

Jean Arnaud, Sara Bouchenak

Performance, Availability and Cost of Self-Adaptive Internet Services

Chapter of Performance and Dependability in Service Computing:
Concepts, Techniques and Research Directions

IGI Global, 2011

Performance, Availability and Cost
of Self-Adaptive Internet Services

Jean Arnaud
INRIA, Grenoble, France
Jean.Arnaud@inria.fr

Sara Bouchenak
University of Grenoble – INRIA, Grenoble, France
Sara.Bouchenak@inria.fr

ABSTRACT
Although distributed services provide a means for supporting scalable Internet applications, their ad-hoc
provisioning and configuration pose a difficult tradeoff between service performance and availability.
This is made harder as Internet service workloads tend to be heterogeneous, and vary over time in amount
of concurrent clients and in mixture of client interactions. This chapter presents an approach for building
self-adaptive Internet services through utility-aware capacity planning and provisioning. First, an analytic
model is presented to predict Internet service performance, availability and cost. Second, a utility function
is defined and a utility-aware capacity planning method is proposed to calculate the optimal service
configuration which guarantees SLA performance and availability objectives while minimizing
functioning costs. Third, an adaptive control method is proposed to automatically apply the optimal
configuration to the Internet service. Finally, the proposed model, capacity planning and control methods
are implemented and applied to an online bookstore. The experiments show that the service successfully
self-adapts to both workload mix and workload amount variations, and present significant benefits in
terms of performance and availability, with a saving of resources underlying the Internet service.

INTRODUCTION
A challenging issue in management of distributed Internet services tems from the conflicting goals of, on
the one hand, high performance and availability, and on the other hand, low cost and resource
consumption. In the limit, high performance and availability can be achieved by assigning all available
machines in a data center to an Internet service. Symmetrically, it is possible to build a very-low cost
Internet service by allocating very few machines, which induces bad performance and data center
downtime. Between these two extremes, there exists a configuration such that distributed Internet services
achieve a desirable level of service performance and availability while cost is minimized. This chapter
precisely addresses the problem of determining this optimal configuration, and automatically applying it
to build a self-adaptive Internet service.

The chapter describes a capacity planning method for distributed Internet services that takes into account
performance and availability constraints of services. We believe that both criteria must be taken into
account collectively. Otherwise, if capacity planning is solely performance-oriented, for instance, this
may lead to situations where 99% of service clients are rejected and only 1% of clients are serviced with a
guaranteed performance. To our knowledge, this is the first proposal for capacity planning and control of
distributed Internet services that combines performance and availability objectives. To do so:

 4

• A utility function is defined to quantify the performance, availability and cost of distributed

Internet services.
• A utility-aware capacity planning method is proposed; given SLA performance and availability

constraints, it calculates a configuration of the Internet service that guarantees SLA constraints
while minimizing the cost of the service (i.e. the number of host machines).

• The capacity planning method is based on a queuing theory model of distributed Internet services.
The model accurately predicts service performance, availability and cost.

• An adaptive control of online Internet services is proposed to automatically detect both workload
mix and workload amount variation, and to reconfigure the service with its optimal configuration.

Finally, the proposed utility-aware methods for modeling, capacity planning and control were
implemented to build self-adaptive distributed Internet services. The chapter presents experiments
conducted on an industry standard Internet service, the TPC-W online bookstore. The results of the
experiments show that the Internet service successfully self-adapts to workload variations, and present
significant benefits in terms of service performance and availability, with a saving of resources of up to
67% on the underlying Internet service.

The remainder of the chapter first presents the background on Internet services. Then, it defines the
motivations and objectives of this work. It then presents the utility function of Internet services, the
proposed analytic model, the proposed capacity planning method, and the adaptive control of Internet
services. An evaluation is then presented; and a related work is discussed. Finally, conclusions of this
work are drawn.

BACKGROUND
Underlying System
Internet services usually follow the classical client-server architecture where servers provide clients with
some online service (e.g. online bookstore, e-banking service, etc.). A client remotely connects to the
server, sends it a request, the server processes the request and builds a response that is returned to the
client before the connection is closed. We consider synchronous communication systems, that is, when
the client sends its request to the server, it blocks until it receives a response. Furthermore, for scalability
purposes Internet services are built as multi-tier systems. A multi-tier system consists of a series of M
server tiers T1, T2,...,TM. Client requests flow from the front-end tier T1 to the middle-tier and so on until
reaching the back-end tier TM.

Figure 1: Replicated multi-tier services

 5

Each tier is tasked with a specific role. For instance, the front-end web tier is responsible of serving web
documents, and the back-end database tier is responsible of storing non-ephemeral data. Moreover, to
face high loads and provide higher service scalability, a commonly used approach is the replication of
servers in a set of machines. Here, a tier consists of a set of replicated services, and client requests are
dynamically balanced between replicated services. Figure 1 presents an example of a replicated multi-tier
Internet service with two replicas on the front-end presentation tier T1, three replicas on the business tier
T2, and two replicas on the back-end database tier T3.

Service Performance, Availability and Cost
SLA (Service Level Agreement) is a contract negotiated between clients and their service provider. It
specifies service level objectives (SLOs) that the application must guarantee in the form of constraints on
quality-of-service metrics, such as performance and availability. Client request latency and client request
abandon rate are key metrics of interest for respectively quantifying the performance and availability of
Internet services.

The latency of a client request is the necessary time for an Internet service to process that request. The
average client request latency (or latency, for short) of an Internet service is denoted as ℓ. A low latency is
a desirable behavior which reflects a reactive service.

The abandon rate of client requests is the ratio of requests that are rejected by an Internet service
compared to the total number of requests issued by clients to that service. It is denoted as α. A low client
request abandon rate (or abandon rate, for short) is a desirable behavior which reflects the level of
availability of an Internet service.

Besides performance and availability, the cost of an Internet service refers to the economical and
energetic costs of the service. Here, the cost ω is defined as the total number of servers that host an
Internet service.

Service Configuration
The configuration κ of an Internet service is characterized in the following by a triplet κ(M, AC, LC),
where M is the fixed number of tiers of the multi-tier service, AC and LC are respectively the
architectural configuration and local configuration of the Internet service that are detailed in the
following.

The architectural configuration describes the distributed setting of a multi-tier Internet service in terms of
the number of replicas at each tier. It is conceptualized as an array AC < AC1, AC2, ..., ACM >, where ACi
is the number of replica servers at tier Ti of the multi-tier service.

