D, C) and, for 1 ≤ i < j ≤ n, the
tightness tij of the constraint between xi and xj . In the following
formula, the tightness tij is defined as the ratio between the num-
ber of allowed tuples and the number of possible tuples, if the con-
straint exist, otherwise tij = 0. The mathematical expectation of
the number of solutions of P is E(P) = dn

∏
1≤i<j≤n

(1 − tij).
If we consider a complete assignment a = (a1, . . . , an), a is a so-
lution of P if 1 ≤ i < j ≤ n, ai and aj are compatible w.r.t.
the constraint cij . The probability of this event is (1 − tij). So the
probability that a is a solution is

∏
1≤i<j≤n

(1 − tij). As the total
number of assignments is dn, the expected number of solutions is
E(P) = dn

∏
1≤i<j≤n

(1− tij). This assessment provides a better
estimation of the difficulty of the problem and the runtime than the
density of the constraint graph or the number of constraints.

In our case, we are not interested in the expectation of the whole
problem, but only in ones of the produced clusters. So, we consider
the solutions of these subproblems, what explains the term of partial
solutions.

5.2 Cluster orders
We propose here several heuristics computing the order the clusters
are visited for the Classes 1, 2 and 3. They are static for the Class
1 and dynamic for the Classes 2 and 3. They consist in choosing
the first visited cluster (called the root cluster) and ordering the sons
of each cluster. Precisely, we assign first the variables in the root
cluster and recursively we assign the variables in the trees rooted
on its son clusters according to the son order, considering the sons
as the roots of the subproblems. Nevertheless, all these orders are
used under the hypothesis the early use of (no)goods does not enforce
another order. Indeed this early use of (no)goods improves a lot the
method, by detecting earlier inconsistencies. In fact as soon as all the
variables in the separator between the current cluster and one of its
sons are assigned, we check whether this assignment is a (no)good.
For a good, we do not explore the subtree rooted on this son cluster
since its consistency is known. For a nogood, it is known that the
current assignment leads to a failure so we backtrack. In case the
assignment is neither a good nor a nogood we try to extend it.

Static orders A static order is defined before the search begins.
We propose criteria for the choice of the root cluster.

• random: the root cluster is chosen randomly.
• minexp: this heuristic is based on the expected number of par-

tial solutions of clusters and on their size. Our experiments have
shown that it is always better to choose as root cluster one with a
large size, so the heuristic choose as root cluster one which mini-
mizes the ratio between the expected number of solutions and the
size of the cluster. It allows to start the exploration with a large
cluster having few solutions.

• size: we have here a local criteria: we choose the cluster of maxi-
mum size as root cluster

• bary : it is a global criterion based on the location of the cluster
in the tree. For this criterion, we use the notion of distance, noted
dist(x, y), between two vertices x and y of a graph G, which
is defined by the length of a shortest path between x and y. A
barycentre of G is a vertex x s.t. x minimizes Σy∈Xdist(x, y).
The bary heuristic chooses a barycentre cluster as a root cluster.

Likewise, we propose heuristics for ordering cluster sons.

• randoms : we compute the order on son clusters randomly.
• minexps : this heuristic is similar to minexp and orders the son

clusters according to the increasing value of their ratio.
• minexpsd : we order the son clusters according to the increas-

ing value of the expected number of solutions of the subproblem
rooted on the cluster.

• maxexpsd : we order the son clusters according to the decreas-
ing value of the expected number of solutions of the subproblem
rooted on the cluster.

• minsizesd : the son clusters are ordered according to the increasing
value of the size of the subproblem rooted on the cluster.

• maxsizesd : the son clusters are ordered according to the decreas-
ing value of the size of the subproblem rooted on the cluster.

• minseps : we order the son clusters according to the increasing
size of their separator with their parent.

Dynamic orders A dynamic order is defined during the search.
But, the choice of the root cluster is done to begin the search. So
one can only use static heuristics to choose the root. We also pro-
pose a new heuristic. nv : the dynamic variable ordering heuristics
improve very significantly the runtime of enumerative methods. To
derive benefit of this property, we choose a dynamic variable order-
ing heuristic and the root cluster is one containing the first variable
w.r.t. the chosen variable order. The dynamic aspect of the cluster
orders is in the son cluster ordering.

