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Abstract

This paper deals with methods exploiting tree-

et al, 2004 for more details). They rely on the notion of
tree-decomposition of the constraint graph. They aim te-clu

decomposition approaches for solving constraint
networks. We consider here the practical efficiency
of these approaches by defining five classes of vari-
able orders more and more dynamic which pre-
serve the time complexity bound. For that, we de-
fine extensions of this theoretical time complexity
bound to increase the dynamic aspect of these or-
ders. We define a constah@llowing us to extend
the classical bound fro@(exp(w + 1)) firstly to
O(exp(w + k + 1)), and finally toO(exzp(2(w +
k+1)—s7)), with w the "tree-width” of a CSP and

s~ the minimum size of its separators. Finally, we
assess the defined theoretical extension of the time

ter variables such that the cluster arrangement is a tree. De
pending on the instances, we can expect a significant gain
w.r.t. enumerative approaches. Most of works based on this
approach only present theoretical results. Ex¢Guittlob et

al., 2002; Jégou and Terrioux, 20080 practical results have
been provided. So, we study these approaches by concentrat-
ing us on the BTD metholégou and Terrioux, 2008hich
seems to be the most effective method proposed until now
within the framework of these structural methods.

While the problem of finding the best decomposition has
been studied in the literature firstly from a theoreticahpoff
view, recently, some studies have been realized in the ffeld o
CSP, integrating as quality parameter for a decompositi®n,

efficiency for solving the considered C&Rgotet al, 2004.
Yet, these studies do not consider the questions related to a
) efficient use of the considered decompositions.
1 Introduction This paper deals with this question. Given a tree-
The CSP formalism (Constraint Satisfaction Problem) sffer decomposition, we study the problem of finding good orders
a powerful framework for representing and solving effidignt 0n variables for exploiting this decomposition. As preseint
many problems. Modeling a problem as a CSP consists ifn [Jégou and Terrioux, 20Q3the order on the variables is
defining a setX of variablesz, xs, ... z,, which must be static and compatible with a depth first traversal of the as-
assigned in their respective finite domain, by satisfyingta s sociated cluster tree. Since enumerative methods highligh
C of constraints which express restrictions between the difthe efficiency of dynamic variable orders, we give condi-
ferent possible assignments. A solution is an assignment dfons which allow to exploit in a more dynamic way the tree-
every variable which satisfies all the constraints. Deteimgg ~ decomposition and guarantee the time complexity bound. We
if a solution exists is a NP-complete problem. propose five classes of orders respecting these conditions,
The usual method for solving CSPs is based on backtrackef them giving more freedom to order variables dynamically.
ing search, which, in order to be efficient, must use botfrfilte Consequently, their time complexity possess larger baunds
ing techniques and heuristics for choosing the next vagiabl O(ezp(w + k + 1)) andO(exp(2(w + k +1) — s7)), where
or value. This approach, often efficient in practice, has ark is a constant to parameterize astd the minimum size of
exponential theoretical time complexity@e.d™) foranin- ~ separators. Based on the properties of these classes, we ex-
stance having variables ana constraints and whose largest ploit several heuristics which aim to compute a good order on
domain hasi values. Several works have been developed¢lusters and more generally on variables. They rely on topo-
in order to provide better theoretical complexity bounds ac logical and semantic properties of CSP instance. Heusistic
cording to particular features of the instance. The besnkno based on the expected number of solutions enhance signifi-
complexity bounds are given by the "tree-width” of a CSP cantly the performances of BTD. Meanwhile, those based on
(often denotedv). This parameter is related to some topolog-the cluster size or on the dynamic variable ordering hearist
ical properties of the constraint graph which represergs thprovide often similar improvements and may outperform the
interactions between variables via the constraints. tidaa  first ones on real-world instances. Finally, we report here e
a time complexity inO(n.d**1) (denotedO(exp(w + 1))).  Periments to assess the interest of the extensions baskd on t
Different methods have been proposed to reach this boun@me complexity bound.
like Tree-ClusterindDechter and Pearl, 1988see[Gottlob This paper is organized as follows. The next section pro-

complexity bound from a practical viewpoint.