The local configuration describes the local setting applied to servers of the multi-tier service. It is
conceptualized as an array LC < LC1, LC2, ..., LCM >. Here, LCi represents servers MPL (Multi-
Programming Level) at tier Ti of the multi-tier service. The MPL is a configuration parameter of a server
that fixes a limit for the maximum number of clients allowed to concurrently access the
server (Ferguson, 1998). Above this limit, incoming client requests are rejected. Thus, a client request
arriving at a server either terminates successfully with a response to the client, or is rejected because of
the server’s MPL limit.

Service Workload
Service workload is characterized, on the one hand, by workload amount, and on the other hand, by
workload mix. Workload amount is the number of clients that try to concurrently access a server; it is
denoted as N. Workload mix, denoted as X, is the nature of requests made by clients and the way they

 6

interleave, e.g. read-only requests mix vs. read-write requests mix. There is no well established way to
characterize the workload mix X of an Internet service. In the following, a workload mix is characterized
with the n-uplet X(Z, V, S, D) where:

• Z is the average client think time, i.e. the time between the reception of a response and the sending
of the next request by a client.

• V<V1,..,VM> are the visit ratios at respectively tiers T1..TM. More precisely, Vi corresponds to the
ratio between the number of requests entering the multi-tier service (i.e. at the front-end tier T1)
and the number of subsequent requests processed by tier Ti. In other words, Vi represents the
average number of subsequent requests on tier Ti when issuing a client request to the multi-tier
Internet service. Thus, Vi reflects the impact of client requests on tier Ti. Note the particular case
of V1 = 1.

• S<S1,..,SM> are the service times at tiers T1..TM. Thus, Si corresponds to the average
incompressible time for processing a request on tier Ti when the multi-tier Internet service is not
loaded.

• D<D1,..,DM> are the inter-tier communication delays. Di is the average communication delay
between tier Ti-1, if any, and tier Ti, with i > 1. Note the particular case of D1 = 0.

Furthermore, service workload may vary over time, which corresponds to different client behaviors at
different times. For instance, an e-mail service usually faces a higher workload amount in the morning
than in the rest of the day. Workload variations have a direct impact on the quality-of-service as discussed
later.

PROBLEM ILLUSTRATION
Both the configuration of an Internet service and the workload of the service have a direct impact on the
quality-of-service. This section illustrates this impact through examples.

Impact of configuration. To illustrate the impact of service configuration, the TPC-W multi-tier online
bookstore service is considered in the following. It consists of a front-end web tier and a back-end
database tier (see the Evaluation Section for more details about TPC-W). Two distinct static ad-hoc
configurations of the Internet service are considered here: κ1(M = 2, AC < 1, 1 >, LC < 500, 500 >) and
κ2(M = 2, AC < 3, 6 >, LC < 200, 100 >). With κ1, the capacity of the system is increased through an
increased setting of the local configuration of servers. While with κ2, the local configuration is set to the
default one (i.e. default MPLs in Tomcat front-end server and MySQL back-end server), and the capacity
of the system is extended by adding servers to increase the architectural configuration of the system. With
both κ1 and κ2 configurations, the TPC-W online service is run with 1000 concurrent clients accessing the
service using a read-only workload mix.

Figure 2 presents the client request latency and Figure 3 gives the abandon rate obtained with each
configuration of the Internet service. κ1 provides bad service performance and availability with a latency
of 10s and an abandon rate of 71%. Obviously, this is due to too few resources that are assigned to the
service. κ2 provides better performance but still induces a bad service availability (40% of abandon rate)
because of the inadequate default local configuration of the service.

Thus, both local and architectural configurations have an impact of the performance, availability and cost
of Internet services. These configurations should therefore be carefully chosen in order to meet quality-of-
service objectives and minimize the cost.

 7

Figure 2: Impact of service configuration on performance

Figure 3: Impact of service configuration on availability

Impact of workload. Figure 4 and Figure 5 respectively present the impact of client workload variation on
the performance, availability and cost of the TPC-W two-tier Internet service. Here, several workload
variation scenarios are considered. The workload successively varies from a first stage with workload mix
X1 to a second stage with workload mix X2 (see the Evaluation Section for more details about TPC-W and
workload mixes). During each stage, the workload amount N (i.e. #clients) varies between 250 and
1250 clients. An ad-hoc medium configuration of the multi-tier Internet service is considered as follows:
κ(M = 2,AC < 2, 3 >, LC < 500, 500 >). The service latency and abandon rate of this configuration are
presented in Figure 4 and Figure 5. Obviously, different workloads have different behaviors in terms of
service performance and availability. For instance, with 1250 clients, latency is 4.5 s with workload mix
X1, and 10.7 s with workload mix X2. This induces an abandon rate of 29% with mix X1 vs. 39% with mix
X2. And within the same workload mix, service latency and abandon rate vary when the number of clients
varies.

 8

Figure 4: Impact of workload on performance

Figure 5: Impact of workload on availability

Nonlinear behavior. Figure 6 illustrates the behavior of the two-tier TPCW Internet service when the
service workload amount varies for workload mix X1 (see the Evaluation Section for more details about
TPC-W and workload mixes). Here, the workload amount (i.e. number of concurrent clients) increases
linearly over time. However, the service latency does not vary linearly. This clearly shows that linearity
assumptions that are made on multi-tier Internet services and linear control do not hold for these systems.

Mix X2 Mix X1

Mix X2 Mix X1

 9

Figure 6: Nonlinear behavior of Internet services

ADAPTIVE CONTROL OF INTERNET SERVICES
Both service workload and service configuration have an impact on the performance, availability and cost
of services. The workload of Internet services is an exogenous input, which variation can not be
controlled. Thus, to handle workload variations and provide guaranties on performance and availability,
Internet services must be able to dynamically adapt their underlying configuration. Several objectives are
targeted here:

• Guarantee SLA constraints in terms of service performance and availability, while minimizing the
cost of the Internet service.

• Handle nonlinear behavior of Internet services taking into account both workload amount and in
workload mix variations over time.

• Provide self-adaptive control of Internet services that provides online automatic reconfigurations
of Internet services.

We propose MoKa, a nonlinear utility-aware control for self-adaptive Internet services. First, MoKa is
based on a utility function that characterizes the optimality of the configuration of an Internet service in
terms of SLA requirements for performance and availability, in conjunction with service cost. Second, a
nonlinear model of Internet services is described to predict the performance, availability and cost of a
service. Third, a capacity planning method is proposed to calculate the optimal configuration of the
Internet service. Finally, an adaptive nonlinear control of Internet services is provided to automatically
apply optimal configuration to online Internet services. MoKa is built as a feedback control of multi-tier
Internet services as described in Figure 7, with three main elements: (i) online monitoring of the Internet
service, (ii) adaptive control of the Internet service, and (iii) online reconfiguration of the Internet service.