• randomsdyn : we choose randomly the next cluster visited.
• minexpsdyn : the next cluster to visit minimizes the ratio between

the current expected number of solutions and the size of the clus-
ter. The current expected number of solutions of a cluster is modi-
fied by filtering the domains of unassigned variables. So we com-
pute this number for unordered clusters as soon as their parent is
fully instantiated. So the choice of the next cluster is more precise.

• nvsdyn : this heuristic is similar to nv . We visit first the son cluster
where appears the next variable in the variable order among the
variables of the unvisited sons clusters.

5.3 Variable orders

We define here static and dynamic variable orders according to which
the variables inside a cluster are assigned.

Static orders A static order is defined before the search begins.

• randomv : we compute the order variables randomly.
• mdd : the variables are ordered according to the increasing value

of the ratio domain/degree. This heuristic gives good results com-
pared to other static ones.

Dynamic orders A dynamic order is defined during the search.

• randomvdyn : we choose randomly the next variable to assign.

• mdddyn : the next variable to assign minimizes the ratio do-
main/degree. The current ratio of a variable is modified by the
domain filtering. So we compute again this number each time the
domain is filtered. This heuristic gives very good results.

5.4 Heuristics for grouping variables in the Class 3
k-extended

Grouping variables allows more freedom for dynamic variable or-
dering heuristics which improve significantly the enumerative meth-
ods runtime. Furthermore, it is necessary to find a good value of the
parameter k besides which BTD does not profit sufficiently of the
problem structure and therefore its time complexity increases a lot.
We propose several criteria for grouping variables which can be seen
as a preliminary step before computing an order of the Class 3 k-
extended.

• sep: this heuristic has one parameter which is the maximum size
of separators. We merge clusters < parent, son > if their sepa-
rator size exceeds the value of the parameter.

• pv : this heuristic has one parameter which is the minimum num-
ber of proper variables in a cluster. A proper variable of a cluster is
a variable of a cluster which is not in the cluster parent. We merge
a cluster with its parent if its number of proper variables is under
the parameter.

• exp: this heuristic is based on the expected number of solutions.
Two clusters are merged if the expected number of solutions of
the grouped cluster is less than the expected number of solutions
of the two clusters. Our goal is to compute cluster with many vari-
ables and a few solutions.

All the heuristics we have defined, try to satisfy the first-fail prin-
ciple, doing first the most constrained choices.

6 Experimental study

Applying a structural method on an instance generally assumes that
this instance presents some particular topological features. So, our
study is performed on instances having a close to ideal structure.
In practice, we assess here the proposed strategies on random par-
tial structured CSPs in order to point up the best ones w.r.t. CSP
solving. For building a random partial structured instance of a class
(n, d, w, t, s, ns, p), the first step consists in producing randomly a
structured CSP according to the model described in [7]. This struc-
tured instance consists of n variables having d values in their domain.
Its constraint graph is a clique tree with ns cliques whose size is at
most w and whose separator size does not exceed s. Each constraint
forbids t tuples. Then, the second step removes randomly p% edges
from the structured instance. The experimentations are performed on
a Linux-based PC with a Pentium IV 3.2GHz and 1GB of memory.
For each considered class, the presented results are the average on 50
instances. We limit the runtime to 30 minutes. Above, the solver is
stopped and the involved instance is considered as unsolved. In the
following tables, the symbol > denotes that at least one instance can-
not be solved within 30 minutes and so the mean runtime is greater
than the provided value. The letter M means that at least one instance
cannot be solved because it requires more than 1GB of memory.

In [5], a study was performed on triangulation algorithms to find
out the best way to compute a good tree-decomposition w.r.t. CSP
solving. As MCS [12] obtains the best results, we use it to compute
tree-decompositions in this study. Regarding the provided results, by

