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Abstract

This paper deals with methods exploiting tree-
decomposition approaches for solving constraint
networks. We consider here the practical efficiency
of these approaches by defining five classes of vari-
able orders more and more dynamic which pre-
serve the time complexity bound. For that, we de-
fine extensions of this theoretical time complexity
bound to increase the dynamic aspect of these or-
ders. We define a constantk allowing us to extend
the classical bound fromO(exp(w + 1)) firstly to
O(exp(w + k + 1)), and finally toO(exp(2(w +
k+1)−s−)), with w the ”tree-width” of a CSP and
s− the minimum size of its separators. Finally, we
assess the defined theoretical extension of the time
complexity bound from a practical viewpoint.

1 Introduction
The CSP formalism (Constraint Satisfaction Problem) offers
a powerful framework for representing and solving efficiently
many problems. Modeling a problem as a CSP consists in
defining a setX of variablesx1, x2, . . . xn, which must be
assigned in their respective finite domain, by satisfying a set
C of constraints which express restrictions between the dif-
ferent possible assignments. A solution is an assignment of
every variable which satisfies all the constraints. Determining
if a solution exists is a NP-complete problem.

The usual method for solving CSPs is based on backtrack-
ing search, which, in order to be efficient, must use both filter-
ing techniques and heuristics for choosing the next variable
or value. This approach, often efficient in practice, has an
exponential theoretical time complexity inO(e.dn) for an in-
stance havingn variables ande constraints and whose largest
domain hasd values. Several works have been developed,
in order to provide better theoretical complexity bounds ac-
cording to particular features of the instance. The best known
complexity bounds are given by the ”tree-width” of a CSP
(often denotedw). This parameter is related to some topolog-
ical properties of the constraint graph which represents the
interactions between variables via the constraints. It leads to
a time complexity inO(n.dw+1) (denotedO(exp(w + 1))).
Different methods have been proposed to reach this bound
like Tree-Clustering[Dechter and Pearl, 1989] (see[Gottlob

et al., 2000] for more details). They rely on the notion of
tree-decomposition of the constraint graph. They aim to clus-
ter variables such that the cluster arrangement is a tree. De-
pending on the instances, we can expect a significant gain
w.r.t. enumerative approaches. Most of works based on this
approach only present theoretical results. Except[Gottlobet
al., 2002; Jégou and Terrioux, 2003], no practical results have
been provided. So, we study these approaches by concentrat-
ing us on the BTD method[Jégou and Terrioux, 2003] which
seems to be the most effective method proposed until now
within the framework of these structural methods.

While the problem of finding the best decomposition has
been studied in the literature firstly from a theoretical point of
view, recently, some studies have been realized in the field of
CSP, integrating as quality parameter for a decomposition,its
efficiency for solving the considered CSP[Jégouet al., 2005].
Yet, these studies do not consider the questions related to an
efficient use of the considered decompositions.

This paper deals with this question. Given a tree-
decomposition, we study the problem of finding good orders
on variables for exploiting this decomposition. As presented
in [Jégou and Terrioux, 2003], the order on the variables is
static and compatible with a depth first traversal of the as-
sociated cluster tree. Since enumerative methods highlight
the efficiency of dynamic variable orders, we give condi-
tions which allow to exploit in a more dynamic way the tree-
decomposition and guarantee the time complexity bound. We
propose five classes of orders respecting these conditions,two
of them giving more freedom to order variables dynamically.
Consequently, their time complexity possess larger bounds:
O(exp(w + k + 1)) andO(exp(2(w + k + 1)− s−)), where
k is a constant to parameterize ands− the minimum size of
separators. Based on the properties of these classes, we ex-
ploit several heuristics which aim to compute a good order on
clusters and more generally on variables. They rely on topo-
logical and semantic properties of CSP instance. Heuristics
based on the expected number of solutions enhance signifi-
cantly the performances of BTD. Meanwhile, those based on
the cluster size or on the dynamic variable ordering heuristic
provide often similar improvements and may outperform the
first ones on real-world instances. Finally, we report here ex-
periments to assess the interest of the extensions based on the
time complexity bound.

This paper is organized as follows. The next section pro-



vides basic notions about CSPs and methods based on tree-
decompositions. Then, in section 3, we define several classes
of variable orders which preserve the classical bounds for
time complexity. Section 4 introduces two extensions giving
new time complexity bounds. Section 5 is devoted to exper-
imental results to assess the practical interest of our proposi-
tions. Finally, in section 6, we summarize this work and we
outline some future works.