 10

Figure 7: Adaptive control of Internet services

Online monitoring aims at observing the Internet service and producing the necessary data in order to, on
the one hand, automatically calibrate MoKa’s model, and on the other hand, trigger MoKa’s capacity
planning and control. MoKa’s model calibration is performed online and automatically. This allows
rendering the dynamics of service workload mix and workload amount, without requiring human
intervention and manual tuning of model parameters, which makes the model easier to use. Automatic
calibration is described in the Section titled “Automatic and online MoKa calibration”. Therefore, the
controller calls the utility-aware capacity planning method to calculate the optimal configuration κ* for
the current workload amount and workload mix. That optimal configuration guarantees the SLA
performance and availability objectives while minimizing the cost of the Internet service. Finally, the new
calculated configuration κ* is applied to the Internet service. In the following, we successively present
MoKa utility function, modeling, capacity planning and automatic calibration.

UTILITY FUNCTION OF INTERNET SERVICES
We consider an SLA of an Internet service that specifies service performance and availability constraints
in the form of maximum latency ℓmax and maximum abandon rate αmax not to exceed. Performability
Preference (i.e. performance and availability preference) of an Internet service is defined as follows:

PP (ℓ, α) = (ℓ ≤ ℓmax) ⋅ (α ≤ αmax) (1)

where ℓ and α are respectively the actual latency and abandon rate of the Internet service. Note that
∀ℓ, ∀α, PP(ℓ,α) ∈ {0, 1}, depending on whether Eq. 1 holds or not.

Based on the performability preference and cost of an Internet service, the utility function of the service
combines both criteria as follows:

M ⋅ PP (ℓ,α) θ (ℓ, α, ω) = ω (2)

where ω is the actual cost (i.e. #servers) of the service, and M is the number of tiers of the multi-tier
Internet service. M is used in Eq. 2 for normalization purposes. Here, ∀ℓ, ∀α, ∀ω,θ(ℓ, α, ω) ∈ [0, 1],
since ω ≥ M (at least one server per tier) and PP(ℓ,α) ∈ {0, 1}.

 11

A high value of the utility function reflects the fact that, on the one hand, the Internet service guarantees
service level objectives for performance and availability and, on the other hand, the cost underlying the
service is low. In other words, an optimal configuration of an Internet service is the one that maximizes its
utility function.

MODELING OF INTERNET SERVICES
The proposed analytic model predicts the latency, abandon rate and cost of an Internet service, for a given
configuration κ of the Internet service, a given workload amount N and a given workload mix X. The
input and output variables of the model are depicted in Figure 8.

Figure 8: Model input and output variables

The model follows a queueing network approach, where a multi-tier system is modeled as an M/M/c/K
queue. Moreover, Internet services are modeled as closed loops to reflect the synchronous communication
model that underlies these services, that is a client waits for a request response before issuing another
request. Figure 9 gives an example of a three-tier system with a configuration
κ(M=3, AC<1,1,2>, LC<20,15,3>), a workload amount of 30 clients and a workload mix characterized,
among others, by tier visit ratios V<1, 0.5, 2>.

Figure 9: Replicated multi-tier Internet services as a queueing network

The example illustrates how the requests of the 30 incoming clients fly through the different tiers and
server queues. For instance, among the Nt1 = 30 clients that try to access tier T1, Nr1 = 10 are rejected
because of local configuration (i.e. MPL limit) at that tier and Na1 = 20 clients are actually admitted in the
server at T1. Then, the 20 client requests processed by T1 generate Nt2 = 10 subsequent requests that try to
access tier T2 (with a visit ratio V2 = 0.5). All the 10 requests are admitted in the server of T2 because they

 12

are below T2’s MPL local configuration (i.e. Na2 = 10). Finally, the 10 requests on T2 would induce in
total 40 requests to T3 (with a visit ratio V3 = 2). However, due to synchronous communication between
the tiers of a multi-tier service, a request on T2 induces at a given time at most one request to T3, and in
average 4 successive requests to T3. Thus, Nt3 = 10 subsequent requests tentatively access T3. Among
these 10 requests, Nr3 = 4 requests are rejected because of T3’s MPL local configuration and Na3 = 6
requests are admitted and balanced among the two server replicas of that tier. In summary, among the 30
client requests attempting to access the multi-tier service, a total of 14 are rejected and 16 are serviced,
resulting in an abandon rate of 47%.

More generally, Algorithm 1 describes how the model predicts the latency, abandon rate and cost of a
replicated multi-tier Internet service. This algorithm builds upon the MVA (Mean Value Analysis)
algorithm (Reiser, 1980). It extends it to take into account the following main features: server replication
(i.e. architectural configuration), server’s MPL (i.e. local configuration), different workload mixes, and to
include predictions of abandon rate and service cost. The algorithm consists of the following four parts.

The first part of the algorithm (lines 1−13) calculates the admitted requests and rejected requests at each
tier of the multi-tier service following the method introduced in the example of Figure 9. It considers, in
particular, the following model inputs: the service configuration κ(M, AC, LC), the workload amount N
and the workload mix X with its service visit ratios. Lines 1−6 of the algorithm calculate Nti, the number
of requests that try to access tier Ti considering the visit ratios of the tiers. Line 6 guarantees that if Nai-1
requests are admitted to tier Ti-1, there would not be more than Nai-1 requests that try to access Ti, because
of synchronous communication between the tiers. Lines 7−9 apply Ti’s MPL local configuration to
calculate Nai, the number of requests admitted to Ti, and Nri, the number of requests rejected by Ti.

Furthermore, because a request admitted to Ti may be rejected by one of the following tiers Ti+1..TM, lines
10−11 calculate Nai′, the number of requests admitted at Ti and not rejected by the following tiers.
Finally, lines 12−13 produce the total number of rejected requests, Nr, and the total number of admitted
requests, Na.