CSP Class 1 Class 2 Class 3
(n, d, w, t, s, ns, p) w+ s size minexp size minexp minexp nv size

minseps minexps minseps minexps minexpsdyn nvsdyn nvsdyn

(a)(150, 25, 15, 215, 5, 15, 10) 13.00 12.22 9.31 28.12 3.41 2.52 2.45 6.85 5.34
(b)(150, 25, 15, 237, 5, 15, 20) 12.54 11.90 >45.99 5.61 >41.10 2.69 2.32 >40.07 >41.47
(c)(150, 25, 15, 257, 5, 15, 30) 12.16 11.40 13.36 27.82 3.38 5.06 4.97 5.67 3.55
(d)(150, 25, 15, 285, 5, 15, 40) 11.52 10.64 3.04 >44.77 1.12 >36.87 >37.27 0.95 1.16
(e)(250, 20, 20, 107, 5, 20, 10) 17.82 16.92 57.22 >129.70 16.03 >56.77 >56.44 >99.67 15.26
(f)(250, 20, 20, 117, 5, 20, 20) 17.24 16.56 55.87 78.44 23.25 14.03 13.04 >77.14 24.00
(g)(250, 20, 20, 129, 5, 20, 30) 16.80 15.80 >123.28 >93.28 92.52 64.87 >78.47 >81.60 >107.10
(h)(250, 20, 20, 146, 5, 20, 40) 15.92 15.24 44.60 30.17 26.24 3.91 4.51 10.61 17.99
(i)(250, 25, 15, 211, 5, 25, 10) 13.04 12.34 28.83 >74.75 15.16 43.41 44.66 >53.53 17.89
(j)(250, 25, 15, 230, 5, 25, 20) 12.86 11.98 20.09 >70.47 8.51 >43.12 >50.84 10.93 19.17
(k)(250, 25, 15, 253, 5, 25, 30) 12.38 11.82 >47.36 16.68 7.01 10.94 5.06 6.01 6.91
(l)(250, 25, 15, 280, 5, 25, 40) 11.80 11.16 7.84 33.57 3.82 16.88 18.13 >52.97 5.03
(m)(250, 20, 20, 99, 10, 25, 10) 17.92 17.02 M M M M M M M
(n)(500, 20, 15, 123, 5, 50, 10) 13.04 12.58 12.60 13.63 7.01 8.08 7.31 8.32 7.54
(o)(500, 20, 15, 136, 5, 50, 20) 12.94 12.10 47.16 19.22 25.54 23.49 27.01 7.26 15.11

Table 1. Parameters w+ and s of the tree-decomposition and runtime (in s) on random partial structured CSPs with mdd for class 1 and mdddyn for classes
2 and 3.

CSP w+ s size minexp minexp nv size
minseps minexps minexpsdyn nvsdyn nvsdyn

(a) 14.04 4.98 2.75 2.17 2.08 4.65 2.65
(b) 14.04 5.00 2.58 1.76 1.63 2.47 2.97
(c) 14.86 5.00 1.41 1.05 1.13 1.23 1.30
(d) 15.48 5.00 1.67 0.39 0.63 0.88 1.75
(e) 19.00 4.98 10.66 >52.14 >51.67 >50.96 10.92
(f) 19.00 5.00 10.05 8.81 8.39 45.18 10.34
(g) 19.82 5.00 33.93 4.61 4.41 41.92 34.20
(h) 20.44 5.00 11.38 3.17 3.17 7.58 10.63
(i) 14.00 5.00 5.86 7.71 6.65 8.86 6.44
(j) 14.40 5.00 4.19 3.94 3.36 4.99 6.81
(k) 15.02 5.00 2.80 3.71 3.52 4.49 3.06
(l) 17.90 5.00 4.03 1.40 1.26 14.78 3.55
(m) 57.28 4.88 66.94 63.15 62.99 74.32 66.33
(n) 14.02 5.00 5.48 4.50 4.41 5.02 5.86
(o) 14.44 5.00 4.86 4.92 3.94 5.54 5.24

Table 2. Parameters w+ and s of the tree-decomposition and runtime (in s) on random partial structured CSPs for several orders of class 3-k extended based
on mddd and the sep merge heuristic (the separator size is at most 5).

lack of place, we only report the heuristics giving the more interest-
ing results for each class of orders. We do not provide the results
obtained by classical enumerative algorithms like FC or MAC since
these algorithms are often unable to solve several instances of each
instance class within 30 minutes.

