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ABSTRACT 
Although distributed services provide a means for supporting scalable Internet applications, their ad-hoc 
provisioning and configuration pose a difficult tradeoff between service performance and availability. 
This is made harder as Internet service workloads tend to be heterogeneous, and vary over time in amount 
of concurrent clients and in mixture of client interactions. This chapter presents an approach for building 
self-adaptive Internet services through utility-aware capacity planning and provisioning. First, an analytic 
model is presented to predict Internet service performance, availability and cost. Second, a utility function 
is defined and a utility-aware capacity planning method is proposed to calculate the optimal service 
configuration which guarantees SLA performance and availability objectives while minimizing 
functioning costs. Third, an adaptive control method is proposed to automatically apply the optimal 
configuration to the Internet service. Finally, the proposed model, capacity planning and control methods 
are implemented and applied to an online bookstore. The experiments show that the service successfully 
self-adapts to both workload mix and workload amount variations, and present significant benefits in 
terms of performance and availability, with a saving of resources underlying the Internet service. 
 
INTRODUCTION 
A challenging issue in management of distributed Internet services tems from the conflicting goals of, on 
the one hand, high performance and availability, and on the other hand, low cost and resource 
consumption. In the limit, high performance and availability can be achieved by assigning all available 
machines in a data center to an Internet service. Symmetrically, it is possible to build a very-low cost 
Internet service by allocating very few machines, which induces bad performance and data center 
downtime. Between these two extremes, there exists a configuration such that distributed Internet services 
achieve a desirable level of service performance and availability while cost is minimized. This chapter 
precisely addresses the problem of determining this optimal configuration, and automatically applying it 
to build a self-adaptive Internet service. 
 
The chapter describes a capacity planning method for distributed Internet services that takes into account 
performance and availability constraints of services. We believe that both criteria must be taken into 
account collectively. Otherwise, if capacity planning is solely performance-oriented, for instance, this 
may lead to situations where 99% of service clients are rejected and only 1% of clients are serviced with a 
guaranteed performance. To our knowledge, this is the first proposal for capacity planning and control of 
distributed Internet services that combines performance and availability objectives. To do so: 



 4

 
• A utility function is defined to quantify the performance, availability and cost of distributed 

Internet services. 
• A utility-aware capacity planning method is proposed; given SLA performance and availability 

constraints, it calculates a configuration of the Internet service that guarantees SLA constraints 
while minimizing the cost of the service (i.e. the number of host machines). 

• The capacity planning method is based on a queuing theory model of distributed Internet services. 
The model accurately predicts service performance, availability and cost. 

• An adaptive control of online Internet services is proposed to automatically detect both workload 
mix and workload amount variation, and to reconfigure the service with its optimal configuration. 

 
Finally, the proposed utility-aware methods for modeling, capacity planning and control were 
implemented to build self-adaptive distributed Internet services. The chapter presents experiments 
conducted on an industry standard Internet service, the TPC-W online bookstore. The results of the 
experiments show that the Internet service successfully self-adapts to workload variations, and present 
significant benefits in terms of service performance and availability, with a saving of resources of up to 
67% on the underlying Internet service. 
 
The remainder of the chapter first presents the background on Internet services. Then, it defines the 
motivations and objectives of this work. It then presents the utility function of Internet services, the 
proposed analytic model, the proposed capacity planning method, and the adaptive control of Internet 
services. An evaluation is then presented; and a related work is discussed. Finally, conclusions of this 
work are drawn. 
 
BACKGROUND 
Underlying System 
Internet services usually follow the classical client-server architecture where servers provide clients with 
some online service (e.g. online bookstore, e-banking service, etc.). A client remotely connects to the 
server, sends it a request, the server processes the request and builds a response that is returned to the 
client before the connection is closed. We consider synchronous communication systems, that is, when 
the client sends its request to the server, it blocks until it receives a response. Furthermore, for scalability 
purposes Internet services are built as multi-tier systems. A multi-tier system consists of a series of M 
server tiers T1, T2,...,TM. Client requests flow from the front-end tier T1 to the middle-tier and so on until 
reaching the back-end tier TM.  
 

 
Figure 1: Replicated multi-tier services 
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Each tier is tasked with a specific role. For instance, the front-end web tier is responsible of serving web 
documents, and the back-end database tier is responsible of storing non-ephemeral data. Moreover, to 
face high loads and provide higher service scalability, a commonly used approach is the replication of 
servers in a set of machines. Here, a tier consists of a set of replicated services, and client requests are 
dynamically balanced between replicated services. Figure 1 presents an example of a replicated multi-tier 
Internet service with two replicas on the front-end presentation tier T1, three replicas on the business tier 
T2, and two replicas on the back-end database tier T3. 
 
Service Performance, Availability and Cost 
SLA (Service Level Agreement) is a contract negotiated between clients and their service provider. It 
specifies service level objectives (SLOs) that the application must guarantee in the form of constraints on 
quality-of-service metrics, such as performance and availability. Client request latency and client request 
abandon rate are key metrics of interest for respectively quantifying the performance and availability of 
Internet services. 
 
The latency of a client request is the necessary time for an Internet service to process that request. The 
average client request latency (or latency, for short) of an Internet service is denoted as ℓ. A low latency is 
a desirable behavior which reflects a reactive service. 
 
The abandon rate of client requests is the ratio of requests that are rejected by an Internet service 
compared to the total number of requests issued by clients to that service. It is denoted as α. A low client 
request abandon rate (or abandon rate, for short) is a desirable behavior which reflects the level of 
availability of an Internet service. 
 
Besides performance and availability, the cost of an Internet service refers to the economical and 
energetic costs of the service. Here, the cost ω is defined as the total number of servers that host an 
Internet service.  
 
Service Configuration 
The configuration κ of an Internet service is characterized in the following by a triplet κ(M, AC, LC), 
where M is the fixed number of tiers of the multi-tier service, AC and LC are respectively the 
architectural configuration and local configuration of the Internet service that are detailed in the 
following. 
 
The architectural configuration describes the distributed setting of a multi-tier Internet service in terms of 
the number of replicas at each tier. It is conceptualized as an array AC < AC1, AC2, ..., ACM >, where ACi 
is the number of replica servers at tier Ti of the multi-tier service.  
 
The local configuration describes the local setting applied to servers of the multi-tier service. It is 
conceptualized as an array LC < LC1, LC2, ..., LCM >. Here, LCi represents servers MPL (Multi-
Programming Level) at tier Ti of the multi-tier service. The MPL is a configuration parameter of a server 
that fixes a limit for the maximum number of clients allowed to concurrently access the 
server (Ferguson, 1998). Above this limit, incoming client requests are rejected. Thus, a client request 
arriving at a server either terminates successfully with a response to the client, or is rejected because of 
the server’s MPL limit. 
 