The second part of the algorithm (lines 14−32) is dedicated to the prediction of service request latency.
First, lines 15−17 initialize queues’ length and service demand at each tier (i.e. the amount of work
necessary to process a request on a tier Ti, excluding the inter-tier communication delays Di). Lines 18−31
consider the different tiers from the back-end to the front-end in order to estimate the cumulative request
latency at each tier Ti: ℓai is the latency of a request admitted at tier Ti and admitted at the following tiers
Ti+1..TM, and ℓri is the latency of a request admitted at Ti and rejected at one of the following tiers. The
latter case of requests will not be part of the final admitted requests but it is considered in the algorithm
because it has an impact on queue length and, thus, on response times and latency calculation of admitted
requests. Lines 19−22 introduce requests one by one at tier Ti, calculate service demand for each server
replica at Ti, and estimate request response time for that tier. In line 22, the Max function is used to ensure
that service demand is not lower than the incompressible necessary time Wi, as induced by service times
characterizing the service workload mix. Then, lines 23−28 cumulate response times to calculate ℓai, the
latency of requests admitted at tiers Ti..TM, and ℓri, the latency of requests admitted at Ti but then rejected
at one of the following tiers. These values are then used in lines 29−31 to calculate the queue length using
Little’s law. Finally, the overall latency ℓ of a client request is provided in line 32 as the latency of a
request admitted to T1 and never rejected in the following tiers.

 13

Algorithm 1: Modeling replicated multi-tier Internet services

 14

The third part of the algorithm (lines 33−37) is dedicated to the estimation of service abandon rate. It first
calculates τa, the throughput of requests admitted at (and never rejected from) tiers T1..TM, τr, the
throughput of requests admitted at T1 but then rejected by one of the following tiers, and τr´, the
throughput of requests rejected at T1 due to MPL limit. These different values are then used to produce
the total service request abandon rate α. Finally, the fourth and last part of the algorithm (lines 38−39)
calculates the total cost ω of the replicated multi-tier service in terms of servers that underlie the system.

Thus, the algorithmic complexity of the proposed model is O(M ⋅ N), where M is the number of tiers of
the multi-tier Internet service and N is the workload amount of the service.

CAPACITY PLANNING FOR INTERNET SERVICES
The objective of the capacity planning is to calculate an optimal configuration of a multi-tier Internet
service, for a given workload amount and workload mix, to fulfill the SLA in terms of latency and
abandon rate constraints, and to minimize the cost of the service. Thus, an optimal configuration κ* is a
configuration that has the highest value of the utility function θ*. Figure 10 illustrates capacity planning.

Figure 10: Capacity planning of multi-tier Internet services

The main algorithm of capacity planning is given in Algorithm 2. The algorithm takes as inputs a
workload amount and a workload mix of an Internet service. It additionally has as input parameters the
number of tiers of the Internet service, the SLA latency and abandon rate constraints to meet, and the
underlying service analytic mode (see previous section). The algorithm produces an optimal configuration
of the Internet service that guarantees the SLA and minimizes the cost of the service. The algorithm
consists of two main parts: a first part that calculates a preliminary configuration that guarantees the SLA
constraints, and a second part that minimizes service cost.

The first part of the algorithm (lines 1−12) first increases the number of servers assigned to all tiers of the
Internet service (cf. line 6). It then adjusts the local configuration of servers to distribute client requests
among server replicas at each tier (cf. line 8). However, if a request on a tier induces in total more than
one request on the following tier (i.e. Vi-1 ≤ Vi), and due to synchronous communication between the
tiers, the number of concurrent requests on the following tier does not exceed the number of concurrent
requests on the current tier (cf. line 10). Afterward, the resulting service configuration along with the
workload amount and workload mix are used to predict the latency, abandon rate and cost of the service.
This process is repeated until a configuration that meets the SLA is found.

 15

Algorithm 2: Capacity planning of replicated multi-tier Internet services

 16

The second part of the algorithm (lines 13−45) aims to reduce the number of servers assigned to the
service in order to minimize its overall cost, that is to calculate the minimum values of ACi. Basically, the
minimum number of servers on tier Ti that is necessary to guarantee the SLA is between 1 and the value
of ACi calculated in the first part of the algorithm. To efficiently estimate the minimum value of ACi, a
dichotomic search on that interval is performed (cf. lines 15−17). The local configuration LCi is adjusted
accordingly to distribute requests among server replicas at tier Ti (lines 18−21). Then, the latency,
abandon rate and cost of the resulting service configuration are predicted using the analytic model. If the
configuration meets SLA constraints, the number of servers at that tier is reduced by pursuing the search
of a lower value of ACi in the lowest dichotomy [minAC..ACi] (lines 23−24). Otherwise, the new
configuration does not meet the abandon rate SLO or the latency SLO. The former case means that too
few servers are assigned to the service; and the search of a higher value of ACi is conducted in the highest
dichotomy]ACi..maxAC] (lines 26−27). If the abandon rate SLO is met but not the latency SLO, there
may be two causes. Either the client request concurrency level is too high which increases the latency. In
this case, lower values of LC1..LCM are efficiently calculated using a dichotomic search (cf. lines 30−39).
If the new value of local configuration allows to successfully meet the SLA, the algorithm pursues its
search of a lower architectural configuration (lines 41−42). Otherwise, that means that too few servers are
assigned to the service, and the algorithm pursues the search of a higher architectural configuration
(lines 43−44).

Thus, the proposed capacity planning method has an algorithmic complexity given by Eq. 3, where M is
the number of tiers of the multi-tier Internet service, N is the workload amount of the service, ACmax and
LCmax are respectively the maximum values of the architectural configuration and local configuration
respectively used in the loops at lines 16 and 33 of Algorithm 2. Furthermore, the logarithmic cost on
ACmax and LCmax are due to the dichotomic search on architectural and local configurations. As a
comparison, the algorithmic complexity of an exhaustive search on the optimal architectural and local
configurations of a multi-tier Internet service is O(M2 ⋅ N ⋅ ACmax ⋅ LCmax). The proposed capacity
planning method outperforms the exhaustive search by orders of magnitude depending on the size of the
service.

 () ()2 3

2 max 2 maxO(M N log AC M N log LC)⋅ ⋅ + ⋅ ⋅ (1)

Moreover, the main capacity planning algorithm is complemented with an optional part presented in
Algorithm 3.This is motivated by the fact that Algorithm 2 may result with a service configuration that is
optimal for a workload amount N but where the local configuration is too restrictive for a workload
amount higher than N. Indeed, the configuration produced by Algorithm 2 may allow to meet the SLA for
a given value of workload amount N but not for a higher workload amount, although the architectural
configuration would be sufficient to handle that higher workload. This would result in additional future
service reconfigurations to handle higher workloads. Thus, Algorithm 3 aims to reduce future service
reconfigurations and system oscillations by calculating, based on the result of Algorithm 2, the highest
value of local configuration that guarantees the SLA for N and still guarantees the SLA for workload
amounts higher than N.

 17

Algorithm 3: Additional part to capacity planning algorithm

Proofs
This section first describes properties that underlie multi-tier Internet services, before presenting the
proofs of optimality and termination of the proposed capacity planning method.

