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Abstract

This paper deals with the problem of solving efficiently struc-
tured COPs (Constraints Optimization Problems). The for-
malism based on COPs allows to represent numerous real-
life problems defined using constraints and to manage pref-
erences and soft constraints. In spite of theoretical re-
sults, (Jégou, Ndiaye, & Terrioux 2007b) has discarded
(hyper)tree-decompositions for the benefit of coverings by
acyclic hypergraphs in the CSP area. We extend here this
work to constraint optimization. We first study these cov-
erings from a theoretical viewpoint. Then we exploit them
in a framework aiming not to define a new decomposition,
but to make easier a dynamic management of the structure
during the search (unlike most of structural methods which
usually exploit the structure statically), and so the use of dy-
namic variable ordering heuristics. Thus, we provide a new
complexity result which outperforms significantly the previ-
ous one given in the literature. Finally, we assess the practical
interest of these notions.

Introduction
Preference handling, when preferences can be expressed
by constraints as with COPs or VCSPs, define hard prob-
lems from a theoretical viewpoint. So, algorithms to man-
age them must exploit all usable properties. For exam-
ple, topological properties, ie. structural properties of datas
must be exploited. In the past, the interest for the ex-
ploitation of structural properties of a problem was at-
tested in various domains in AI: for checking satisfiability
in SAT (Rish & Dechter 2000; Huang & Darwiche 2003;
Li & van Beek 2004), in CSP (Dechter & Pearl 1989),
in Bayesian or probabilistic networks (Dechter 1999; Dar-
wiche 2001), in relational databases (Beeri et al. 1983;
Gottlob, Leone, & Scarcello 2002), in constraint optimiza-
tion (Terrioux & Jégou 2003; de Givry, Schiex, & Verfaillie
2006). Complexity results based on topological properties
of the network structure have been proposed. A large part of
these works has been realized on formalisms which can take
into account preferences. Generally, they rely on the prop-
erties of a tree-decomposition (Robertson & Seymour 1986)
or a hypertree-decomposition (Gottlob, Leone, & Scarcello
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2000) of the network, which can be considered as an acyclic
hypergraph (a hypertree) covering the network.

On the one hand, if we consider tree-decomposition,
the time complexity of the best structural methods is
O(exp(w + 1)), with w the width of the used tree-
decomposition, while their space complexity can generally
be reduced to O(exp(s)) where s is the size of the largest
intersection between two neighboring clusters of the tree-
decomposition. An example of an efficient method exploit-
ing tree-decomposition is BTD (Jégou & Terrioux 2003)
which achieves a enumerative search driven by the tree-
decomposition. Such a method can be seen as driven by the
assignment of variables (or as a ”variable driven” method).

On the other hand, from a theoretical viewpoint, meth-
ods based on hypertree-decomposition are more interesting
than those based on tree-decomposition (Gottlob, Leone, &
Scarcello 2000). If we consider hypertree-decomposition,
the time complexity of the best methods is in O(exp(k)),
with k the width of the used hypertree-decomposition. We
can consider them as ”relation driven” approaches since they
consist in grouping the constraints (and so the relations) in
nodes of the hypertree and solve the problem by computing
joins of relations. Recently, Hypertree-decomposition has
been outperformed by generalized hypertree-decomposition
(Cohen, Jeavons, & Gyssens 2005; Grohe & Marx 2006).

These theoretical time complexities can really outperform
the classical one which is O(exp(n)) (k < w < n) with n
the number of variables of the considered problem. How-
ever, the practical interests of decomposition approaches
have not been proved yet, except in some recent works
around CSPs (Jégou & Terrioux 2003) or for manage prefer-
ences and soft constraints using Valued CSPs (Jégou & Ter-
rioux 2004; Marinescu & Dechter 2006; de Givry, Schiex,
& Verfaillie 2006). This kind of approaches seems to be the
most efficient from a practical viewpoint. Indeed, the second
international competition around MAX-CSP (a basic frame-
work for preferences) has been won by ”Toolbar-BTD”
which exploits simultaneously decomposition with BTD
and valued propagation techniques (http://www.cril.univ-
artois.fr/CPAI06/round2/results/results.php?idev=7) (Bou-
veret et al. ). We can note that the effective methods rely
on the ”variable driven” approach. A plausible explanation
relies on the fact that ”relation driven” methods need to com-
pute joins which may involve many variables and so require



a huge amount of memory. So, despite the theoretical re-
sults, we prefer exploit here ”variable driven” decomposi-
tions.