Service Workload 
Service workload is characterized, on the one hand, by workload amount, and on the other hand, by 
workload mix. Workload amount is the number of clients that try to concurrently access a server; it is 
denoted as N. Workload mix, denoted as X, is the nature of requests made by clients and the way they 
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interleave, e.g. read-only requests mix vs. read-write requests mix. There is no well established way to 
characterize the workload mix X of an Internet service. In the following, a workload mix is characterized 
with the n-uplet X(Z, V, S, D) where: 
 

• Z is the average client think time, i.e. the time between the reception of a response and the sending 
of the next request by a client. 

• V<V1,..,VM> are the visit ratios at respectively tiers T1..TM. More precisely, Vi corresponds to the 
ratio between the number of requests entering the multi-tier service (i.e. at the front-end tier T1) 
and the number of subsequent requests processed by tier Ti. In other words, Vi represents the 
average number of subsequent requests on tier Ti when issuing a client request to the multi-tier 
Internet service. Thus, Vi reflects the impact of client requests on tier Ti. Note the particular case 
of V1 = 1. 

• S<S1,..,SM> are the service times at tiers T1..TM. Thus, Si corresponds to the average 
incompressible time for processing a request on tier Ti when the multi-tier Internet service is not 
loaded. 

• D<D1,..,DM> are the inter-tier communication delays. Di is the average communication delay 
between tier Ti-1, if any, and tier Ti, with i > 1. Note the particular case of D1 = 0. 

 
Furthermore, service workload may vary over time, which corresponds to different client behaviors at 
different times. For instance, an e-mail service usually faces a higher workload amount in the morning 
than in the rest of the day. Workload variations have a direct impact on the quality-of-service as discussed 
later. 
 
PROBLEM ILLUSTRATION 
Both the configuration of an Internet service and the workload of the service have a direct impact on the 
quality-of-service. This section illustrates this impact through examples. 
 
Impact of configuration. To illustrate the impact of service configuration, the TPC-W multi-tier online 
bookstore service is considered in the following. It consists of a front-end web tier and a back-end 
database tier (see the Evaluation Section for more details about TPC-W). Two distinct static ad-hoc 
configurations of the Internet service are considered here: κ1(M = 2, AC < 1, 1 >, LC < 500, 500 >) and 
κ2(M = 2, AC < 3, 6 >, LC < 200, 100 >). With κ1, the capacity of the system is increased through an 
increased setting of the local configuration of servers. While with κ2, the local configuration is set to the 
default one (i.e. default MPLs in Tomcat front-end server and MySQL back-end server), and the capacity 
of the system is extended by adding servers to increase the architectural configuration of the system. With 
both κ1 and κ2 configurations, the TPC-W online service is run with 1000 concurrent clients accessing the 
service using a read-only workload mix.  
 
Figure 2 presents the client request latency and Figure 3 gives the abandon rate obtained with each 
configuration of the Internet service. κ1 provides bad service performance and availability with a latency 
of 10s and an abandon rate of 71%. Obviously, this is due to too few resources that are assigned to the 
service. κ2 provides better performance but still induces a bad service availability (40% of abandon rate) 
because of the inadequate default local configuration of the service. 
 
Thus, both local and architectural configurations have an impact of the performance, availability and cost 
of Internet services. These configurations should therefore be carefully chosen in order to meet quality-of-
service objectives and minimize the cost. 
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Figure 2: Impact of service configuration on performance 

 

 
Figure 3: Impact of service configuration on availability 

 
Impact of workload. Figure 4 and Figure 5 respectively present the impact of client workload variation on 
the performance, availability and cost of the TPC-W two-tier Internet service. Here, several workload 
variation scenarios are considered. The workload successively varies from a first stage with workload mix 
X1 to a second stage with workload mix X2 (see the Evaluation Section for more details about TPC-W and 
workload mixes). During each stage, the workload amount N (i.e. #clients) varies between 250 and 
1250 clients. An ad-hoc medium configuration of the multi-tier Internet service is considered as follows: 
κ(M = 2,AC < 2, 3 >, LC < 500, 500 >). The service latency and abandon rate of this configuration are 
presented in Figure 4 and Figure 5. Obviously, different workloads have different behaviors in terms of 
service performance and availability. For instance, with 1250 clients, latency is 4.5 s with workload mix 
X1, and 10.7 s with workload mix X2. This induces an abandon rate of 29% with mix X1 vs. 39% with mix 
X2. And within the same workload mix, service latency and abandon rate vary when the number of clients 
varies. 
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Figure 4: Impact of workload on performance 

 
 

 
Figure 5: Impact of workload on availability 

 
Nonlinear behavior. Figure 6 illustrates the behavior of the two-tier TPCW Internet service when the 
service workload amount varies for workload mix X1 (see the Evaluation Section for more details about 
TPC-W and workload mixes). Here, the workload amount (i.e. number of concurrent clients) increases 
linearly over time. However, the service latency does not vary linearly. This clearly shows that linearity 
assumptions that are made on multi-tier Internet services and linear control do not hold for these systems. 
 

Mix X2 Mix X1 

Mix X2 Mix X1 
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Figure 6: Nonlinear behavior of Internet services 

 
ADAPTIVE CONTROL OF INTERNET SERVICES 
Both service workload and service configuration have an impact on the performance, availability and cost 
of services. The workload of Internet services is an exogenous input, which variation can not be 
controlled. Thus, to handle workload variations and provide guaranties on performance and availability, 
Internet services must be able to dynamically adapt their underlying configuration. Several objectives are 
targeted here: 
 

• Guarantee SLA constraints in terms of service performance and availability, while minimizing the 
cost of the Internet service.  
 

• Handle nonlinear behavior of Internet services taking into account both workload amount and in 
workload mix variations over time.  
 

• Provide self-adaptive control of Internet services that provides online automatic reconfigurations 
of Internet services. 

 
We propose MoKa, a nonlinear utility-aware control for self-adaptive Internet services. First, MoKa is 
based on a utility function that characterizes the optimality of the configuration of an Internet service in 
terms of SLA requirements for performance and availability, in conjunction with service cost. Second, a 
nonlinear model of Internet services is described to predict the performance, availability and cost of a 
service. Third, a capacity planning method is proposed to calculate the optimal configuration of the 
Internet service. Finally, an adaptive nonlinear control of Internet services is provided to automatically 
apply optimal configuration to online Internet services. MoKa is built as a feedback control of multi-tier 
Internet services as described in Figure 7, with three main elements: (i) online monitoring of the Internet 
service, (ii) adaptive control of the Internet service, and (iii) online reconfiguration of the Internet service. 
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Figure 7: Adaptive control of Internet services 

Online monitoring aims at observing the Internet service and producing the necessary data in order to, on 
the one hand, automatically calibrate MoKa’s model, and on the other hand, trigger MoKa’s capacity 
planning and control. MoKa’s model calibration is performed online and automatically. This allows 
rendering the dynamics of service workload mix and workload amount, without requiring human 
intervention and manual tuning of model parameters, which makes the model easier to use. Automatic 
calibration is described in the Section titled “Automatic and online MoKa calibration”. Therefore, the 
controller calls the utility-aware capacity planning method to calculate the optimal configuration κ* for 
the current workload amount and workload mix. That optimal configuration guarantees the SLA 
performance and availability objectives while minimizing the cost of the Internet service. Finally, the new 
calculated configuration κ* is applied to the Internet service. In the following, we successively present 
MoKa utility function, modeling, capacity planning and automatic calibration. 
 