Properties
P1. The service level objectives specified in the SLA are expressed in a reasonable way; that is the
latency and abandon rate constraints of the SLA are eventually achieved with (enough) servers assigned
to the Internet service.

P2. Adding servers to a multi-tier Internet service does not degrade the performance and availability of
the service. Furthermore, if there is a latency or abandon rate bottleneck at a tier, adding (enough) servers
to that tier will eventually improve the latency/abandon rate of the service, and eventually remove the
bottleneck from that tier.

P3. Augmenting the server concurrency level (i.e. the MPL) will eventually increase the latency of the
service and reduce the abandon rate of the service. Decreasing the server concurrency level will
eventually reduce the latency of the service and increase the abandon rate.

 18

Proof of Optimality
An optimal configuration of an Internet service for a given workload is a configuration that guarantees the
SLA and that induces a minimal cost for the service. Let κ*(M, AC*, LC*) be the optimal configuration
of a multi-tier Internet service consisting of M tiers. Thus

()PP * 1κ =

This is possible thanks to property P1 that states that the SLA is achievable. Furthermore, let
κ(M, AC, LC) be any configuration of the service.
 i i, () 1 AC AC *PP∀κ κ = ⇒ ≥∑ ∑

That is
 , () (*) (*) 0κ κ κ∀κ θ ≤ θ ∧θ >

In the following, we will first show that the configuration produced by the proposed capacity planning
algorithm meets the SLA, and then we will demonstrate that this configuration has a minimal cost.

Let κ(M, AC, LC) be the configuration produced as a result of the capacity planning of Algorithm 2.
Suppose that κ does not guarantee the SLA. First, lines 1−12 of the algorithm iterate and increase the
servers assigned to the Internet service until the SLA is met. Indeed, based on properties P1 and P2, this
loop will eventually terminate with a configuration that guarantees the SLA at line 12. Then, suppose that
the remainder of the algorithm (lines 13−45) results in a configuration that does not meet the SLA. This
corresponds to one of the three following cases: line 26, line 38 or line 43 of the algorithm. In both cases
of lines 26 and 43, the number of servers assigned to the service is increased, which will allow to
eventually meet the SLA (cf. properties P1 and P2). Line 38 corresponds to the case where the abandon
rate constraint is not met and where the server concurrency level is augmented. This will either allow to
meet the SLA constraints based on property P3 (cf. line 41), or will be followed by an increase of the
servers assigned to the service which eventually guarantees the SLA based on properties P1 and P2
(cf. line 43). Thus, this contradicts the supposition that the configuration produced by the capacity
planning algorithm does not meet the SLA.

Suppose now that the configuration κ(M, AC, LC) produced by the capacity planning algorithm, which
guarantees the SLA, does not have a minimal cost. That is
 i i(() 1) (AC AC *)PP κ = ∧ >∑ ∑

By definition, removing any server from the optimal service configuration would result in SLA violation
(i.e. performability preference violation) and the occurrence of a bottleneck at the tier where the server
was removed.
 i i, [1..], AC AC * () 0i M PP∀κ ∃ ∈ < ⇒ κ =

Thus, if the configuration κ resulting from the capacity planning algorithm does not have a minimal
cost
 [] i i1.. (() 1) (AC AC *)i M PP∃ ∈ κ = ∧ > (2)

That means that, in Algorithm 2, the dichotomic search on ACi iterated on the high dichotomy
]ACi..maxAC] instead of iterating on the low dichotomy [minAC.. ACi]. This corresponds to one of the
two cases at line 27 or line 44 of the algorithm. However, in both cases, SLA constraints are not met,

 19

which contradicts Eq. 4 and thus, contradicts the supposition that the configuration produced by the
capacity planning algorithm does not have a minimal cost.

Proof of Termination
Obviously, the model algorithm presented in Algorithm 1 terminates in O(M ⋅ N) calculation steps.
Furthermore, Algorithm 2 that describe the capacity planning method consists of three successive parts.
The first part (lines 1−3) evidently terminates in M steps. The second part (lines 4−12) iterates until a
service configuration that guarantees SLA is found. Based on properties P1 and P2, this second part of the
algorithm eventually terminates after O(M2 ⋅ N ⋅ log2(ACmax)) calculation steps. Finally, the third part of
Algorithm 2 (13−45) terminates after O(M2 ⋅ N ⋅ log2(ACmax) + M3 ⋅ N ⋅ log2(LCmax)) steps. Thus, the
capacity planning algorithm is guaranteed to terminate.

AUTOMATIC AND ONLINE MOKA CALIBRATION
Online monitoring and internal calibration allow to automatically calibrate the proposed model and
capacity planning methods with their input values without requiring manual calibration or profiling from
a human administrator. This enables MoKa to self-adapt to changes in the workload mix and to precisely
exhibit the new behavior of the Internet service.

Online monitoring of Internet services is, first, performed using sensors that periodically measure the state
of the service and collect data such as the workload amount N, the client think time Z, and the visit ratios
V<V1,..,VM> of the multi-tier service. Then, average values of the collected data are calculated using the
EWMA (Exponentially Weighted Moving Average) filter (Box, 2009). This filter produces average
values of past observations on a time window; and the weighting, which decreases exponentially for older
observations, gives more importance to recent observations. Thus, once collected by the sensors, the data
is filtered and the average values are given as inputs for the modeling and capacity planning methods that
underlie adaptive control.

Other input variables are needed by the modeling and capacity planning methods such as the service times
S<S1,…,SM> and inter-tier delays D<D1,…,DM>. Because these variables are too sensitive to monitoring,
they are automatically calculated by an internal calibration process of the proposed adaptive control
system as depicted by Figure 7. This is done using the descending gradient method, a first-order
optimization method that allows to efficiently calculate the parameter values that provide the best
accuracy for the model predictions (Avriel, 2003). To do so, the latency and abandon rate of the multi-tier
service are monitored online as described earlier. Roughly speaking, this monitored data is compared with
the predictions of the model when using different values of S and D (in addition to N, Z and V that were
obtained as described earlier), and the values of S and D that finally maximize the accuracy of the model
are chosen.

EVALUATION
Experimental Environment
We implemented the MoKa adaptive control of Internet services as a Java software prototype. The MoKa
prototype consists of three mains parts: one for the modeling of services, one for the capacity planning of
services, and one for the service controller. Furthermore, MoKa is designed as an open framework that
can be easily extended to include new model and capacity planning algorithms, and to compare them
regarding their accuracy, optimality and efficiency. Moreover, MoKa follows a proxy-based approach in
order to integrate the proposed adaptive control to an Internet service in a non-intrusive way. This allows
MoKa, for instance, to integrate monitoring sensors and reconfiguration actuators of an Internet service.