In this paper, we propose to make a trade-off between
good theoretical complexity bounds and the peremptory ne-
cessity to exploit efficient heuristics as often as possible.
From this viewpoint, this work can be considered as an
extension of (Marinescu & Dechter 2006; Jégou, Ndiaye,
& Terrioux 2007a; 2007b) notably to optimisation, pref-
erences and soft constraints. Like in (Jégou, Ndiaye, &
Terrioux 2007b), we prefer exploit here the more general
and useful concept of covering by acyclic hypergraph rather
than the one of tree-decomposition. Given a hypergraph
H = (X,C) related to the graphical representation of the
considered problem, we consider a covering of this hyper-
graph by an acyclic hypergraph HA = (X,E) s.t. for each
hyperedge Ci ∈ C, there is an hyperedge Ei ∈ E covering
Ci (Ci ⊂ Ei). From (Jégou, Ndiaye, & Terrioux 2007b),
given HA, we can define various classes of acyclic hyper-
graphs which cover HA. Here, we focus our study on a
class of coverings which preserve the separators. First, this
class is studied theoretically in order to determine its fea-
tures. Then, we exploit it to propose a framework for a dy-
namic management of the structure: during the search, we
can take into account not only one acyclic hypergraph cover-
ing, but a set of coverings in order to manage heuristics dy-
namically (while usually structural methods only exploit the
structure statically). Thanks to this formal framework, we
present a new algorithm (called BDHval for ”Backtracking
on Dynamic covering by acyclic Hypergraphs”) for which it
is easy to extend heuristics. For example, for dynamic vari-
able ordering, we can add dynamically a set of ∆ variables
for the choices. Finally, we provide theoretical and prac-
tical results showing that we can preserve already known
complexity results and also improve some of them and the
practical interest of this approach.

In the following, we present our work by using the VCSP
formalism (Schiex, Fargier, & Verfaillie 1995), but any COP
formalism could be used instead. A valued CSP (VCSP)
is a tuple P = (X,D,C,E,⊕,�). X is a set of n vari-
ables which must be assigned in their respective finite do-
main from D. Each constraint of C is a function on a subset
of variables which associates to each tuple a valuation from
E. ⊥ and> are respectively the minimum and maximum el-
ements ofE. ⊕ is an aggregation operator on elements ofE.
Given an instance, the problem generally consists in finding
an assignment on X whose valuation is minimum, what is
a NP-hard problem. The VCSP structure can be represented
by the hypergraph (X,C), called the constraint hypergraph.

The next section deals with coverings by acyclic hyper-
graphs. The third one describes how these coverings can be
exploited on the algorithmic level and gives some theoretical
and practical results before concluding.

Coverings by acyclic hypergraphs
The basic concept which interests us here is the acyclicity
of networks. Often, it is expressed by considering the tree-
decomposition or hypertree-decomposition, or more gener-
ally, coverings of variables and constraints by acyclic hyper-

graphs. In this paper, we refer to the covering of constraint
networks by acyclic hypergraphs. Different definitions of
acyclicity have been proposed. Here, we consider the clas-
sical definition called α− acyclicity in (Beeri et al. 1983).

Definition 1 Let H = (X,C) be a hypergraph. A covering
by an acyclic hypergraph (CAH) of the hypergraph H is an
acyclic hypergraph HA = (X,E) such that for each hyper-
edge Ci ∈ C, there exists Ej ∈ E such that Ci ⊂ Ej . The
width α of a CAH (X,E) is equal to maxEi∈E |Ei|. The
CAH-width α∗ of H is the minimal width over all the CAHs
of HA. Finally, CAH(H) is the set of the CAHs of H .