vides basic notions about CSPs and methods based on trew-the search space will not be visited again as soon as their
decompositions. Then, in section 3, we define several dasseonsistency is known. This is possible by using the notion
of variable orders which preserve the classical bounds foof structural good A good is a consistent partial assignment
time complexity. Section 4 introduces two extensions gjvin on a set of variables, namely a separator (i.e. an intecsecti
new time complexity bounds. Section 5 is devoted to experbetween two clusters), such that the part of the CSP located
imental results to assess the practical interest of ourqeiep after the separator is consistent and admits a solution com-
tions. Finally, in section 6, we summarize this work and wepatible with the good. So, it is not necessary to explore this

outline some future works. part because we know its consistency. Thirdly, some parts of
the search space will not be visited again if we know that the
2 Preliminaries current instantiation leads to a failure. This is possiblap-

plying the notion ofstructural nogood A structural nogood
A constraint satisfaction problefCSP) is defined by a tu- is a particular kind of nogood justified by structural proper
ple(X,D,C). X isaset{z1,...,x,} of n variables. Each ties of the constraints network: the part of the CSP located
variablez; takes its values in the finite domaif, from D. after the nogood is not consistent (a nogood is a consistent
The variables are subject to the constraints fildonGiven an  assignment of a separator of the graph).
instance(X, D, C), the CSP problem consists in determin-  To satisfy the complexity bounds, the variable ordering
ing if there is an assignment of each variable which satisfiegxploited in BTD is related to the cluster ordering. For-
each constraint. This problem is NP-complete. In this papemally, let us consider a tree-decompositiéh 7') of the CSP
without loss of generality, we only consider binary conistts ~ with 7 = (I, F) a tree and assume that the elements of
(i.e. constraints which involve two variables). So, theistr E = {E; : i € I} are indexed w.r.t. @ompatible numera-
ture of a CSP can be represented by the g@piC), called  tion. A numeration orZ compatible with a prefix numeration
the constraint graph The vertices of this graph are the vari- of T = (I, F) with E; the root is called compatible numer-
ables ofX and an edge joins two vertices if the correspondingation. An order<x of variables ofX such thatvz € E;,
variables share a constraint. Vy € E;, withi < j, ¢ <x y is a compatible enumeration
Tree-ClusteringDechter and Pearl, 1988 the reference order. The numeration on the clusters gives a partial oder o
method for solving CSPs thanks to the structure of its conthe variables since the variables in thegare assigned before
straint graph. It is based on the notion of tree-decompmwsiti those inE; if ¢ < j, except variables in the descent of a good,
of graphgRobertson and Seymour, 198&etG = (X, C) namely those located in the subproblem rooted on the cluster
be a graph, &ree-decompositionf G is a pair(E, T') where  containing the good. In fact, using goods and nogoods allows
T = (I, F) is a tree with nodeg and edged’ and E =  not to explore twice subproblems if their consistency (imco
{E; : i € I} a family of subsets ofX, such that each sistency) with the current assignment is known. If we use
subset (called clusterl; is a node ofI" and verifies: (i) a good to avoid visiting again a subtree, we known that the
Uier E; = X, (ii) for each edge{z,y} € C, there exists variables in it can be assigned consistently with the ctirren
i € I'with {z,y} C E;, and (iii) forall4, j,k € I,if kisina  assignment. So BTD does not assign them effectively, but
path from; to j in T', thenE; N E; C E. they are considered done. For consistent problems, an addi-
The width of a tree-decompositiofF,T") is equal to tional work must be performed to assign these variables if we
maz;cr|E;| — 1. Thetree-widthw of G is the minimal width  want to provide a solutiofJégou and Terrioux, 2004They
over all the tree-decompositions Gf are namedonsistently assignable variabléganks to a good.
Assume that we have a tree-decomposition of mini-Thus the variables itl; are assigned if the variables ity
mal width @), the time complexity of Tree-Clustering is are either already assigned or consistently assignabtésha
O(exp(w + 1)) while its space complexity can be reducedto a good. To complete this order, we have to choose vari-
to O(n.s.d*) with s the size of the largest minimal sepa- able ordering heuristics inside a cluster. Finally, a cotibpa
rators of the grapfiDechter and Fattah, 20D1 Note that ~enumeration order on the variables is given by a compatible
Tree-Clustering does not provide interesting results acpr numeration on clusters and a variable order in each cluster.
tical cases. So, an alternative approach, also based on tree In [Jégou and Terrioux, 2003; 2004he presented results
decomposition of graphs was proposedJdégou and Ter- were obtained without heuristics for the choice of the clus-
rioux, 2003. This method is called BTD (for Backtracking ters and thus the choice of the variables. Only a traditional
with Tree-Decomposition) and seems to provide among thelynamic order was used inside the clusters. Obviously, the
best empirical results obtained by structural methods. variable ordering have a great impact on the efficiency of enu
The BTD method proceeds by an enumerative searcmerative methods. Thus, we study here how the benefits of
guided by a static pre-established partial order induced byariable orderings can be fully exploited in BTD. Neverthe-
a tree-decomposition of the constraint-network. So, tist fir less, to guarantee the time complexity bounds, it is necgssa
step of BTD consists in computing a tree-decomposition. Théo respect some conditions. So, in the next section, we define
obtained tree-decomposition allows to exploit some stmatt ~ classes of orders guaranteeing complexity bounds.
properties of the graph, during the search, in order to prune
some branches of the search tree, what distinguishes BT ; ;
from other classical techniques. Firstly, the order forake @ Dynamic orders in O(exp(w T 1))
signment of the variables is induced by the considered treeFhe first version of BTD was defined with a compatible static
decomposition of the constraint graph. Secondly, somes partvariable ordering. We prove here that it is possible to aersi