UTILITY FUNCTION OF INTERNET SERVICES 
We consider an SLA of an Internet service that specifies service performance and availability constraints 
in the form of maximum latency ℓmax and maximum abandon rate αmax not to exceed. Performability 
Preference (i.e. performance and availability preference) of an Internet service is defined as follows: 
 

PP (ℓ, α) = (ℓ ≤ ℓmax) ⋅ (α ≤ αmax) (1)
 
where ℓ and α are respectively the actual latency and abandon rate of the Internet service. Note that  
∀ℓ, ∀α, PP(ℓ,α) ∈ {0, 1}, depending on whether Eq. 1 holds or not. 
 
Based on the performability preference and cost of an Internet service, the utility function of the service 
combines both criteria as follows: 

M ⋅ PP (ℓ,α) θ (ℓ, α, ω) = ω (2)

 
where ω is the actual cost (i.e. #servers) of the service, and M is the number of tiers of the multi-tier 
Internet service. M is used in Eq. 2 for normalization purposes. Here, ∀ℓ, ∀α, ∀ω,θ(ℓ, α, ω) ∈ [0, 1], 
since ω ≥ M (at least one server per tier) and PP(ℓ,α) ∈ {0, 1}. 
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A high value of the utility function reflects the fact that, on the one hand, the Internet service guarantees 
service level objectives for performance and availability and, on the other hand, the cost underlying the 
service is low. In other words, an optimal configuration of an Internet service is the one that maximizes its 
utility function. 
 
MODELING OF INTERNET SERVICES 
The proposed analytic model predicts the latency, abandon rate and cost of an Internet service, for a given 
configuration κ of the Internet service, a given workload amount N and a given workload mix X. The 
input and output variables of the model are depicted in Figure 8. 
 

 
Figure 8: Model input and output variables 

The model follows a queueing network approach, where a multi-tier system is modeled as an M/M/c/K 
queue. Moreover, Internet services are modeled as closed loops to reflect the synchronous communication 
model that underlies these services, that is a client waits for a request response before issuing another 
request. Figure 9 gives an example of a three-tier system with a configuration 
κ(M=3, AC<1,1,2>, LC<20,15,3>), a workload amount of 30 clients and a workload mix characterized, 
among others, by tier visit ratios V<1, 0.5, 2>.  
 

 
Figure 9: Replicated multi-tier Internet services as a queueing network 

The example illustrates how the requests of the 30 incoming clients fly through the different tiers and 
server queues. For instance, among the Nt1 = 30 clients that try to access tier T1, Nr1 = 10 are rejected 
because of local configuration (i.e. MPL limit) at that tier and Na1 = 20 clients are actually admitted in the 
server at T1. Then, the 20 client requests processed by T1 generate Nt2 = 10 subsequent requests that try to 
access tier T2 (with a visit ratio V2 = 0.5). All the 10 requests are admitted in the server of T2 because they 
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are below T2’s MPL local configuration (i.e. Na2 = 10). Finally, the 10 requests on T2 would induce in 
total 40 requests to T3 (with a visit ratio V3 = 2). However, due to synchronous communication between 
the tiers of a multi-tier service, a request on T2 induces at a given time at most one request to T3, and in 
average 4 successive requests to T3. Thus, Nt3 = 10 subsequent requests tentatively access T3. Among 
these 10 requests, Nr3 = 4 requests are rejected because of T3’s MPL local configuration and Na3 = 6 
requests are admitted and balanced among the two server replicas of that tier. In summary, among the 30 
client requests attempting to access the multi-tier service, a total of 14 are rejected and 16 are serviced, 
resulting in an abandon rate of 47%. 
 
More generally, Algorithm 1 describes how the model predicts the latency, abandon rate and cost of a 
replicated multi-tier Internet service. This algorithm builds upon the MVA (Mean Value Analysis) 
algorithm (Reiser, 1980). It extends it to take into account the following main features: server replication 
(i.e. architectural configuration), server’s MPL (i.e. local configuration), different workload mixes, and to 
include predictions of abandon rate and service cost. The algorithm consists of the following four parts.  
 
The first part of the algorithm (lines 1−13) calculates the admitted requests and rejected requests at each 
tier of the multi-tier service following the method introduced in the example of Figure 9. It considers, in 
particular, the following model inputs: the service configuration κ(M, AC, LC), the workload amount N 
and the workload mix X with its service visit ratios. Lines 1−6 of the algorithm calculate Nti, the number 
of requests that try to access tier Ti considering the visit ratios of the tiers. Line 6 guarantees that if Nai-1 
requests are admitted to tier Ti-1, there would not be more than Nai-1 requests that try to access Ti, because 
of synchronous communication between the tiers. Lines 7−9 apply Ti’s MPL local configuration to 
calculate Nai, the number of requests admitted to Ti, and Nri, the number of requests rejected by Ti.  
 
Furthermore, because a request admitted to Ti may be rejected by one of the following tiers Ti+1..TM, lines 
10−11 calculate Nai′, the number of requests admitted at Ti and not rejected by the following tiers. 
Finally, lines 12−13 produce the total number of rejected requests, Nr, and the total number of admitted 
requests, Na. 
 