Table 1 shows the runtime of BTD with several heuristics of
Classes 1, 2 and 3. Also it presents the width of the computed tree-
decompositions and the maximum size of the separators. Clearly, we
observe that Class 1 orders obtain poor results. This behaviour is not
surprising since static variable orders are well known to be ineffi-
cient compared to dynamic ones. A dynamic strategy allows to make
good choices by taking in account the modifications of the problem.
Thus these choices are more justified than in a static case. That ex-
plains the good results of Classes 2 and 3 orders. The results show
as well the crucial importance of the root cluster choice. For Classes
2 and 3, the symbol > comes from a bad choice of root cluster for
an unique problem causing a very long runtime. That induces the in-
creasing of the mean runtime while for the other 49 instances the re-
sults are similar to the attempts. We note that the unsolved instances
are not the same for size and minexp heuristics. The memory prob-
lems marked by M can be solved by using a Class 3 k-extended

order with the sep heuristic for grouping variables. Table 2 gives
the runtime of BTD for this class with a maximum separator size
bounded by 5. The heuristics improve very significantly their results
obtained for the Classes 2 and 3. The impact of the dynamicity is
obvious. minexp and nv heuristics solve all the instances except one
due to a bad root cluster choice, size solve all the instances. Except
this unsolved instance, minexp obtains very promising results. The
son cluster ordering has a limited effect because the instances con-
sidered have a few son clusters reducing the possible choices and
so their impact. We can expect a more important improvement for
instances with more son clusters. The best results are obtained by
minexp + minexpsdyn , but size + minseps obtains often similar
results and succeed in solving all instances in the Class 3 k-extended.
The expected number of solution calculus supposed the problem con-
straints are independent, what is the case for the problems computed
here. Thus, size + minsep may outperform minexp + minexpsdyn

on real world problems which have dependent constraints. In Table
3, we present the best values of the parameters for sep and pv heuris-
tics. Generally, the best value is between 4 and 6 for sep, between 2
and 6 for pv . A relevant choice of a value for these parameters may
lead to a significant improvement w.r.t. CSP solving. Yet, we are try-

CSP sep pv
Time k smax Time k

(a) 2.07 2 6 2.06 4
(b) 1.54 37 4 1.83 6
(c) 1.13 11 5 1.02 7
(d) 0.36 35 4 0.43 5
(e) 12.71 43 4 10.29 10
(f) 7.61 44 4 7.30 2
(g) 4.40 8 6 2.85 3
(h) 3.17 18 5 4.84 4
(i) 6.65 1 5 5.14 5
(j) 3.36 6 5 3.24 2
(k) 3.25 3 6 3.95 3
(l) 1.26 20 5 5.45 3
(m) 35.83 30 9 44.92 2
(n) 4.37 2 6 4.43 3
(o) 3.41 63 4 3.64 5

Table 3. Best runtime (in s) and corresponding value of k for orders of
class 3-k extended based on mdddyn+minexp+minexpsdyn and

respectively the sep and pv merge heuristics. For sep, the maximum
allowed separator size smax ranges from 1 to 10 while, for pv , clusters

having k proper variables or less are merged with k between 1 and 10. This
table presents the results obtained for the best value (w.r.t. runtime) of smax

or k.

ing to find out criteria that would allow us to compute such relevant
values and so the question is still open. Hence, we confirm empir-
ically the intuition that dynamic strategies are more efficient since
clever choices are made. When we compare Tables 1 and 2, we see
the relevance of extending the dynamic order. Merging clusters with
k less than 5 decrease the maximal size of separator and allow a more
dynamic ordering of variables. That leads to an important reduction
of the runtime. These experiments highlight the importance of dy-
namic orders and make us conclude that the Class 3 k-extended gives
the best variable orders w.r.t CSP solving with a good value of k. Of
course, this behaviour has been observed on random instances. The
next step of our study will consist in assessing the proposed heuris-
tics on other kinds of benchmarks (for instance, ones of the CP’2005
solver competition2).

7 Discussion and Conclusion

In this article, we have studied the CSP solving methods based on
tree-decompositions in order to improve their practical interest. This
study was done both theoretically and empirically. The analysis of
the variables orders allows us to define more dynamic heuristics
without the loss of time complexity bound. So, we have defined
classes of variables orders which allow a more and more dynamic
ordering of variables and preserve the theoretical time complexity
bound. This bound had been extended to enforce the dynamic aspect
of orders that has an important impact on the efficiency of enumer-
ative methods. Even though this new bound is less interesting that
the initial, it allows us to define more efficient heuristics which im-
prove significantly the runtime of BTD. This study, which could not
be achieved previously, takes now on importance for solving hard in-
stances with suitable structural properties. For example, the instances
we have used have a suitable structure and are seldom solved by
backtracking methods like FC or MAC.