more dynamic orders without loosing the complexity boundsagain. Thus the time complexity bound is not guaranteed any-
The defined classes contain orders more and more dynamimore. Meanwhile, th€lass 3orders guarantee this bound.

These orders are in fact provided by the cluster order and thgheorem 1 Let the enumeration order be in the Class 3, the
variable ordering inside each cluster. time complexity of BTD i€)(eap(w + 1)).
Let (X, D,C) be a CSP andFE, T') a tree-decomposition of . .

Proof We consider a clusteE; in the cluster tree, and we

the graph X, C'), we exploit an ordet; on the subproblems h .
graphiX, ) P P must prove that any assignmentbipis computed only once.

Pi,, ..., Py, rooted on the son&;, of E; and an ordery;
on the variables inv;. We define recursively the following Let E; be .the cluster parent df; and suppose that all the
yariables inE; are assigned and those ity — (E; N E;)

classes of orders. In the three next classes, we choosesthe fi ) h der bel o h iab]
cluster to assign (the root)s; among all the clusters and &€ Not. Since the order belongs to iass 3 the variables

we considefP; the subproblem rooted aof; (i.e. the whole of the clusters on the path from the root & are already
problem). assigned and those in the subtree rootedEgmot yet. A

o ) ) consistent assignmegton £; N E; is computed at the latest
Definition 1 We begin the search if, and we try recur-  ywhen the variables ir; are assigned (before those in the
sively to extend the current assignment on the subproblemgpproblem rooted itk;). Solving this subproblem leads to
rooted onk; by assigning first the variables ifi; accord- 3 fajlure or a solution. In each casé,is recorded as a good

ing to~; and then orP;,, ..., P;, according too;. or nogood. Letd’ be an assignment ofi; compatible with
e Class 1. o, and v; are static. We computer; and;  A. The next assignment of variables #) leading to.A on
statically (before starting the search). E; N E; will not be pursued on the subproblem rootedion

A’ is not computed twice, only the variablesih N E; are

assigned again. So the time complexityigezp(w +1)). O

The properties of th€lass 3offer more possibilities in the

e Class 3. 0; and ; are dynamic. Both,o; andy; are  variable ordering. So it is possible to choose any cluster to
computed during the searchr; is computed w.r.t. the visit next among the sons of the current cluster. And in each
current assignment as soon as all the variablestin  cluster, the variable ordering is totally free. In sectiomé
are assigned. propose two natural extensions of the complexity bound.

e Class ++. Enumerative dynamic order. The variable . )
ordering is completely dynamic. So, the assignment or4 Bounded extensions of dynamic orders

der is not necessarily a compatible enumeration orderyye propose two extensions based on the ability given to the

e Class 2. o; is static and ~; is dynamic. We compute
staticallyo;, while~; is computed during the search.