The second part of the algorithm (lines 14−32) is dedicated to the prediction of service request latency. 
First, lines 15−17 initialize queues’ length and service demand at each tier (i.e. the amount of work 
necessary to process a request on a tier Ti, excluding the inter-tier communication delays Di). Lines 18−31 
consider the different tiers from the back-end to the front-end in order to estimate the cumulative request 
latency at each tier Ti: ℓai is the latency of a request admitted at tier Ti and admitted at the following tiers 
Ti+1..TM, and ℓri is the latency of a request admitted at Ti and rejected at one of the following tiers. The 
latter case of requests will not be part of the final admitted requests but it is considered in the algorithm 
because it has an impact on queue length and, thus, on response times and latency calculation of admitted 
requests. Lines 19−22 introduce requests one by one at tier Ti, calculate service demand for each server 
replica at Ti, and estimate request response time for that tier. In line 22, the Max function is used to ensure 
that service demand is not lower than the incompressible necessary time Wi, as induced by service times 
characterizing the service workload mix. Then, lines 23−28 cumulate response times to calculate ℓai, the 
latency of requests admitted at tiers Ti..TM, and ℓri, the latency of requests admitted at Ti but then rejected 
at one of the following tiers. These values are then used in lines 29−31 to calculate the queue length using 
Little’s law. Finally, the overall latency ℓ of a client request is provided in line 32 as the latency of a 
request admitted to T1 and never rejected in the following tiers. 
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Algorithm 1: Modeling replicated multi-tier Internet services 
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The third part of the algorithm (lines 33−37) is dedicated to the estimation of service abandon rate. It first 
calculates τa, the throughput of requests admitted at (and never rejected from) tiers T1..TM, τr, the 
throughput of requests admitted at T1 but then rejected by one of the following tiers, and τr´, the 
throughput of requests rejected at T1 due to MPL limit. These different values are then used to produce 
the total service request abandon rate α. Finally, the fourth and last part of the algorithm (lines 38−39) 
calculates the total cost ω of the replicated multi-tier service in terms of servers that underlie the system. 
 
Thus, the algorithmic complexity of the proposed model is O(M ⋅ N), where M is the number of tiers of 
the multi-tier Internet service and N is the workload amount of the service. 
 
CAPACITY PLANNING FOR INTERNET SERVICES 
The objective of the capacity planning is to calculate an optimal configuration of a multi-tier Internet 
service, for a given workload amount and workload mix, to fulfill the SLA in terms of latency and 
abandon rate constraints, and to minimize the cost of the service. Thus, an optimal configuration κ* is a 
configuration that has the highest value of the utility function θ*. Figure 10 illustrates capacity planning. 
 

 
Figure 10: Capacity planning of multi-tier Internet services 

 
The main algorithm of capacity planning is given in Algorithm 2. The algorithm takes as inputs a 
workload amount and a workload mix of an Internet service. It additionally has as input parameters the 
number of tiers of the Internet service, the SLA latency and abandon rate constraints to meet, and the 
underlying service analytic mode (see previous section). The algorithm produces an optimal configuration 
of the Internet service that guarantees the SLA and minimizes the cost of the service. The algorithm 
consists of two main parts: a first part that calculates a preliminary configuration that guarantees the SLA 
constraints, and a second part that minimizes service cost. 
 
The first part of the algorithm (lines 1−12) first increases the number of servers assigned to all tiers of the 
Internet service (cf. line 6). It then adjusts the local configuration of servers to distribute client requests 
among server replicas at each tier (cf. line 8). However, if a request on a tier induces in total more than 
one request on the following tier (i.e.  Vi-1 ≤ Vi), and due to synchronous communication between the 
tiers, the number of concurrent requests on the following tier does not exceed the number of concurrent 
requests on the current tier (cf. line 10). Afterward, the resulting service configuration along with the 
workload amount and workload mix are used to predict the latency, abandon rate and cost of the service. 
This process is repeated until a configuration that meets the SLA is found. 
 



 15

 
Algorithm 2: Capacity planning of replicated multi-tier Internet services 
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The second part of the algorithm (lines 13−45) aims to reduce the number of servers assigned to the 
service in order to minimize its overall cost, that is to calculate the minimum values of ACi. Basically, the 
minimum number of servers on tier Ti that is necessary to guarantee the SLA is between 1 and the value 
of ACi calculated in the first part of the algorithm. To efficiently estimate the minimum value of ACi, a 
dichotomic search on that interval is performed (cf. lines 15−17). The local configuration LCi is adjusted 
accordingly to distribute requests among server replicas at tier Ti (lines 18−21). Then, the latency, 
abandon rate and cost of the resulting service configuration are predicted using the analytic model. If the 
configuration meets SLA constraints, the number of servers at that tier is reduced by pursuing the search 
of a lower value of ACi in the lowest dichotomy [minAC..ACi] (lines 23−24). Otherwise, the new 
configuration does not meet the abandon rate SLO or the latency SLO. The former case means that too 
few servers are assigned to the service; and the search of a higher value of ACi is conducted in the highest 
dichotomy ]ACi..maxAC] (lines 26−27). If the abandon rate SLO is met but not the latency SLO, there 
may be two causes. Either the client request concurrency level is too high which increases the latency. In 
this case, lower values of LC1..LCM are efficiently calculated using a dichotomic search (cf. lines 30−39). 
If the new value of local configuration allows to successfully meet the SLA, the algorithm pursues its 
search of a lower architectural configuration (lines 41−42). Otherwise, that means that too few servers are 
assigned to the service, and the algorithm pursues the search of a higher architectural configuration 
(lines 43−44). 
 
Thus, the proposed capacity planning method has an algorithmic complexity given by Eq. 3, where M is 
the number of tiers of the multi-tier Internet service, N is the workload amount of the service, ACmax and 
LCmax are respectively the maximum values of the architectural configuration and local configuration 
respectively used in the loops at lines 16 and 33 of Algorithm 2. Furthermore, the logarithmic cost on 
ACmax and LCmax are due to the dichotomic search on architectural and local configurations. As a 
comparison, the algorithmic complexity of an exhaustive search on the optimal architectural and local 
configurations of a multi-tier Internet service is O(M2 ⋅ N ⋅ ACmax ⋅ LCmax). The proposed capacity 
planning method outperforms the exhaustive search by orders of magnitude depending on the size of the 
service.  
 
 ( ) ( )2 3

2 max 2 maxO(M   N  log AC   M   N  log LC )⋅ ⋅ + ⋅ ⋅  (1) 
 
Moreover, the main capacity planning algorithm is complemented with an optional part presented in 
Algorithm 3.This is motivated by the fact that Algorithm 2 may result with a service configuration that is 
optimal for a workload amount N but where the local configuration is too restrictive for a workload 
amount higher than N. Indeed, the configuration produced by Algorithm 2 may allow to meet the SLA for 
a given value of workload amount N but not for a higher workload amount, although the architectural 
configuration would be sufficient to handle that higher workload. This would result in additional future 
service reconfigurations to handle higher workloads. Thus, Algorithm 3 aims to reduce future service 
reconfigurations and system oscillations by calculating, based on the result of Algorithm 2, the highest 
value of local configuration that guarantees the SLA for N and still guarantees the SLA for workload 
amounts higher than N. 
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Algorithm 3: Additional part to capacity planning algorithm 

 
Proofs 
This section first describes properties that underlie multi-tier Internet services, before presenting the 
proofs of optimality and termination of the proposed capacity planning method.  
 
Properties 
P1. The service level objectives specified in the SLA are expressed in a reasonable way; that is the 
latency and abandon rate constraints of the SLA are eventually achieved with (enough) servers assigned 
to the Internet service.  
 