 20

The evaluation of the proposed MoKa modeling and adaptive control was conducted using the TPC-W
benchmark (TPC-W, 2010). TPC-W is an industry-standard benchmark from the Transaction Processing
Performance Council that models a realistic web bookstore. TPC-W comes with a client emulator which
generates a set of concurrent clients that remotely access the bookstore application. They emulate the
behavior of real web clients by issuing requests for browsing the content of the bookstore, requesting the
best-sellers, buying the content of the shopping cart, etc. The client emulator generates different profiles
by varying the workload amount and workload mix (the ratio of browse to buy). In our experiments, the
on-line bookstore was deployed as a two-tier system, consisting of a set of replicated web/business front-
end servers, and a set of replicated back-end database servers. The client emulator was running on a
dedicated machine to remotely send requests to the online bookstore. Two workload mixes were used for
our experiments: mix X1 representing a version of TPC-W’s browsing mix with read-only interactions,
and mix X2 that extends X1 for a heavier workload on the back-end tier. Whereas the original TPC-W
client emulator allows to specify given static workload amount and workload mix, we modified the client
emulator in order to introduce more dynamics to the generated workload. Thus, during a given
experiment, the workload amount and the workload mix vary over time.

The following experiments with MoKa were conducted on the Grid’5000 experimental
platform (Grid’5000, 2010). The machines consist of Intel Xeon processors running at 2.33 GHz, they
embed a memory of 4 Go, and are interconnected via a Gigabit Ethernet network. The machines run the
Linux 2.6.26 kernel, Apache Tomcat 5.5 for web/application servers, and MySQL 5.0 for database
servers. Round-robin was used to dynamically balance the load among server replicas.

Model Evaluation
This section evaluates the accuracy of the proposed analytic model of Internet services. It considers a
workload that varies over time in amount and in mix, as described in Figure 11. Here, the workload mix
varies from mix X1 to mix X2, and for each mix, the workload amount varies between 250 and 1250
clients. In this context, the behavior of the real multi-tier Internet service is compared with the predictions
of the proposed model. Furthermore, two (static) configurations of the multi-tier Internet service are
considered: κ1(2,<1,1>,<500,500>) and κ2(2,<3,6>,<200,100>). The former configuration represents a
minimal architectural configuration where the capacity of the system is increased by increasing the local
configuration. While the latter configuration uses default local configurations of Tomcat front-end server
and MySQL back-end server, and increases the capacity of the system by increasing the architectural
configuration. The use of these two configurations intends to mimic human administrators who apply ad-
hoc configuration to increase the capacity of Internet services.

Figure 12 compares the latency measured on the online Internet service vs. the latency predicted by the
model, and Figure 13 compares the real abandon rate of the online Internet service with the abandon rate
calculated by the model. Both figures show that the model is able to accurately predict the latency and
abandon rate of the multi-tier Internet service. For instance, the average difference between the real
latency and the predicted latency is 8% for κ1 and an absolute difference of 20ms for κ2. The abandon
rate is predicted with an average error not exceeding 2%. Furthermore, since the prediction of the model
regarding the cost of an Internet service is straightforward, it is thus accurate and not presented here.

 21

Figure 11: Workload variation

Figure 12: Accuracy of performance – real latency vs. predicted latency

Mix X2 Mix X1

 22

Figure 13: Accuracy of availability – real abandon rate vs. predicted abandon rate

Capacity Planning Evaluation
This section evaluates the proposed capacity planning method with regard to the optimality of the
configuration produced by the method. To do so, the following SLA is considered with a maximum
service latency ℓmax of 1s and a maximum service abandon rate αmax of 10%. That means that capacity
planning must produce a service configuration with a minimal cost while guaranteeing that at least 90%
of client requests are processed within 1s.

Here, different workload mixes and different workload amount values are considered for the two-tier
TPC-W Internet service. For each workload value, the proposed capacity planning method calculates an
architectural configuration and a local configuration of the Internet service that are respectively presented
in Figure 14 and Figure 15. Furthermore, we compare the result of the proposed capacity planning method
with the result of another method based on an exhaustive search. This latter method performs a search on
the set of possible architectural and local configurations of the Internet service. It compares all possible
configurations and produces the optimal configuration that guarantees the SLA and minimizes the cost of
the service.

Figure 14 and Figure 15 compare the two methods with regard to their calculated architectural and local
configurations, and show that the proposed capacity planning method produces the optimal configuration
of the Internet service.

Mix X2 Mix X1

 23

Figure 14: Optimality of architectural configuration

Figure 15: Optimality of local configuration

Mix X2Mix X1

Mix X2 Mix X1

 24

Adaptive Control Evaluation
This section presents the evaluation of the MoKa-based control applied to the online two-tier TPC-W
Internet service. Here, the SLA specifies a maximum service latency ℓmax of 1s and a maximum service
abandon rate αmax of 5% (these values are chosen for illustration purposes, although ℓmax and αmax can
have other values, e.g. αmax = 0% to represent a service that is always available). Figure 16 describes the
variation over time of the Internet service workload, i.e. the variation of the workload mix from mix X1 to
mix X2 and, for each mix, the variation of the workload amount between 250 and 1000 concurrent clients.
In this context, the behavior of the MoKa-based controlled system is first compared with two baseline
systems: one with a small (static) configuration κ1(2,<1,1>,<500,500>) and another with a larger (static)
configuration κ2(2,<3,6>,<200,100>). Figure 17 and Figure 18 respectively present the service latency
and service abandon rate of the multi-tier Internet service, comparing the MoKa-based controlled system
with the two non-controlled baseline systems κ1 and κ2. These figures show that κ1 is not able to meet
the SLA performance constraint, and that κ2 is not able to meet the SLA availability constraint when the
workload is too heavy. In comparison, MoKa is able to control the configuration of the Internet service in
order to meet SLA constraints. The different points where the MoKa-based controlled system is above the
SLA limits correspond to the occurrence of workload changes and the necessary time for the system to
reconfigure and stabilize. Here, there is an order of magnitude between the average latency of the non-
adaptive κ1 system and the average latency of the MoKa-based system; and there is a factor of 3 between
the abandon rate of κ1 vs. the abandon rate of the MoKa-based system.