There is no restriction due to the cluster tree. heuristics to choose the next variable to assign not only in
The defined classes form a hierarchy since we h@ass 1  one cluster, but also amorigvariables in a path rooted on
C Class 2C Class 3c Class ++ the cluster that verifies some properties. So, we define two
Property of the Class 3. LetY be an assignment, € E; — new classes of orders extendi@tpss 3 First, we propose a

(E; N E;) with E; the parent of;: z € Y iff: i) Vv € E;, generalization of the tree-decomposition definition.

v € Vi) Let E;, = Ej, VP;, st. 0(Pi,) < 0i(Pi,),  Definition 2 Let G = (X, C) be a graph and: a positive

Vv € Py, v €Y i) Vv € Ej s.t.y;(v) < v;(x),veY. integer, the set of directek-covering tree-decompositions of
In [Jégou and Terrioux, 2003he experiments usglass 2 3 tree-decompositiotZ, T') of G with E; its root cluster, is

orders. Formally, only the order_s of tidass lare compati- defined by the set of tree-decompositi¢a%, 7”) of G that
ble. Nevertheless, for an ordey in the Class 3and a given  yerify:

assignment4, one can find an order; in the Class 1that P o
instantiates the variables ja in the same way and the same ~ ° Er C By, B} the root cluster of £/, T")

orderos does. This property gives to ti@lass 3(thusClass e VE; € E',E{ CE; UE;,U...UE;, andE;, UE;, U
2) orders the ability of recording goods and nogoods and us-  ...U E;, 1 C Ej, with E;, ... E;, apathinT
ing them to prune branches in the same Wzigss lorders o |E!| <w+k+1,wherew = marp,cp|E:i| — 1

do. TheClass ++ gives a complete freedom. Yet, it does not . -
guarantee the time complexity bound because sometimes it ‘\‘J,OW’ we give a definition of th€lass 4

impossible to record nogoods. Indeed, let the cluBtebe a  Definition 3 Let (X,D,C) be a CSP,(E,T) a tree-

son of the clusteF;, we suppose that the enumeration orderdecomposition of the graph (X,C) arida positive integer.
assigns the variables i, except those irfs; N E;, as well A variable order is in theClass 4, if this order is in the Class

as the variables in the clusters which are on the path from th@ for one directed:-covering tree-decomposition @f, T').

root cluster toF;. Let, the next variable to assign, bel}  \ve derive a natural theorem:

and not inE; N E;. If the solving of the subtree rooted on . .

E; leads to a failure, it is impossible to record a nogood on! "€orem 2 Let the enumeration order be in the Class 4, the
E; N E; (if itis consistently assigned) because we do not trylime complexity of BTD i®)(exp(w + k + 1)).

the other values of to prove that the assignment é) N E; Proof This proof is similar to one given for Class 3 since we
cannot be consistently extended on this subtree. If the sulzan consider that BTD runs on a tree-decompositigh 7”)
problem has a solution, we can record a good. Actually, thif width at mostw + k£ + 1. O

solution is a consistent extension of the assignmef,onF; A second extension is possible in exploiting during the
which is a good. A nogood not recorded could be computedearch, a dynamic computing of the tree-decomposition (we



can use several directédcovering tree-decompositions dur- In practice, we assess here the proposed strategies ommando
ing the search). Then, the time complexity bound changepartial structured CSPs in order to point up the best ones w.r
because sometimes it would be impossible to record nogood€SP solving. For building a random partial structured in-

Definition 4 Let (X,D,C) be a CSP,(E,T) a tree-
decomposition of the graph (X,C) akda positive integer. A
variable orderos is in theClass 5, if for a given assignment
A, one can find one directeld-covering tree-decomposition
(E',T") of (E,T) such thatvE! € E', E/ = E;, UE;, U
.. UE,,withE; ...FE;, apathinT and find an ordepbs

on (E’,T"), in the Class 3 that instantiates the variables in

A in the same way and the same ordgrdoes.

This definition enforces to use directédcovering tree-
decompositiongE’, T") of (E, T) that verify the additional
condition:VE! € E', E/ = E;, UE;,, U...UE;,. Hence, a
separator ifE’,T") is also a separator if£, T'). We denote
by s~ the minimum size of separators (&, T').