P2. Adding servers to a multi-tier Internet service does not degrade the performance and availability of 
the service. Furthermore, if there is a latency or abandon rate bottleneck at a tier, adding (enough) servers 
to that tier will eventually improve the latency/abandon rate of the service, and eventually remove the 
bottleneck from that tier. 
 
P3. Augmenting the server concurrency level (i.e. the MPL) will eventually increase the latency of the 
service and reduce the abandon rate of the service. Decreasing the server concurrency level will 
eventually reduce the latency of the service and increase the abandon rate. 
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Proof of Optimality 
An optimal configuration of an Internet service for a given workload is a configuration that guarantees the 
SLA and that induces a minimal cost for the service. Let κ*(M, AC*, LC*) be the optimal configuration 
of a multi-tier Internet service consisting of M tiers. Thus 

( )PP *   1κ =  
 
This is possible thanks to property P1 that states that the SLA is achievable. Furthermore, let 
κ(M, AC, LC) be any configuration of the service. 
 i i, ( ) 1 AC AC *PP∀κ κ = ⇒ ≥∑ ∑  
 
That is 
 , ( ) ( *) ( *) 0κ κ κ∀κ θ ≤ θ ∧θ >  
 
In the following, we will first show that the configuration produced by the proposed capacity planning 
algorithm meets the SLA, and then we will demonstrate that this configuration has a minimal cost. 
 
Let κ(M, AC, LC) be the configuration produced as a result of the capacity planning of Algorithm 2. 
Suppose that κ does not guarantee the SLA. First, lines 1−12 of the algorithm iterate and increase the 
servers assigned to the Internet service until the SLA is met. Indeed, based on properties P1 and P2, this 
loop will eventually terminate with a configuration that guarantees the SLA at line 12. Then, suppose that 
the remainder of the algorithm (lines 13−45) results in a configuration that does not meet the SLA. This 
corresponds to one of the three following cases: line 26, line 38 or line 43 of the algorithm. In both cases 
of lines 26 and 43, the number of servers assigned to the service is increased, which will allow to 
eventually meet the SLA (cf. properties P1 and P2). Line 38 corresponds to the case where the abandon 
rate constraint is not met and where the server concurrency level is augmented. This will either allow to 
meet the SLA constraints based on property P3 (cf. line 41), or will be followed by an increase of the 
servers assigned to the service which eventually guarantees the SLA based on properties P1 and P2 
(cf. line 43). Thus, this contradicts the supposition that the configuration produced by the capacity 
planning algorithm does not meet the SLA. 
 
Suppose now that the configuration κ(M, AC, LC) produced by the capacity planning algorithm, which 
guarantees the SLA, does not have a minimal cost. That is 
 i i( ( ) 1) ( AC AC *)PP κ = ∧ >∑ ∑  
 
By definition, removing any server from the optimal service configuration would result in SLA violation 
(i.e. performability preference violation) and the occurrence of a bottleneck at the tier where the server 
was removed. 
 i i, [1.. ], AC AC * ( ) 0i M PP∀κ ∃ ∈ < ⇒ κ =  
 
Thus, if the configuration κ resulting from the capacity planning algorithm does not have a minimal 
cost  
 [ ] i i1.. ( ( ) 1) (AC  AC *)i M PP∃ ∈ κ = ∧ >  (2) 

 
That means that, in Algorithm 2, the dichotomic search on ACi iterated on the high dichotomy 
]ACi..maxAC] instead of iterating on the low dichotomy [minAC.. ACi]. This corresponds to one of the 
two cases at line 27 or line 44 of the algorithm. However, in both cases, SLA constraints are not met, 
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which contradicts Eq. 4 and thus, contradicts the supposition that the configuration produced by the 
capacity planning algorithm does not have a minimal cost. 
 
Proof of Termination 
Obviously, the model algorithm presented in Algorithm 1 terminates in O(M ⋅ N) calculation steps. 
Furthermore, Algorithm 2 that describe the capacity planning method consists of three successive parts. 
The first part (lines 1−3) evidently terminates in M steps. The second part (lines 4−12) iterates until a 
service configuration that guarantees SLA is found. Based on properties P1 and P2, this second part of the 
algorithm eventually terminates after O(M2 ⋅ N ⋅ log2(ACmax)) calculation steps. Finally, the third part of 
Algorithm 2 (13−45) terminates after O(M2 ⋅ N ⋅ log2(ACmax) + M3 ⋅ N ⋅ log2(LCmax)) steps. Thus, the 
capacity planning algorithm is guaranteed to terminate.  
 
AUTOMATIC AND ONLINE MOKA CALIBRATION 
Online monitoring and internal calibration allow to automatically calibrate the proposed model and 
capacity planning methods with their input values without requiring manual calibration or profiling from 
a human administrator. This enables MoKa to self-adapt to changes in the workload mix and to precisely 
exhibit the new behavior of the Internet service. 
 
Online monitoring of Internet services is, first, performed using sensors that periodically measure the state 
of the service and collect data such as the workload amount N, the client think time Z, and the visit ratios 
V<V1,..,VM> of the multi-tier service. Then, average values of the collected data are calculated using the 
EWMA (Exponentially Weighted Moving Average) filter (Box, 2009). This filter produces average 
values of past observations on a time window; and the weighting, which decreases exponentially for older 
observations, gives more importance to recent observations. Thus, once collected by the sensors, the data 
is filtered and the average values are given as inputs for the modeling and capacity planning methods that 
underlie adaptive control. 
 
Other input variables are needed by the modeling and capacity planning methods such as the service times 
S<S1,…,SM> and inter-tier delays D<D1,…,DM>. Because these variables are too sensitive to monitoring, 
they are automatically calculated by an internal calibration process of the proposed adaptive control 
system as depicted by Figure 7. This is done using the descending gradient method, a first-order 
optimization method that allows to efficiently calculate the parameter values that provide the best 
accuracy for the model predictions (Avriel, 2003). To do so, the latency and abandon rate of the multi-tier 
service are monitored online as described earlier. Roughly speaking, this monitored data is compared with 
the predictions of the model when using different values of S and D (in addition to N, Z and V that were 
obtained as described earlier), and the values of S and D that finally maximize the accuracy of the model 
are chosen. 
 