The notion of covering by acyclic hypergraph (called
hypertree embedding in (Dechter 2003)) is very close to
one of tree-decomposition. Particularly, given a tree-
decomposition we can easily compute a CAH. Moreover,
the CAH-width α∗ is equal to the tree-width plus one. How-
ever, the concept of CAH is less restrictive. Indeed, for a
given (hyper)graph, it can exist a single CAH whose width
is α, while it can exist several tree-decompositions of width
w s.t. α = w + 1. The best structural methods for solving
a COP with a CAH of width α have a time complexity in
O(exp(α)) while their space complexity can be reduced to
O(exp(s)) with s = maxEi,Ej∈E |Ei ∩ Ej | in HA.

In (Jégou, Ndiaye, & Terrioux 2007b), given a hypergraph
H = (X,C) and one of its CAHs HA = (X,E), we have
defined and studied several classes of acyclic coverings of
HA. These coverings correspond to coverings of hyperedges
(elements of E) by other hyperedges (larger but less numer-
ous), which belong to a hypergraph defined on the same set
of vertices and which is acyclic. In all the cases, these exten-
sions rely on a particular CAHHA, called CAH of reference.
(Jégou, Ndiaye, & Terrioux 2007b) aims to study different
classes of acyclic coverings, to manage dynamically, during
the search, acyclic coverings of the considered CSP. By so
doing, we hope to manage dynamic heuristics to optimize
the search while preserving complexity results.

We first introduce the notion of set of covering:
Definition 2 The set of coverings of a CAH HA = (X,E)
of a hypergraph H = (X,C) is defined by CAHHA

=
{(X,E′) ∈ CAH(H) : ∀Ei ∈ E,∃E′j ∈ E′ : Ei ⊂ E′j}

The following classes of coverings will be successive re-
strictions of this first class CAHHA

. But, let us define before
that the notions of neighboring hyperedges in a hypergraph
H = (X,C).
Definition 3 Let Cu and Cv be two hyperedges in H such
that Cu ∩ Cv 6= ∅. Cu and Cv are neighbours if
@Ci1 , Ci2 , . . . , CiR such that R > 2, Ci1 = Cu, CiR = Cv
and Cu ∩ Cv ( Cij ∩ Cij+1 , with j = 1, . . . , R− 1.
A path in H is a sequence of hyperedges (Ci1 , . . . CiR) such
that ∀j, 1 ≤ j < R,Cij and Cij+1 are neighbours. A cy-
cle in H is a path (Ci1 , Ci2 , . . . CiR) such that R > 3 and
Ci1 = CiR . H is α− acyclic iff H contains no cycle.

The first restriction imposes that the edges Ei covered
(even partially) by a same edge E′j are connected in HA,
i.e. mutually accessible by paths. This class is called set
of connected-coverings of a CAH HA = (X,E) and is de-
noted CAHHA

[C+]. It is possible to restrict this class by



restricting the nature of the set {Ei1 , Ei2 , . . . EiR}. On the
one hand, we can limit the considered set to paths (class
of path-coverings of a CAH denoted CAHHA

[P+]), and on
the other hand by taking into account the maximum length
of connection (class of family-coverings of a CAH denote
CAHHA

[F+]). We can also define a class (called unique-
coverings of a CAH and denoted CAHHA

[U+]) which im-
poses the covering of an edge Ei by a single edge of E′.
Finally, it is possible to extend the class CAHHA

in an-
other direction (class of close-coverings of a CAH denoted
CAHHA

[B+]), ensuring neither connexity, nor unicity: we
can cover edges with empty intersections but which have a
common neighbor.
Definition 4 Given a graph H and a CAH HA of H:
• CAHHA

[C+] = {(X,E′) ∈ CAHHA
: ∀E′i ∈ E′, E′i ⊂

Ei1 ∪ Ei2 ∪ . . . ∪ EiR with Eij ∈ E and ∀Eiu , Eiv , 1 ≤
u < v ≤ R, there is a path in H between Eiu and Eiv
defined on edges belonging to {Ei1 , Ei2 , . . . EiR}}.

• CAHHA
[P+] = {(X,E′) ∈ CAHHA

: ∀E′i ∈ E′, E′i ⊂
Ei1 ∪Ei2 ∪ . . .∪EiR with Eij ∈ E and Ei1 , Ei2 , . . . EiR
is a path in H}.