Theorem 3 Let the enumeration order be in the Class 5, th
time complexity of BTD i€ (exp(2(w + k + 1) — s7)).

Proof Let (X, D, C) be a CSP(E, T') a tree-decomposition
of the graph( X, C) andE; its root cluster. We have to prove
that any assignment on a $ébf 2(w+k+ 1) — s~ variables
on a path of the tre& is computed only once. Letl be an
assignment containinyy. The order in which the variables
of A were assigned is in th@lass 3for a directed:-covering
tree-decompositiofE”’, T") of (E, T') that verifiesYE} € E’,
E; = Ei1 UEZ'2 U.. .UEZ'R, with Eil - EiR a path in". The
size of the clusters ifE’, T") is bound byw+k+1, so the set
V is covered by at least two clusters sinceis the minimum
size of the separators. L&t ... E; be a path on£’,T")

coveringV. The solving of the subproblem rooted @fj

with the assignmentl leads to the recording of (no)goods on

the separators of these clusters.Elf is the root cluster of
(E',T"), thenV containsE;. Thus.A will not be computed
again because it contains the first variables in the seareh.
suppose thak; is not the root cluster ofE’, 7). Sinceq >

2, we record a (no)good on the separatoff and its parent
and at least an other on the separataEpfandE;, . Let3 be

a new assignment that we try to extend 6rwith the same
values inA. One of the (no)goods will be computed first

Thus before all the variables ¥ are assigned, the search is

stopped thanks to this (no)good. dds not computed again.
We prove that any assignment &hnis computed only oncel

Note that the new defined classes are included in the hi
archy presented in section 8lass iC Class j if i < j and
for1 <i < j <5, with alsoClass 5C Class ++.

To define the value ok, we have several approaches to

choose variables to group. A good one consists in trying
reduce the value of the parameteand, by this way, to en-

hance the space complexity bound. Then, we can observe that
grouping clusters with large separators permits to achéeve

significant reduction of.

5 Experimental study

Applying a structural method on an instance generally as-

sumes that this instance presents some particular topalog

stance of a clas&, d, w, t, s, n., p), the first step consists in
producing randomly a structured CSP according to the model
described ifJégou and Terrioux, 2003This structured in-
stance consists of variables having values in their domain.

Its constraint graph is a clique tree with cliques whose
size is at mostv and whose separator size does not exceed
s. Each constraint forbids tuples. Then, the second step
removes randomly% edges from the structured instance.
Secondly, we experiment the proposed heuristics on bench-
mark instances of the CP’2005 solver competitiohll these
experimentations are performed on a Linux-based PC with a
Pentium IV 3.2GHz and 1GB of memory. For each consid-
ered random patrtial structured instance class, the peent
results are the average on instances solved over 50. We limit
ethe runtime to 30 minutes for random instances and to 10 min-
utes for CP’2005 benchmark instances. Above, the solver is
stopped and the involved instance is considered as unsolved
(what is denoted by the letter T in tables). In the following
tables, the letter M means that at least one instance caenot b
solved because it requires more than 1GB of memory.

In [Jégouet al, 2009, a study was performed on triangu-
lation algorithms to find out the best way to compute a good
tree-decomposition w.r.t. CSP solving. As MCRrjan and
Yannakakis, 1984obtains the best results and is very easy
to implement, we use it to compute tree-decompositions in
this study. We do not provide the results obtained by clas-
sical enumerative algorithms like FC or MAC since they are
often unable to solve several instances of each class v@thin
minutes.

Here, for lack of place, we only present the more efficient
heuristics:

w @ minexzp(A): this heuristic is based on the expected num-
ber of partial solutions of clustef$mith, 1994 and on
their size. It chooses as root cluster one which minimizes
the ratio between the expected number of solutions and
the size of the cluster.

size(B): we choose the cluster of maximum size as root
cluster

minexps(C): this heuristic is similar taninezp and or-
ders the son clusters according to the increasing value of
their ratio.

minseps (D). we order the son clusters according to the
increasing size of their separator with their parent.

nv(E): we choose a dynamic variable ordering heuristic
and we visit first the son cluster where appears the next
variable in the heuristic order among the variables of the
unvisited son clusters.