EVALUATION 
Experimental Environment 
We implemented the MoKa adaptive control of Internet services as a Java software prototype. The MoKa 
prototype consists of three mains parts: one for the modeling of services, one for the capacity planning of 
services, and one for the service controller. Furthermore, MoKa is designed as an open framework that 
can be easily extended to include new model and capacity planning algorithms, and to compare them 
regarding their accuracy, optimality and efficiency. Moreover, MoKa follows a proxy-based approach in 
order to integrate the proposed adaptive control to an Internet service in a non-intrusive way. This allows 
MoKa, for instance, to integrate monitoring sensors and reconfiguration actuators of an Internet service.  
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The evaluation of the proposed MoKa modeling and adaptive control was conducted using the TPC-W 
benchmark (TPC-W, 2010). TPC-W is an industry-standard benchmark from the Transaction Processing 
Performance Council that models a realistic web bookstore. TPC-W comes with a client emulator which 
generates a set of concurrent clients that remotely access the bookstore application. They emulate the 
behavior of real web clients by issuing requests for browsing the content of the bookstore, requesting the 
best-sellers, buying the content of the shopping cart, etc. The client emulator generates different profiles 
by varying the workload amount and workload mix (the ratio of browse to buy). In our experiments, the 
on-line bookstore was deployed as a two-tier system, consisting of a set of replicated web/business front-
end servers, and a set of replicated back-end database servers. The client emulator was running on a 
dedicated machine to remotely send requests to the online bookstore. Two workload mixes were used for 
our experiments: mix X1 representing a version of TPC-W’s browsing mix with read-only interactions, 
and mix X2 that extends X1 for a heavier workload on the back-end tier. Whereas the original TPC-W 
client emulator allows to specify given static workload amount and workload mix, we modified the client 
emulator in order to introduce more dynamics to the generated workload. Thus, during a given 
experiment, the workload amount and the workload mix vary over time. 
 
The following experiments with MoKa were conducted on the Grid’5000 experimental 
platform (Grid’5000, 2010). The machines consist of Intel Xeon processors running at 2.33 GHz, they 
embed a memory of 4 Go, and are interconnected via a Gigabit Ethernet network. The machines run the 
Linux 2.6.26 kernel, Apache Tomcat 5.5 for web/application servers, and MySQL 5.0 for database 
servers. Round-robin was used to dynamically balance the load among server replicas. 
 
Model Evaluation 
This section evaluates the accuracy of the proposed analytic model of Internet services. It considers a 
workload that varies over time in amount and in mix, as described in Figure 11. Here, the workload mix 
varies from mix X1 to mix X2, and for each mix, the workload amount varies between 250 and 1250 
clients. In this context, the behavior of the real multi-tier Internet service is compared with the predictions 
of the proposed model. Furthermore, two (static) configurations of the multi-tier Internet service are 
considered: κ1(2,<1,1>,<500,500>) and κ2(2,<3,6>,<200,100>). The former configuration represents a 
minimal architectural configuration where the capacity of the system is increased by increasing the local 
configuration. While the latter configuration uses default local configurations of Tomcat front-end server 
and MySQL back-end server, and increases the capacity of the system by increasing the architectural 
configuration. The use of these two configurations intends to mimic human administrators who apply ad-
hoc configuration to increase the capacity of Internet services.  
 
Figure 12 compares the latency measured on the online Internet service vs. the latency predicted by the 
model, and Figure 13 compares the real abandon rate of the online Internet service with the abandon rate 
calculated by the model. Both figures show that the model is able to accurately predict the latency and 
abandon rate of the multi-tier Internet service. For instance, the average difference between the real 
latency and the predicted latency is 8% for κ1 and an absolute difference of 20ms for κ2. The abandon 
rate is predicted with an average error not exceeding 2%. Furthermore, since the prediction of the model 
regarding the cost of an Internet service is straightforward, it is thus accurate and not presented here. 
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Figure 11: Workload variation 

Figure 12: Accuracy of performance – real latency vs. predicted latency 

Mix X2 Mix X1 
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Figure 13: Accuracy of availability – real abandon rate vs. predicted abandon rate 

Capacity Planning Evaluation 
This section evaluates the proposed capacity planning method with regard to the optimality of the 
configuration produced by the method. To do so, the following SLA is considered with a maximum 
service latency ℓmax of 1s and a maximum service abandon rate αmax of 10%. That means that capacity 
planning must produce a service configuration with a minimal cost while guaranteeing that at least 90% 
of client requests are processed within 1s.  
 
Here, different workload mixes and different workload amount values are considered for the two-tier 
TPC-W Internet service. For each workload value, the proposed capacity planning method calculates an 
architectural configuration and a local configuration of the Internet service that are respectively presented 
in Figure 14 and Figure 15. Furthermore, we compare the result of the proposed capacity planning method 
with the result of another method based on an exhaustive search. This latter method performs a search on 
the set of possible architectural and local configurations of the Internet service. It compares all possible 
configurations and produces the optimal configuration that guarantees the SLA and minimizes the cost of 
the service.  
 
Figure 14 and Figure 15 compare the two methods with regard to their calculated architectural and local 
configurations, and show that the proposed capacity planning method produces the optimal configuration 
of the Internet service. 
 
 

Mix X2 Mix X1 
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Figure 14: Optimality of architectural configuration 

 
 

 
Figure 15: Optimality of local configuration 
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Adaptive Control Evaluation 
This section presents the evaluation of the MoKa-based control applied to the online two-tier TPC-W 
Internet service. Here, the SLA specifies a maximum service latency ℓmax of 1s and a maximum service 
abandon rate αmax of 5% (these values are chosen for illustration purposes, although ℓmax and αmax can 
have other values, e.g. αmax = 0% to represent a service that is always available). Figure 16 describes the 
variation over time of the Internet service workload, i.e. the variation of the workload mix from mix X1 to 
mix X2 and, for each mix, the variation of the workload amount between 250 and 1000 concurrent clients. 
In this context, the behavior of the MoKa-based controlled system is first compared with two baseline 
systems: one with a small (static) configuration κ1(2,<1,1>,<500,500>) and another with a larger (static) 
configuration κ2(2,<3,6>,<200,100>). Figure 17 and Figure 18 respectively present the service latency 
and service abandon rate of the multi-tier Internet service, comparing the MoKa-based controlled system 
with the two non-controlled baseline systems κ1 and κ2. These figures show that κ1 is not able to meet 
the SLA performance constraint, and that κ2 is not able to meet the SLA availability constraint when the 
workload is too heavy. In comparison, MoKa is able to control the configuration of the Internet service in 
order to meet SLA constraints. The different points where the MoKa-based controlled system is above the 
SLA limits correspond to the occurrence of workload changes and the necessary time for the system to 
reconfigure and stabilize. Here, there is an order of magnitude between the average latency of the non-
adaptive κ1 system and the average latency of the MoKa-based system; and there is a factor of 3 between 
the abandon rate of κ1 vs. the abandon rate of the MoKa-based system.  
 