• CAHHA
[F+] = {(X,E′) ∈ CAHHA

: ∀E′i ∈ E′, E′i ⊂
Ei1 ∪ Ei2 ∪ . . . ∪ EiR with Eij ∈ E and ∃Eiu , 1 ≤
u ≤ R,∀Eiv , 1 ≤ v ≤ R and v 6= u, Eiu and Eiv are
neighbours }.

• CAHHA
[U+] = {(X,E′) ∈ CAHHA

: ∀Ei ∈
E,∃!E′j ∈ E′ : Ei ⊂ E′j}.

• CAHHA
[B+] = {(X,E′) ∈ CAHHA

: ∀E′i ∈ E′, E′i ⊂
Ei1 ∪ Ei2 ∪ . . . ∪ EiR with Eij ∈ E and ∃Ek ∈ E such
that ∀Eiv , 1 ≤ v ≤ R Ek 6= Eiv and Ek and Eiv are
neighbours }.
If ∀E′i ∈ E′, E′i = Ei1 ∪ Ei2 ∪ . . . ∪ EiR , these classes

will be denoted CAHHA
[X] for X = C,P, F, U or B.

The concept of separator is essential in the methods ex-
ploiting the structure, because their space complexity di-
rectly depends on their size. So we define the class S of
coverings which makes it possible to limit the separators to
an existing subset of those in the hypergraph of reference:
Definition 5 The set of separator-based coverings of a CAH
HA = (X,E) is defined by CAHHA

[S] = {(X,E′) ∈
CAHHA

: ∀E′i, E′j ∈ E′, i 6= j,∃Ek, El ∈ E, k 6= l :
E′i ∩ E′j = Ek ∩ El}.
This class presents several advantages. First, it preserves
the connexity of HA. Then, computing one of its elements
is easy in terms of complexity. For example, given H and
HA (HA can be obtained as a tree-decomposition), we can
compute H ′A ∈ CAHHA

[S] by merging neighboring hyper-
edges of HA. Moreover, according to theorem 1, this class
may have some interesting consequences on the complexity
of the algorithms which will exploit it. More precisely, it
allows to make a time/space trade-off since, given a hyper-
graph H ′A of CAHHA

[S], it leads to increase the width of
H ′A w.r.t. HA while the maximal size of separators in H ′A is
bounded by one in HA.
Theorem 1 ∀H ′A ∈ CAHHA

[S], ∃∆ ≥ 0 such that α′ ≤
α+ ∆ and s′ ≤ s.

Other classes are defined in (Jégou, Ndiaye, & Terrioux
2007b), but, from a theoretical and practical viewpoint, the
class S seems to be the most promising and useful one.

In the sequel, we exploit these concepts at the algorith-
mic level. Each CAH is thus now equipped of a privileged
hyperedge (the root) from which the search begins. So, the
connections between hyperedges will be oriented.

Algorithmic Exploiting of the CAHs
In this section, we introduce the method BDHval which is
an extension of BDH (Jégou, Ndiaye, & Terrioux 2007a) to
the VCSP formalism and a generalization of BTDval based
on CAH. BDHval relies on the Branch and Bound technique
and a dynamic exploitation of the CAH. It makes it possi-
ble to use more dynamic variable ordering heuristics which
are necessary to ensure an effective practical solving. Like
in BDH, we will only consider hypergraphs in CAHHA

[S],
with HA the reference hypergraph of H the constraint hy-
pergraph of the given problem. This class allow to guarantee
good space and time complexity bounds.

BTDval is based on a tree-decomposition that is a join-
tree on the acyclic hypergraph HA. But, this jointree is not
unique: it may exist another one more suitable w.r.t. the
solving. Instead of choosing arbitrary one jointree of HA,
BDHval computes in a dynamic way a suitable one during
the solving. Moreover, it is also possible not restricting our-
self to one jointree but computing a suitable one at each
stage of the solving.