minezpsayn (F'): the next cluster to visit minimizes the
ratio between the current expected number of solutions
and the size of the cluster. The current expected num-
ber of solutions of a cluster is modified by filtering the
domains of unassigned variables.

er-

to ®

features. So, our study is first performed on instances hav- !This competition held during the Second International Work
ing a structure which can be exploited by structural methodsshop on Constraint Propagation and Implementation of G520



CSP Class 1 Class 2 Class 3 Class 4

wT s B A B A A B B A A B

(n,d,w,t,s,nc,p) D C D C F G D C F G
(150, 25,15, 215,5,15,10) | 13.00 | 12.22 931 28.12| 341 2.52 245 534] 275] 217 2.08| 2.65
(150, 25,15,237,5,15,20) | 12.54 | 11.90 9.99 5.27 5.10 2.47 1.99 5.47 2.58 1.76 1.63 2.97
(150,25,15,257,5,15,30) | 12.16 | 11.40 | 13.36 | 27.82 3.38 5.06 4.97 3.55 1.41 1.05 1.13 1.30
(150, 25,15, 285, 5,15,40) | 11.52 | 10.64 3.07 8.77 1.13 0.87 1.27 1.17 1.67 0.39 0.63 1.75
(250, 20, 20, 107, 5,20,10) | 17.82 | 16.92 | 5459 | 57.75| 15.92 | 12.39| 12.14| 14.93| 10.18| 7.75 7.34 | 10.26
(250, 20,20,117,5,20,20) | 17.24 | 16.56 | 55.39 | 79.80| 23.38 | 14.26| 13.25| 24.14 | 10.05| 8.81 8.39 | 10.34
(250, 20, 20,129,5,20,30) | 16.80 | 15.80 | 26.21| 21.14| 7.23 5.51 6.19| 7.84| 33.93| 4.61| 4.41| 34.20
(250, 20, 20, 146, 5,20,40) | 15.92 | 15.24 | 44.60| 30.17 | 26.24 3.91 451 | 17.99| 11.38 3.17 3.17 | 10.63
(250, 25,15,211,5,25,10) | 13.04 | 12.34| 28.86| 38.75| 15.33| 11.67| 13.37| 18.12| 586 | 7.71| 6.65| 6.44
(250, 25,15, 230, 5,25,20) | 12.86 | 11.98 | 20.21 | 34.47 8.60 7.12| 1484 | 19.47| 4.19 3.94 3.36 6.81
(250, 25,15,253,5,25,30) | 12.38| 11.82| 11.36| 16.91| 5.18| 11.13 5.14| 5.26| 2.80| 3.71| 352 3.06
(250, 25, 15, 280, 5,25,40) | 11.80 | 11.16 756 | 32.74| 3.67| 16.32| 17.49| 4.91 4.03 1.40 1.26 3.55
(250, 20, 20,99, 10, 25,10) | 17.92 | 17.02 M M M M M M | 66.94 | 63.15| 62.99 | 66.33
(500, 20, 15,123, 5,50,10) | 13.04 | 12.58 | 12.60| 13.63 7.01 8.08 7.31 7.54 5.48 4.50 4.41 5.86
(500, 20, 15,136, 5,50,20) | 12.94 | 12.10| 47.16 | 19.22| 25.54 | 23.49| 27.01| 15.11| 4.86 4,92 3.94 5.24

Table 1: Parameters™ ands of the tree-decomposition and runtime (in s) on random a@lastiuctured CSPs witm.dd for

class 1 andnddgy,, for classes 2, 3 and 4.

CSP Class 1 Class 2 Class 3

Instance n e wt s B A B A A E B

D D C c F G G
gab 26 309 | 25 9] 32.01] 132.82 2.67| 77.82| 84.19| 80.86 2.62
qcp-10-64-45-QWH-10 | 100 900 | 91 82 T M 69.83 T T 70.10| 69.82
qcp-15-120-278-QWH-15 225 | 3,150| 211 | 197 T T | 120.69| 10.47| 10.92| 122.26| 122.47
gwh-15-106-392-QWH-15 225 | 3,150 | 211 | 197 T M 0.89| 169.49| 181.18 0.86 0.89
gwh-15-106-974-QWH-1% 225 | 3,150 211 | 197 T 94.58 255 | 75.77| 79.46 2.67 2.54