The adapted architectural and local configurations of the MoKa-based controlled system are shown in 
Figure 19 and Figure 20, and the cost is given in Figure 21. This shows that MoKa is able to assign to the 
Internet service the strictly necessary servers to guarantee the SLA, with a saving of up to 67% of servers. 
Finally, MoKa is able to automatically detect service workload changes and self-calibrate with the current 
workload amount (N between 250 and 1000 in the present experiment), and the current workload mix 
(e.g. mix X1 (Z = 7 s; V <V1 = 1.0, V2 = 3.0>; S <S1 = 9 ms, S2 = 14 ms>; D <D1 = 0, D2 = 2 ms>), and 
mix X2 (Z = 7 s; V <V1 = 1.0, V2 = 1.5>; S <S1 = 11.5 ms, S2 = 27 ms>; D <D1 = 0, D2 = 4 ms>)) Based 
on this automatic MoKa calibration, optimal configuration is dynamically applied to the online service. 
 

 
Figure 16: Workload variation 
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Figure 17: Service latency with and without MoKa control 

 

Figure 18: Service abandon rate with and without MoKa control 
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Figure 19: Service architectural configuration with and without MoKa control 

 

 
Figure 20: Service local configuration with and without MoKa control 
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Figure 21: Service cost with and without MoKa control 

 
In addition to the previous comparison of MoKa with ad-hoc static configurations, we also compare 
MoKa with a linear control approach, a technique classically used for Internet service provisioning. Here 
again, the SLA specifies a maximum service latency ℓmax of 1s and a maximum service abandon rate αmax 
of 5%. And the Internet service workload varies over time, with a workload mix variation from mix X1 to 
mix X2 and a workload amount variation between 200 and 4000 concurrent clients. 
 
Roughly speaking, the linear control is first calibrated with two internal parameters: a reference service 
configuration κ0 and a reference workload amount N0. The reference workload amount is the maximum 
number of concurrent clients that the reference service configuration can handle while guaranteeing the 
SLA. These internal parameters of the linear controller are obtained through preliminary profiling of the 
Internet service. Afterwards, the controller applies a linear capacity planning method that simply 
calculates an architectural configuration that is proportional to the current workload amount N and the 
reference workload amount N0 and reference service configuration κ0. In the following experiments, the 
reference service configuration and workload amount for the calibration of the linear control are 
respectively κ0(<2,<1,3>,<600,200>) and N0 = 630 clients. 
 
Figure 22 and Figure 23 respectively present Internet service latency and abandon rate, and compare the 
MoKa-based controlled service with the linearly controlled service. The figures show that both control 
approaches are able to meet SLA requirements. However, MoKa keeps the latency and abandon rate near 
the SLA limits, which allows it to improve resource usage, and thus to reduce service cost compared to 
the linear control. This is shown in Figure 24 where, compared to MoKa optimal control, the linear 
control induces a cost overhead of 23%. 
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Figure 22: Service latency with different control techniques 

 
 

 
Figure 23: Service abandon rate with different control techniques 
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Figure 24: Service cost with different control techniques 

 
 

RELATED WORK 
The control of services to guarantee the SLA is a critical requirement for successful performance and 
availability management of Internet services (Loosley, 1997; Marcus, 2003; Menascé, 2001). The 
management of service performance and availability is usually achieved by system administrators using 
ad-hoc tuning (Brown, 2010; Microsoft, 2010). However, new approaches tend to appear to ease the 
management of such systems. These approaches differ with regard to several criteria: tackling 
performance and/or availability objectives, handling Internet service workload variations in terms of 
workload amount and/or workload mix, the used control techniques, and the applied control mechanism 
(i.e. actuators). 
 
Different control mechanisms may be considered to manage service performance and availability, such as 
server provisioning, admission control, service differentiation, service degradation, and request 
scheduling (Guitart, 2010). In the following, we will focus on approaches using the two first techniques, 
namely admission control for a local configuration of the concurrency level of a server, and server 
provisioning for an architectural configuration of the size of a replicated distributed Internet service. 
 
Admission control fixes the MPL concurrency level of a multi-programming system (e.g. multi-threaded 
servers). It has been extensively studied in server systems, and it was applied to a web 
server (Elnikety, 2004), a database server (Milan-Franco, 2004), or a multi-tier 
system (Menascé, EC 2001). Some admission control solutions are proposed in the form of 
heuristics (Heiss, 1991; Chen, 2003; Milan-Franco, 2004). Hill-climbing is a well-known heuristic 
applied in several solutions of admission control. These solutions have the advantage to be simple to 
implement; however, they provide a best-effort behavior without guarantees on the quality-of-service and 
SLA of the Internet services.  
 

Mix X2 Mix X1 
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Other approaches tend to provide strict guarantees on the quality-of-service, and are usually based on 
analytic models to characterize the system and control it. For instance, there are linear models and 
nonlinear models (Diao, 2002; Parekh, 2002; Tipper, 1990; Wang, 1996), queuing theory-based models 
or control theory-based models (Parekh, 2002; Diao, 2002; Malrait, 2009), models for central systems or 
for distributed services (Bouchenak, 2006; Sivasubramanian, 2006; Urgaonkar, 2007), used for providing 
guaranties on a unique QoS criterion or for combining multiple criteria (Chase, 2001; 
Menascé, EC 2001), applying a unique or multiple control mechanisms, i.e. actuators, (Diao, 2002; 
Milan-Franco, 2004). 
 
Other approaches control Internet services by provisioning/unprovisioning servers to the service. 
Autonomic provisioning of database servers is presented in (Chen, 2006), and server provisioning in 
multi-tier systems is described in (Bouchenak, 2006). While these systems are based on heuristics, other 
approaches tend to better characterize multi-tier applications through analytic modeling for provisioning 
multi-tier systems (Villela, 2007; Urgaonkar, 2007). However, these approaches are restricted to 
performance management and do not take into account service availability objectives. Furthermore, they 
require extensive model calibration with appropriate parameter values; and this calibration is tied to a 
given workload mix and must be changed each time the workload mix changes, which is not easily 
detectable. 
 
In summary, MoKa differs from the other approaches in many aspects: (i) it takes into account and 
combines service performance and service availability SLA objectives, (ii) it combines admission control 
with server provisioning for a better usage of resources and service cost minimization, and (iii) it 
automatically handles both workload amount and workload mix variations without requiring manual 
recalibration of MoKa for an adaptive control of Internet services. 
 
CONCLUSION 
This chapter presented MoKa, a system for adaptive control of Internet services to guarantee performance 
and availability objectives and to minimize cost. The contribution of MoKa is multifold. First, a utility 
function is defined to quantify the performance, availability and cost of distributed Internet services. 
Second, a utility-aware capacity planning method is developed; given SLA performance and availability 
constraints, it calculates a configuration of the Internet service that guarantees the constraints while 
minimizing the cost of the service. Third, a queuing theory-based analytic model of multi-tier Internet 
services is proposed; the model accurately predicts service performance, availability and cost, and is used 
as a basis of the capacity planning. Finally, an adaptive control of online Internet services is proposed in 
the form of a feedback control loop that automatically detects workload mix and workload amount 
variation, and reconfigures the service with its optimal configuration. 
 