The adapted architectural and local configurations of the MoKa-based controlled system are shown in
Figure 19 and Figure 20, and the cost is given in Figure 21. This shows that MoKa is able to assign to the
Internet service the strictly necessary servers to guarantee the SLA, with a saving of up to 67% of servers.
Finally, MoKa is able to automatically detect service workload changes and self-calibrate with the current
workload amount (N between 250 and 1000 in the present experiment), and the current workload mix
(e.g. mix X1 (Z = 7 s; V <V1 = 1.0, V2 = 3.0>; S <S1 = 9 ms, S2 = 14 ms>; D <D1 = 0, D2 = 2 ms>), and
mix X2 (Z = 7 s; V <V1 = 1.0, V2 = 1.5>; S <S1 = 11.5 ms, S2 = 27 ms>; D <D1 = 0, D2 = 4 ms>)) Based
on this automatic MoKa calibration, optimal configuration is dynamically applied to the online service.

Figure 16: Workload variation

 25

Figure 17: Service latency with and without MoKa control

Figure 18: Service abandon rate with and without MoKa control

Mix X2 Mix X1

Mix X2 Mix X1

 26

Figure 19: Service architectural configuration with and without MoKa control

Figure 20: Service local configuration with and without MoKa control

 27

Figure 21: Service cost with and without MoKa control

In addition to the previous comparison of MoKa with ad-hoc static configurations, we also compare
MoKa with a linear control approach, a technique classically used for Internet service provisioning. Here
again, the SLA specifies a maximum service latency ℓmax of 1s and a maximum service abandon rate αmax
of 5%. And the Internet service workload varies over time, with a workload mix variation from mix X1 to
mix X2 and a workload amount variation between 200 and 4000 concurrent clients.

Roughly speaking, the linear control is first calibrated with two internal parameters: a reference service
configuration κ0 and a reference workload amount N0. The reference workload amount is the maximum
number of concurrent clients that the reference service configuration can handle while guaranteeing the
SLA. These internal parameters of the linear controller are obtained through preliminary profiling of the
Internet service. Afterwards, the controller applies a linear capacity planning method that simply
calculates an architectural configuration that is proportional to the current workload amount N and the
reference workload amount N0 and reference service configuration κ0. In the following experiments, the
reference service configuration and workload amount for the calibration of the linear control are
respectively κ0(<2,<1,3>,<600,200>) and N0 = 630 clients.

Figure 22 and Figure 23 respectively present Internet service latency and abandon rate, and compare the
MoKa-based controlled service with the linearly controlled service. The figures show that both control
approaches are able to meet SLA requirements. However, MoKa keeps the latency and abandon rate near
the SLA limits, which allows it to improve resource usage, and thus to reduce service cost compared to
the linear control. This is shown in Figure 24 where, compared to MoKa optimal control, the linear
control induces a cost overhead of 23%.

Mix X2 Mix X1

 28

Figure 22: Service latency with different control techniques

Figure 23: Service abandon rate with different control techniques

Mix X2 Mix X1

Mix X2 Mix X1

 29

Figure 24: Service cost with different control techniques

RELATED WORK
The control of services to guarantee the SLA is a critical requirement for successful performance and
availability management of Internet services (Loosley, 1997; Marcus, 2003; Menascé, 2001). The
management of service performance and availability is usually achieved by system administrators using
ad-hoc tuning (Brown, 2010; Microsoft, 2010). However, new approaches tend to appear to ease the
management of such systems. These approaches differ with regard to several criteria: tackling
performance and/or availability objectives, handling Internet service workload variations in terms of
workload amount and/or workload mix, the used control techniques, and the applied control mechanism
(i.e. actuators).

Different control mechanisms may be considered to manage service performance and availability, such as
server provisioning, admission control, service differentiation, service degradation, and request
scheduling (Guitart, 2010). In the following, we will focus on approaches using the two first techniques,
namely admission control for a local configuration of the concurrency level of a server, and server
provisioning for an architectural configuration of the size of a replicated distributed Internet service.

Admission control fixes the MPL concurrency level of a multi-programming system (e.g. multi-threaded
servers). It has been extensively studied in server systems, and it was applied to a web
server (Elnikety, 2004), a database server (Milan-Franco, 2004), or a multi-tier
system (Menascé, EC 2001). Some admission control solutions are proposed in the form of
heuristics (Heiss, 1991; Chen, 2003; Milan-Franco, 2004). Hill-climbing is a well-known heuristic
applied in several solutions of admission control. These solutions have the advantage to be simple to
implement; however, they provide a best-effort behavior without guarantees on the quality-of-service and
SLA of the Internet services.

Mix X2 Mix X1

 30

Other approaches tend to provide strict guarantees on the quality-of-service, and are usually based on
analytic models to characterize the system and control it. For instance, there are linear models and
nonlinear models (Diao, 2002; Parekh, 2002; Tipper, 1990; Wang, 1996), queuing theory-based models
or control theory-based models (Parekh, 2002; Diao, 2002; Malrait, 2009), models for central systems or
for distributed services (Bouchenak, 2006; Sivasubramanian, 2006; Urgaonkar, 2007), used for providing
guaranties on a unique QoS criterion or for combining multiple criteria (Chase, 2001;
Menascé, EC 2001), applying a unique or multiple control mechanisms, i.e. actuators, (Diao, 2002;
Milan-Franco, 2004).

Other approaches control Internet services by provisioning/unprovisioning servers to the service.
Autonomic provisioning of database servers is presented in (Chen, 2006), and server provisioning in
multi-tier systems is described in (Bouchenak, 2006). While these systems are based on heuristics, other
approaches tend to better characterize multi-tier applications through analytic modeling for provisioning
multi-tier systems (Villela, 2007; Urgaonkar, 2007). However, these approaches are restricted to
performance management and do not take into account service availability objectives. Furthermore, they
require extensive model calibration with appropriate parameter values; and this calibration is tied to a
given workload mix and must be changed each time the workload mix changes, which is not easily
detectable.

In summary, MoKa differs from the other approaches in many aspects: (i) it takes into account and
combines service performance and service availability SLA objectives, (ii) it combines admission control
with server provisioning for a better usage of resources and service cost minimization, and (iii) it
automatically handles both workload amount and workload mix variations without requiring manual
recalibration of MoKa for an adaptive control of Internet services.

CONCLUSION
This chapter presented MoKa, a system for adaptive control of Internet services to guarantee performance
and availability objectives and to minimize cost. The contribution of MoKa is multifold. First, a utility
function is defined to quantify the performance, availability and cost of distributed Internet services.
Second, a utility-aware capacity planning method is developed; given SLA performance and availability
constraints, it calculates a configuration of the Internet service that guarantees the constraints while
minimizing the cost of the service. Third, a queuing theory-based analytic model of multi-tier Internet
services is proposed; the model accurately predicts service performance, availability and cost, and is used
as a basis of the capacity planning. Finally, an adaptive control of online Internet services is proposed in
the form of a feedback control loop that automatically detects workload mix and workload amount
variation, and reconfigures the service with its optimal configuration.