At each stage, BDHval uses a jointree Tc of HA, com-
puted incrementally. At the beginning, the current subtree
Tc0 of Tc is empty. BDHval chooses a root hyperedge E1

where the search begins and computes the neighbors of E1

in Tc. Then it adds E1 and its neighbors to Tc0 and obtains
the next subtree Tc1 of Tc. After this, BDHval chooses in-
crementally among the neighboring hyperedges those which
will be merged withE1. LetEi be the first of these. BDHval
computes first the neighbors of Ei, adds them to Tc1 and
merges Ei and E1. The sons of this new hyperedge is the
union of the sons of E1 and ones of Ei. The same operation
is repeated on the new hyperedge. Let E′1 be the hyperedge
obtained and Tcm1 the resulting subtree. BDHval assigns all
the variables in E′1 and recursively solves the next subprob-
lem among those rooted on its sons in Tcm1 .
Father(Ei) denotes the father node of Ei and Sons(Ei)

its son set. The descent of Ei (denoted Desc(Ei)) is
the set of variables in the hyperedges contained in the
subtree rooted on Ei. The subproblem rooted on Ei is
the subproblem induced by the variables in Desc(Ei).
BDH has 7 inputs: A the current assignment, E′i the
current hyperedge, VE′i the set of unassigned variables
in E′i, ubE′i the current upper bound for the subproblem
PA,Father(E′i)/E′i induced by Desc(E′i) and the assignment
A[E′i ∩ Father(E′i)], lbE′i the lower bound of the current
assignment in Desc(E′i), H ′A the current hypergraph and
Tcmb

the current subtree. BDHval solves recursively the
subproblem PA,Father(E′i)/E′i and returns its optimal valu-
ation. At the first call, the assignment A is empty, the sub-
problem rooted on E1 corresponds to the whole problem.



Algorithm 1: BDHval (A, E′i, VE′i
, ubE′

i
, lbE′

i
, HA, Tcmb

)

if VE′i
= ∅ then1

F ← Sons(E′i); lb← lbE′
i

2
while F 6= ∅ and lb ≺ ubE′

i
do3

Ej ← Choose-hyperedge(F ); F ← F\{Ej}4
E′

j′ ← Compute(Tcmb
, HA, Ej)5

if (A[E′
j′ ∩ E

′
i], o) is a good then lb← lb⊕ o6

else7
o←BDHval (A, E′

j′ , E
′
j′\(E

′
j′ ∩ E

′
i),>,⊥, HA,8

Tcmb+1 )

lb← lb⊕ o; Record the good (A[E′
j′ ∩ E

′
i], o)9

return lb10
else11

x← Choose-var(VE′
i
); dx ← Dx12

while dx 6= ∅ and lbE′
i
≺ ubE′

i
do13

v ← Choose-val(dx); dx ← dx\{v}14
L← {c ∈ EP,E′

i
|Xc = {x, y}, with y /∈ VE′

i
}; lbv ← ⊥15

while L 6= ∅ and lbE′
i
⊕ lbv ≺ ubE′

i
do16

Choose c ∈ L; L← L\{c}17
lbv ← lbv ⊕ c(A ∪ {x← v})18

if lbE′
i
⊕ lbv ≺ ubE′

i
then ubE′

i
← min(ubE′

i
,BDHval19

(A∪{x← v}, E′i, VE′
i
\{x}, ubE′

i
, lbE′

i
⊕ lbv, HA, Tcmb

)

return ubE′
i

20

While VE′i is not empty and the lower bound is less than
the upper bound, BDHval chooses a variable x in VE′i (line
12) and a value in its domain (line 14) (if not empty) and
updates the lower bound. If the lower bound is greater or
equal to the upper bound, BDHval chooses another value or
performs a backtrack. Otherwise, BDHval is called in the
rest of the hyperedge (line 19). When all the variables in
E′i are assigned, the algorithm chooses a son Ej of E′i (line
4) (if exists). The function Compute extends the construc-
tion of Tcmb by computing a new hyperedge E′j′ covering
Ej . If A[E′i ∩ E′j′ ] is a good (line 6), the optimal valuation
on Desc(E′j′) is added directly to the lower bound and the
search continues on the rest of the problem. If A[E′i ∩ E′j′ ]
is not a good, then the solving continues on Desc(E′j′). As
soon as, the optimal valuation on Desc(E′j′) is computed,
we record it with the assignment A[E′i ∩E′j′ ] as a good and
return it as the result (line 9).

Theorem 2 BDHval is sound, complete and terminates.