The proposed model, capacity planning and control methods are implemented and applied to an online 
bookstore. The experiments show that the Internet service successfully self-adapts to both workload mix 
and workload amount variations, and present significant benefits in terms of service performance and 
availability, with a saving of resources underlying the Internet service. We hope that such a method will 
lead to a more principled, less ad-hoc implementations of resource management in Internet services and 
cloud computing environments. The reader is also suggested to consult Chapter 4 related to utility-aware 
performance management of composite services. 
 
ACKNOWLEDGEMENTS 
Experiments presented here were carried out using the Grid'5000 experimental testbed, being developed 
under the INRIA ALADDIN development action with support from CNRS, RENATER and several 
Universities as well as other funding bodies (Grid’5000, 2010). 
 



 31

REFERENCES 
M. Avriel. Nonlinear Programming: Analysis and Methods. Dover Publishing. 2003. 
 
G. E. P. Box, A. Luceno, et M. Del Carmen Paniagua-Quinones. Statistical Control by Monitoring and 
Adjustment. Broché, May 2009. 
 
M. Brown. Optimizing Apache Server Performance. Retrieved May 20, 2010, from 
http://www.serverwatch.com/tutorials/article.php/3436911 
 
J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle. Managing Energy and Server 
Resources in Hosting Centers. The 18th ACM Symposium on Operating Systems Principles (SOSP’01), 
New York, NY, USA, 2001. 
 
X. Chen, H. Chen, and P. Mohapatra. Aces : An Efficient Admission Control Scheme for QoS-aware 
Web Servers. Computer Communications, 26(14), Mar. 2003. 
 
J. Chen, G. Soundararajan, and C. Amza. Autonomic Provisioning of Backend Databases in Dynamic 
Content Web Servers. The 3rd IEEE International Conference on Autonomic Computing (ICAC 2006), 
Dublin, Ireland, Jun. 2006. 
 
Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury. Using MIMO Feedback Control to Enforce 
Policies for Interrelated Metrics with Application to the Apache Web Server. Network Operations and 
Management Symposium (NOMS), April 2002. 
 
Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, and M. Surendra. Controlling Quality of Service in 
Multi-Tier Web Applications. The 26th International Conference on Distributed Computing Systems 
(ICDCS 2006), Lisbon, Portugal, Jul. 2006. 
 
S. Elnikety, J. Tracey, E. Nahum, and W. Zwaenepoel. A method for transparent admission control and 
request scheduling in e-commerce web sites. The 13th International conference on World Wide Web 
(WWW 2004), New York, NY, USA, 2004. 
 
P. Ferguson, G. Huston. Quality of Service: Delivering QoS on the Internet and in Corporate Networks. 
John Wiley & Sons, 1998. 
 
Grid’5000. Grid’5000.  Retrieved May 20, 2010, from http://www.grid5000.fr/ 
 
J. Guitart, J. Torres, and E. Ayguadé. A Survey on Performance Management for Internet Applications. 
Concurrency Computation – Practice & Experience, 22(1), 2010. 
 
H.-U. Heiss and R. Wagner. Adaptive Load Control in Transaction Processing Systems. The 17th 
International Conference on Very Large Data Bases (VLDB 1991), Barcelona, Spain, Sep. 1991. 
 
C. Loosley, F. Douglas, and A. Mimo. High-Performance Client/Server. John Wiley & Sons, November 
1997. 
 
L. Malrait, S. Bouchenak, and N. Marchand. Fluid Modeling and Control for Server System Performance 
and Availability. The 39th Annual IEEE/IFIP Conference on Dependable Systems and Networks 
(DSN 2009), Jun. 2009. 
 



 32

L. Malrait, S. Bouchenak, and N. Marchand. Experience with ConSer: A System for Server Control 
Through Fluid Modeling. IEEE Transactions on Computers, 2010. 
 
E. Marcus and H. Stern. Blueprints for High Availability. Wiley, Sep. 2003. 
 
D. A. Menascé and V. A. F. Almeida. Capacity Planning for Web Services: Metrics, Models, and 
Methods. Prentice Hall, 2001. 
 
D. A. Menascé, D. Barbara, and R. Dodge. Preserving QoS of E-Commerce Sites Through Self-Tuning: 
A Performance Model Approach. The ACM Conference on Electronic Commerce (EC’01), Tampa, FL, 
Oct. 2001. 
 
J. Milan-Franco, R. Jimenez-Peris, M. Patino-Martinez, and B. Kemme. Adaptive Middleware for Data 
Replication. The 5th ACM/IFIP/USENIX international conference on Middleware (Middleware 2004), 
New York, NY, USA, 2004. 
 
Microsoft. Optimizing Database Performance.  Retrieved May 20, 2010, from 
http://msdn.microsoft.com/enus/library/aa273605(SQL.80).aspx 
 
S. S. Parekh, N. Gandhi, J. L. Hellerstein, D. M. Tilbury, T. S. Jayram, and J. P. Bigus. Using Control 
Theory to Achieve Service Level Objectives in Performance Management. Real-Time Systems, 23(1-2), 
2002. 
 
M. Reiser and S. S. Lavenberg. Mean-Value Analysis of Closed Multi-Chain Queuing Networks. Journal 
of the ACM, 27(2), pp. 313-322, 1980.  
 
S. Sivasubramanian, G. Pierre, M. van Steen, and S. Bhulai. SLA-Driven Resource Provisioning of Multi-
Tier Internet Applications. Technical Report, Department of Mathematics and Computer Science, Vrije 
Universiteit, Amsterdam, 2006. 
 
D. Tipper and M. Sundareshan. Numerical Methods for Modeling Computer Networks Under 
Nonstationary Conditions. IEEE Journal on Selected Areas in Communications, 8(9), Dec. 1990. 
 
TPC-W. TPC-W: a transactional web e-Commerce benchmark.  Retrieved May 20, 2010, from 
http://www.tpc.org/tpcw/ 
 
B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. Analytic Modeling of Multi-Tier 
Internet Applications. ACM Transactions on theWeb (ACM TWEB), 1(1), 2007. 
 
D. Villela, P. Pradhan, and D. Rubenstein. Provisioning Servers in the Application Tier for E-Commerce 
Systems. ACM Transactions Interet Technolies, 7(1), 2007. 
 
W.-P. Wang, D. Tipper, and S. Banerjee. A Simple Approximation for Modeling Nonstationary Queues. 
The 15th Annual Joint Conference of the IEEE Computer and Communications Societies, Networking the 
Next Generation (IEEE INFOCOM' 96), San Francisco, CA, USA, Mar. 1996. 
 
Q. Zhang, L. Cherkasova, and N. Mi. A Regression-Based Analytic Model for Capacity Planning of 
Multi-Tier Applications. Journal of Cluster Computing, 11(3), 2008. 
 