Table 2: Parameters™ and s of the tree-decomposition and runtime (in s) on some ing@rfiom the CP’2005 solver
competition withmdd for class 1 andnddg,,, for classes 2 and 3.

o Ny, (G): it is similar to nv. We visit first the son  intersection is greater than a valsig,,). Table 1 gives the
cluster where appears the next variable in the heuristicuntime of BTD for this class witls,,, .. = 5.
order among the variables of the unvisited son clusters. \yhen we analyze the value of the paramétawe observe
that its value is generally limited (between 1 to 6). Neverth
less, for the CSP&50, 20, 20, 99, 10, 25, 10), the value ofk
is near 40, but this high value allows to solve these instance

Inside a cluster, the heuristic used for choosing the naxt va
able is min domain/degree (static versionld, for class 1
and dynamienddg,, for the other classes).

Table 1 shows the runtime of BTD with several heuristics T he heuristics for the Classes 2 and 3 improve very sig-
of Classes 1, 2, 3 and 4. For Class 5, we cannot get good r(!guflc_:antly _the resglts obtained. The_ impact of the dyna}mm—
sults and then, the results are not presented. Also it pieserty 1S obvious. minezp andnv heuristics solve all the in-
the width of the computed tree-decomposition and the max$tances except one due to a bad root cluster cheigesolve
imum size of the separators. Clearly, we observe that Clas3ll the instances. Except the unsolved instamegezp ob-

1 orders obtain poor results. This behaviour is not sumpgisi fains very promising results. The son cluster ordering has
since static variable orders are well known to be inefficien limited effect because the instances considered have a few
compared to dynamic ones. A dynamic strategy allows t6On clusters reducing the posgble ch0|pes and so their im-
make good choices by taking in account the modifications oPact. We can expect a more important improvement for in-
the problem during search. Thus these choices are more jugt@nces with more son clusters. The best results are odtaine
tified than in a static case. That explains the good results Y TMANETP ~+ MINETPsdyn. but size + minseps obyalns of- _
Classes 2 and 3 orders. The results show as well the cruciign Similar results and succeed in solving all instances in
importance of the root cluster choice since each heurigtic ofhe Class 4 The calculus of the expected number of solu-
the Classes 2 and 3 fails to solve an average of 4 instancd@n assumes that the problem constraints are independent,
over all instances of all classes because of a bad choice ¥fhat is the case for the problems considered here. Thus,
root cluster. We note that the unsolved instances are not th@z€ + minsep may outperformminezp + minerpsqyn ON
same forsize andminezp heuristics. The memory problems real-world problems which have dependent constraints.
marked by M can be solved by usin@tass 4order with the When we observe the results in table 1, we see the rele-
sep heuristic for grouping variables (we merge cluster whosevance of extending the dynamic order. Merging clusters with



k less than 6 decreases the maximal size of separators andConcerning heuristics, we exploit the notion of expected
allows a more dynamic ordering of variables. That leads taaumber of partial solutions in order to guide the travergal o
an important reduction of the runtime. These experimentshe cluster tree during the solving. Even though the other
highlight the importance of dynamic orders and make us conheuristics presentecite + minsep) are less efficient, of-
clude that the Class 4 gives the best variable orders w.Pt CSten they obtain similar results. They are also more general
solving with a good value ok. Of course, this behaviour what induces a stabler behaviour. So, on real-world prob-
has been observed on random instances. The next step of dems with dependent constraints, they may outperform the ex
study consists in assessing the proposed heuristics ommbengected number of solutions based heuristics. TherCkass
mark instances of the CP’2005 solver competition. At the4, we aim to improve the criteria used to compute the value
beginning of the section, we reminded that structural methef k£ and to define more general ones by exploiting better the
ods like BTD assume the CSP has interesting topological fegproblem features.
tures. This is not the case for a great part of instances of This study will be pursued on the Valued CYBghiexet
this competition. Since the space complexity of BTD is inal., 1999 which are well known to be more difficult.
O(n.s.d?), if the size of the cluster separators of the com-
puted tree-decomposition of CSP is too large, the methodcknowledgments
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