Like BDH, BDHval uses a subset of hypergraphs in
CAHHA

[S] for which there exists ∆ ≥ 0 such that for
all H ′A in this subset, α′ ≤ α + ∆. The value of ∆ can
be parametrized to only consider covering hypergraphs in
CAHHA

[S] whose width is bounded by α + ∆. Anyway,
the time complexity of BDHval is given by the following
theorem while the space complexity remains in (O(exp(s)))
since the search relies on the same set of separators as HA.

Theorem 3 The time complexity of BDHval is
O(N(Tc).(α + ∆).exp(α + ∆ + 1)), with N(Tc) the
number of jointrees used by BDHval.

Proof: Let P = (X,D,C, S) be a VCSP, HA the CAH
of reference of H = (X,C).

Consider a tree-decomposition (E, Tc) of H the tree of
which Tc has been built by BDHval.

As for the proof for time complexity of BDH ((Jégou,
Ndiaye, & Terrioux 2007b)), it’s possible to cover HA (Tc)
by sets Va of γ+ ∆ + 1 variables verifying that each assign-
ment of their variables will not be generated by BDH at most
numberSep(Va) times, with numberSep(Va) the number of
separators of HA contained in Va.

The definition of sets Va is exactly the same than given in
the proof of BDH.

Let Va be a set of γ + ∆ + 1 variables such that
∃(Eu1 , . . . , Eur

) a path taken in Tc, Va ⊂ Eu1 ∪ . . . ∪ Eur

(r ≥ 2 since |Va| = γ + ∆ + 1 and γ is the maximal size of
hyperedges ofHA) andEu2∪. . .∪Eur−1  Va (respectively
Eu1 ∩ Eu2 ⊂ Va) if r ≥ 3 (respectively r = 2).
Va contains r − 1 separators which are the intersections

between hyperedges that cover it. Indeed, (Eu1 , . . . , Eur )
being a path ant none hyperedge being included in another,
the separators are located only between two consecutive el-
ements in the path.

During search, it’s possible to cover Va in different ways
with the trees Tcf associated to Tc. Nevertheless, at least one
separator of Va will be an intersection between two clusters
in each Tcf . Let Tcf be a tree associated to Tc such that s1

be an intersection between two clusters. The search based
on this tree will generate an assignment on Va and record on
s1 a valued good. If s1 is also an intersection between two
clusters in a tree T ′cf associated to Tc, used during a new
attempt for an assignment of variables of Va with the same
values, the valued good will allow to stop the assignment.
Conversely, if s1 isn’t an intersection, the location of the
good can drive to produce again totally the assignment but
another valued good will be recorded on another separator
s2 of V . Henceforth, if s1 or s2 is an intersection between
clusters of a tree associated to Tc used during the search, the
assignment will not be reproduced. Thus, an assignment on
Va can be reproduced as many times as it’s possible to de-
compose it by its separators : thus the number of separators.

The maximum number of separators (r − 1) of a Va is
bounded by γ + ∆ because the number of elements of the
path (Eu1 , . . . , Eur

) is bounded by γ + ∆ + 1.
We have proved that each assignment on V is generated

at most γ + ∆ times.
On each Va covering Tc an assignment is produced at

most γ + ∆ times. The number of possible assignments on
Va is bounded by dγ+∆+1. So, the number of possible as-
signments on the set of variables of the problem is bounded
by numberTc .numberVa .(γ+∆).dγ+∆+1, with numberVa

the number of sets Va covering Tc. The number of Va being
bounded by the number of hyperedges of HA, the complex-
ity of BDH is then O(numberTc

.(γ+ ∆).exp(γ+ ∆ + 1)).
�

As for BDH, this complexity is bounded by O(exp(h))
(the complexity of the method without good learning), with
h the maximum number of variables in a path of a tree Tc.