The proposed model, capacity planning and control methods are implemented and applied to an online
bookstore. The experiments show that the Internet service successfully self-adapts to both workload mix
and workload amount variations, and present significant benefits in terms of service performance and
availability, with a saving of resources underlying the Internet service. We hope that such a method will
lead to a more principled, less ad-hoc implementations of resource management in Internet services and
cloud computing environments. The reader is also suggested to consult Chapter 4 related to utility-aware
performance management of composite services.

ACKNOWLEDGEMENTS
Experiments presented here were carried out using the Grid'5000 experimental testbed, being developed
under the INRIA ALADDIN development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (Grid’5000, 2010).

 31

REFERENCES
M. Avriel. Nonlinear Programming: Analysis and Methods. Dover Publishing. 2003.

G. E. P. Box, A. Luceno, et M. Del Carmen Paniagua-Quinones. Statistical Control by Monitoring and
Adjustment. Broché, May 2009.

M. Brown. Optimizing Apache Server Performance. Retrieved May 20, 2010, from
http://www.serverwatch.com/tutorials/article.php/3436911

J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle. Managing Energy and Server
Resources in Hosting Centers. The 18th ACM Symposium on Operating Systems Principles (SOSP’01),
New York, NY, USA, 2001.

X. Chen, H. Chen, and P. Mohapatra. Aces : An Efficient Admission Control Scheme for QoS-aware
Web Servers. Computer Communications, 26(14), Mar. 2003.

J. Chen, G. Soundararajan, and C. Amza. Autonomic Provisioning of Backend Databases in Dynamic
Content Web Servers. The 3rd IEEE International Conference on Autonomic Computing (ICAC 2006),
Dublin, Ireland, Jun. 2006.

Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury. Using MIMO Feedback Control to Enforce
Policies for Interrelated Metrics with Application to the Apache Web Server. Network Operations and
Management Symposium (NOMS), April 2002.

Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, and M. Surendra. Controlling Quality of Service in
Multi-Tier Web Applications. The 26th International Conference on Distributed Computing Systems
(ICDCS 2006), Lisbon, Portugal, Jul. 2006.

S. Elnikety, J. Tracey, E. Nahum, and W. Zwaenepoel. A method for transparent admission control and
request scheduling in e-commerce web sites. The 13th International conference on World Wide Web
(WWW 2004), New York, NY, USA, 2004.

P. Ferguson, G. Huston. Quality of Service: Delivering QoS on the Internet and in Corporate Networks.
John Wiley & Sons, 1998.

Grid’5000. Grid’5000. Retrieved May 20, 2010, from http://www.grid5000.fr/

J. Guitart, J. Torres, and E. Ayguadé. A Survey on Performance Management for Internet Applications.
Concurrency Computation – Practice & Experience, 22(1), 2010.

H.-U. Heiss and R. Wagner. Adaptive Load Control in Transaction Processing Systems. The 17th
International Conference on Very Large Data Bases (VLDB 1991), Barcelona, Spain, Sep. 1991.

C. Loosley, F. Douglas, and A. Mimo. High-Performance Client/Server. John Wiley & Sons, November
1997.

L. Malrait, S. Bouchenak, and N. Marchand. Fluid Modeling and Control for Server System Performance
and Availability. The 39th Annual IEEE/IFIP Conference on Dependable Systems and Networks
(DSN 2009), Jun. 2009.

 32

L. Malrait, S. Bouchenak, and N. Marchand. Experience with ConSer: A System for Server Control
Through Fluid Modeling. IEEE Transactions on Computers, 2010.

E. Marcus and H. Stern. Blueprints for High Availability. Wiley, Sep. 2003.

D. A. Menascé and V. A. F. Almeida. Capacity Planning for Web Services: Metrics, Models, and
Methods. Prentice Hall, 2001.

D. A. Menascé, D. Barbara, and R. Dodge. Preserving QoS of E-Commerce Sites Through Self-Tuning:
A Performance Model Approach. The ACM Conference on Electronic Commerce (EC’01), Tampa, FL,
Oct. 2001.

J. Milan-Franco, R. Jimenez-Peris, M. Patino-Martinez, and B. Kemme. Adaptive Middleware for Data
Replication. The 5th ACM/IFIP/USENIX international conference on Middleware (Middleware 2004),
New York, NY, USA, 2004.

Microsoft. Optimizing Database Performance. Retrieved May 20, 2010, from
http://msdn.microsoft.com/enus/library/aa273605(SQL.80).aspx

S. S. Parekh, N. Gandhi, J. L. Hellerstein, D. M. Tilbury, T. S. Jayram, and J. P. Bigus. Using Control
Theory to Achieve Service Level Objectives in Performance Management. Real-Time Systems, 23(1-2),
2002.

M. Reiser and S. S. Lavenberg. Mean-Value Analysis of Closed Multi-Chain Queuing Networks. Journal
of the ACM, 27(2), pp. 313-322, 1980.

S. Sivasubramanian, G. Pierre, M. van Steen, and S. Bhulai. SLA-Driven Resource Provisioning of Multi-
Tier Internet Applications. Technical Report, Department of Mathematics and Computer Science, Vrije
Universiteit, Amsterdam, 2006.

D. Tipper and M. Sundareshan. Numerical Methods for Modeling Computer Networks Under
Nonstationary Conditions. IEEE Journal on Selected Areas in Communications, 8(9), Dec. 1990.

TPC-W. TPC-W: a transactional web e-Commerce benchmark. Retrieved May 20, 2010, from
http://www.tpc.org/tpcw/

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. Analytic Modeling of Multi-Tier
Internet Applications. ACM Transactions on theWeb (ACM TWEB), 1(1), 2007.

D. Villela, P. Pradhan, and D. Rubenstein. Provisioning Servers in the Application Tier for E-Commerce
Systems. ACM Transactions Interet Technolies, 7(1), 2007.

W.-P. Wang, D. Tipper, and S. Banerjee. A Simple Approximation for Modeling Nonstationary Queues.
The 15th Annual Joint Conference of the IEEE Computer and Communications Societies, Networking the
Next Generation (IEEE INFOCOM' 96), San Francisco, CA, USA, Mar. 1996.

Q. Zhang, L. Cherkasova, and N. Mi. A Regression-Based Analytic Model for Capacity Planning of
Multi-Tier Applications. Journal of Cluster Computing, 11(3), 2008.