2 Preliminaries
A constraint satisfaction problem(CSP) is defined by a tu-
ple (X, D, C). X is a set{x1, . . . , xn} of n variables. Each
variablexi takes its values in the finite domaindxi

from D.
The variables are subject to the constraints fromC. Given an
instance(X, D, C), the CSP problem consists in determin-
ing if there is an assignment of each variable which satisfies
each constraint. This problem is NP-complete. In this paper,
without loss of generality, we only consider binary constraints
(i.e. constraints which involve two variables). So, the struc-
ture of a CSP can be represented by the graph(X, C), called
theconstraint graph. The vertices of this graph are the vari-
ables ofX and an edge joins two vertices if the corresponding
variables share a constraint.

Tree-Clustering[Dechter and Pearl, 1989] is the reference
method for solving CSPs thanks to the structure of its con-
straint graph. It is based on the notion of tree-decomposition
of graphs[Robertson and Seymour, 1986]. Let G = (X, C)
be a graph, atree-decompositionof G is a pair(E, T ) where
T = (I, F ) is a tree with nodesI and edgesF andE =
{Ei : i ∈ I} a family of subsets ofX , such that each
subset (called cluster)Ei is a node ofT and verifies: (i)
∪i∈IEi = X , (ii) for each edge{x, y} ∈ C, there exists
i ∈ I with {x, y} ⊆ Ei, and (iii) for all i, j, k ∈ I, if k is in a
path fromi to j in T , thenEi ∩ Ej ⊆ Ek.

The width of a tree-decomposition(E, T ) is equal to
maxi∈I |Ei|− 1. Thetree-widthw of G is the minimal width
over all the tree-decompositions ofG.

Assume that we have a tree-decomposition of mini-
mal width (w), the time complexity of Tree-Clustering is
O(exp(w + 1)) while its space complexity can be reduced
to O(n.s.ds) with s the size of the largest minimal sepa-
rators of the graph[Dechter and Fattah, 2001]. Note that
Tree-Clustering does not provide interesting results in prac-
tical cases. So, an alternative approach, also based on tree-
decomposition of graphs was proposed in[Jégou and Ter-
rioux, 2003]. This method is called BTD (for Backtracking
with Tree-Decomposition) and seems to provide among the
best empirical results obtained by structural methods.

The BTD method proceeds by an enumerative search
guided by a static pre-established partial order induced by
a tree-decomposition of the constraint-network. So, the first
step of BTD consists in computing a tree-decomposition. The
obtained tree-decomposition allows to exploit some structural
properties of the graph, during the search, in order to prune
some branches of the search tree, what distinguishes BTD
from other classical techniques. Firstly, the order for theas-
signment of the variables is induced by the considered tree-
decomposition of the constraint graph. Secondly, some parts

of the search space will not be visited again as soon as their
consistency is known. This is possible by using the notion
of structural good. A good is a consistent partial assignment
on a set of variables, namely a separator (i.e. an intersection
between two clusters), such that the part of the CSP located
after the separator is consistent and admits a solution com-
patible with the good. So, it is not necessary to explore this
part because we know its consistency. Thirdly, some parts of
the search space will not be visited again if we know that the
current instantiation leads to a failure. This is possible in ap-
plying the notion ofstructural nogood. A structural nogood
is a particular kind of nogood justified by structural proper-
ties of the constraints network: the part of the CSP located
after the nogood is not consistent (a nogood is a consistent
assignment of a separator of the graph).

To satisfy the complexity bounds, the variable ordering
exploited in BTD is related to the cluster ordering. For-
mally, let us consider a tree-decomposition(E, T ) of the CSP
with T = (I, F ) a tree and assume that the elements of
E = {Ei : i ∈ I} are indexed w.r.t. acompatible numera-
tion. A numeration onE compatible with a prefix numeration
of T = (I, F ) with E1 the root is called compatible numer-
ation. An order�X of variables ofX such that∀x ∈ Ei,
∀y ∈ Ej , with i < j, x �X y is a compatible enumeration
order. The numeration on the clusters gives a partial order on
the variables since the variables in theEi are assigned before
those inEj if i < j, except variables in the descent of a good,
namely those located in the subproblem rooted on the cluster
containing the good. In fact, using goods and nogoods allows
not to explore twice subproblems if their consistency (incon-
sistency) with the current assignment is known. If we use
a good to avoid visiting again a subtree, we known that the
variables in it can be assigned consistently with the current
assignment. So BTD does not assign them effectively, but
they are considered done. For consistent problems, an addi-
tional work must be performed to assign these variables if we
want to provide a solution[Jégou and Terrioux, 2004]. They
are namedconsistently assignable variablesthanks to a good.
Thus the variables inEj are assigned if the variables inEi

are either already assigned or consistently assignable thanks
to a good. To complete this order, we have to choose vari-
able ordering heuristics inside a cluster. Finally, a compatible
enumeration order on the variables is given by a compatible
numeration on clusters and a variable order in each cluster.