Like BTDval, BDHval can be improved applying valued
local consistency techniques. We can defined LC-BDHval,



an extension of BDHval with LC a valued local consistency
technique. Even though, we obtain very good results in
our experiments, using FC-BDHval, we should do the same
with LC-BDH+

val. This method is similar to LC-BTD+
val (de

Givry, Schiex, & Verfaillie 2006) and the motivations are
identical, i.e. to improve the pruning by using a better upper
bound than> at the beginning of the search. Thus, we use in
this method, as an upper bound, the difference between the
valuation of the best solution so far and the local valuation of
the current assignment as in (de Givry, Schiex, & Verfaillie
2006). In this case, recorded informations are not neces-
sarily valued goods. It is possible that this upper bound be
less than the optimal valuation of the sub-problem. So, LC-
BTD+

val has not an optimal valuation, but a lower bound of
this one. Nevertheless, this information is recorded, modify-
ing the definition of structural valued good. A valued good
is then defined by an assignment A[Ei ∩ Ej ] of an intersec-
tion between a cluster Ei and one of its sons Ej , and by a
valuation which is a lower bound of the optimal valuation of
the problem rooted in Ej or this optimal valuation. Finally,
we have:

Theorem 4 The Time complexity of LC-BDH-val+ is
O(α∗.(γ+∆).numberTc

.exp(γ+∆+1)), with numberTc

the number of trees Tc used by LC-BDH-val+ and α∗ the
optimal valuation of the VCSP.

As for BDH, many variable orders can be used in BDHval.
We give below a hierarchy of classes of these orders more
and more dynamic.
Class 1: The jointree is computed statically, no covering hy-
pergraph is used and the hyperedge order is static as well as
the variable order in each hyperedge.
Class 2: Like the Class 1 but the variable order is dynamic.
Class 3: Like the Class 1 excepted the hyperedge and vari-
able orders which are dynamic.
Class 4: The jointree is always computed statically, one cov-
ering hypergraph is used and computed statically, the hyper-
edge and variable orders remain dynamic.
Class 5: Like Class 4 excepted the covering hypergraphs
which are computed dynamically.
Class 6: The jointrees and the covering hypergraphs are
computed dynamically and the hyperedge and variable or-
ders are dynamic.

We run experiments with BDHval on benchmarks (struc-
tured random VCSPs) presented in (Jégou, Ndiaye, & Ter-
rioux 2006). The reference hypergraph is computed thanks
to the triangulation of the constraint graph H performed in
(Jégou, Ndiaye, & Terrioux 2007a). We present only the best
results obtained by the heuristics given in this paper, using
the same empirical protocol and PC. The table shows the
runtime of BDHval with the heuristic card+minsep (class
1) andminexp (classes 2,3 and 4), with a hypergraph whose
maximum size of hyperedge intersections is bounded by 5
for the Class 4. The Class 4 obtains the best results, it suc-
ceeds in solving all the instances while the other classes fails
in solving a problem in the classes (75, 10, 15, 30, 5, 8, 10)
and (100, 5, 15, 13, 5, 10, 10) because of a too large mem-
ory space required. Merging hyperedges with a too large
intersection for the class 4 reduces the space complexity and

VCSP (n, d, w, t, s, ns, p) (a) (b) (c) (d)
(75,10,15,30,5,8,10) Mem Mem Mem 8.69
(75,10,15,30,5,8,20) 3.27 6.13 6.24 1.56
(75,10,15,33,3,8,10) 8.30 7.90 7.87 5.26
(75,10,15,34,3,8,20) 2.75 3.42 3.52 1.48
(75,10,10,40,3,10,10) 11.81 3.02 4.73 0.58
(75,10,10,42,3,10,20) 1.02 0.76 0.83 0.51

(75,15,10,102,3,10,10) 11.76 12.10 12.09 5.41
(100,5,15,13,5,10,10) Mem Mem Mem 9.60

Table 1: Runtime (in s) on random partial structured VCSPs:
(a) Class 1, (b) Class 2, (c) Class 3 and (d) Class 4.

increases the dynamicity of the variable ordering heuristic.
This leads to significant improvements of the practical re-
sults of BDHval as well as those of the first version of BTD
which is equivalent to BDHval with an order of the Class 1.

Conclusion
In this paper, we have proposed an extension to VCSP (pref-
erences and soft constraints) of the method BDH (Jégou,
Ndiaye, & Terrioux 2007a) defined in the CSP framework
and based on coverings of a problem by acyclic hypergraphs.
This approach gives more freedom to the variable order-
ing heuristic. We obtain a new theoretical time complexity
bound in O(N(Tc).(α + ∆).exp(α + ∆ + 1)). The dy-
namic exploitation of the problem structure induced by this
method leads to very significant improvements. We must
continue the experiments on the classes 5 and 6 for which
more important enhancements are expected.
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