We have compared the classes of variable orders with relevant
heuristics w.r.t. CSP solving. This comparison points up the impor-

2 This competition held during the Second International Workshop on Con-
straint Propagation and Implementation of CP’2005.

tance of a dynamic variable ordering. The best results are obtained
by Class 3 k-extended orders because they give more freedom to the
variable ordering heuristic. We exploit the notion of expected num-
ber of partial solutions in order to guide the traversal of the cluster
tree during the solving. This expectation of the number of solutions
of a subproblem gives a more relevant criterion for exploiting the
first-fail principle. The heuristics based on this criterion have led to
significant improvements of BTD w.r.t CSP solving. Even though the
other heuristics presented (size + minsep) are less efficient, often
they obtain similar results. They are also more general what induces
a stable behaviour. Then, for Class 3 k-extended, we aim to find out
criteria that would permit to compute the best value of k by exploit-
ing the problem features.

This study will be pursued on the Valued CSP problem [10] which
is well known to be more difficult than the CSP problem. Thus, good
heuristics would significantly improve the method performances.
Yet, this work should not be easy since some of the heuristics pro-
posed here are difficult to extend to VCSP. Like for the CSP problem,
we must find out criteria that would permit to compute the best value
of k for a VCSP by exploiting the problem features. We should also
define other variable ordering classes that are more dynamic than the
Class 3 and that guarantee better time complexity bounds than the
Class 4 does. They should increase the freedom in the computing of
more efficient heuristics.

Finally, for both CSP and VCSP problems, the behaviour of the
proposed heuristics should be assessed on other kinds of benchmarks
than random instances (e.g. ones of the CP’2005 solver competition).

ACKNOWLEDGEMENTS
This work is supported by a ”programme blanc” ANR grant (STAL-
DEC-OPT project).

REFERENCES
[1] R. Dechter and Y. El Fattah, ‘Topological Parameters for Time-Space

Tradeoff’, Artificial Intelligence, 125, 93–118, (2001).
[2] R. Dechter and J. Pearl, ‘Tree-Clustering for Constraint Networks’, Ar-

tificial Intelligence, 38, 353–366, (1989).
[3] G. Gottlob, M. Hutle, and F. Wotawa, ‘Combining hypertree, bicomp

and hinge decomposition’, in Proc. of ECAI, pp. 161–165, (2002).
[4] G. Gottlob, N. Leone, and F. Scarcello, ‘A Comparison of Structural

CSP Decomposition Methods’, Artificial Intelligence, 124, 343–282,
(2000).

[5] P. Jégou, S. N. Ndiaye, and C. Terrioux, ‘Computing and exploiting
tree-decompositions for solving constraint networks’, in Proc. of CP,
pp. 777–781, (2005).

[6] P. Jégou, S. N. Ndiaye, and C. Terrioux, ‘Heuristiques pour la recherche
énumérative bornée : Vers une libération de l’ordre’, Technical Report
LSIS.RR.2006.004, Laboratoire des Sciences de l’Information et des
Systèmes (LSIS), (2006). In french.

[7] P. Jégou and C. Terrioux, ‘Hybrid backtracking bounded by tree-
decomposition of constraint networks’, Artificial Intelligence, 146, 43–
75, (2003).

[8] P. Jégou and C. Terrioux, ‘Decomposition and good recording for solv-
ing Max-CSPs’, in Proc. of ECAI, pp. 196–200, (2004).

[9] N. Robertson and P.D. Seymour, ‘Graph minors II: Algorithmic aspects
of tree-width’, Algorithms, 7, 309–322, (1986).

[10] T. Schiex, H. Fargier, and G. Verfaillie, ‘Valued Constraint Satisfaction
Problems: hard and easy problems’, in Proc. of IJCAI, pp. 631–637,
(1995).

[11] B. Smith, ‘The Phase Transition and the Mushy Region in Constraint
Satisfaction Problems’, in Proc. of ECAI, pp. 100–104, (1994).

[12] R. Tarjan and M. Yannakakis, ‘Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively re-
duce acyclic hypergraphs’, SIAM Journal on Computing, 13 (3), 566–
579, (1984).