In [Jégou and Terrioux, 2003; 2004], the presented results
were obtained without heuristics for the choice of the clus-
ters and thus the choice of the variables. Only a traditional
dynamic order was used inside the clusters. Obviously, the
variable ordering have a great impact on the efficiency of enu-
merative methods. Thus, we study here how the benefits of
variable orderings can be fully exploited in BTD. Neverthe-
less, to guarantee the time complexity bounds, it is necessary
to respect some conditions. So, in the next section, we define
classes of orders guaranteeing complexity bounds.

3 Dynamic orders inO(exp(w + 1))

The first version of BTD was defined with a compatible static
variable ordering. We prove here that it is possible to consider



more dynamic orders without loosing the complexity bounds.
The defined classes contain orders more and more dynamic.
These orders are in fact provided by the cluster order and the
variable ordering inside each cluster.
Let (X, D, C) be a CSP and(E, T ) a tree-decomposition of
the graph(X, C), we exploit an orderσi on the subproblems
Pi1 , . . . ,Pik

rooted on the sonsEij
of Ei and an orderγi

on the variables inEi. We define recursively the following
classes of orders. In the three next classes, we choose the first
cluster to assign (the root):E1 among all the clusters and
we considerP1 the subproblem rooted onE1 (i.e. the whole
problem).

Definition 1 We begin the search inE1 and we try recur-
sively to extend the current assignment on the subproblem
rooted onEi by assigning first the variables inEi accord-
ing toγi and then onPi1 , . . . ,Pik

according toσi.

• Class 1. σi and γi are static. We computeσi and γi

statically (before starting the search).

• Class 2. σi is static and γi is dynamic. We compute
staticallyσi, whileγi is computed during the search.

• Class 3. σi and γi are dynamic. Both,σi and γi are
computed during the search.σi is computed w.r.t. the
current assignment as soon as all the variables inEi

are assigned.

• Class ++. Enumerative dynamic order. The variable
ordering is completely dynamic. So, the assignment or-
der is not necessarily a compatible enumeration order.
There is no restriction due to the cluster tree.

The defined classes form a hierarchy since we have:Class 1
⊂ Class 2⊂ Class 3⊂ Class ++.
Property of the Class 3. Let Y be an assignment,x ∈ Ej −
(Ei ∩ Ej) with Ei the parent ofEj : x ∈ Y iff: i) ∀v ∈ Ei,
v ∈ Y ii) Let Eip

= Ej , ∀Piu
s.t. σi(Piu

) ≤ σi(Pip
),

∀v ∈ Piu
, v ∈ Y iii) ∀v ∈ Ej s.t.γj(v) ≤ γj(x), v ∈ Y .

In [Jégou and Terrioux, 2003], the experiments useClass 2
orders. Formally, only the orders of theClass 1are compati-
ble. Nevertheless, for an ordero3 in theClass 3and a given
assignmentA, one can find an ordero1 in the Class 1that
instantiates the variables inA in the same way and the same
ordero3 does. This property gives to theClass 3(thusClass
2) orders the ability of recording goods and nogoods and us-
ing them to prune branches in the same wayClass 1orders
do. TheClass ++ gives a complete freedom. Yet, it does not
guarantee the time complexity bound because sometimes it is
impossible to record nogoods. Indeed, let the clusterEj be a
son of the clusterEi, we suppose that the enumeration order
assigns the variables inEi except those inEi ∩ Ej , as well
as the variables in the clusters which are on the path from the
root cluster toEi. Let x, the next variable to assign, be inEj

and not inEi ∩ Ej . If the solving of the subtree rooted on
Ej leads to a failure, it is impossible to record a nogood on
Ei ∩ Ej (if it is consistently assigned) because we do not try
the other values ofx to prove that the assignment onEi ∩Ej

cannot be consistently extended on this subtree. If the sub-
problem has a solution, we can record a good. Actually, this
solution is a consistent extension of the assignment onEi∩Ej

which is a good. A nogood not recorded could be computed

again. Thus the time complexity bound is not guaranteed any-
more. Meanwhile, theClass 3orders guarantee this bound.

Theorem 1 Let the enumeration order be in the Class 3, the
time complexity of BTD isO(exp(w + 1)).

Proof We consider a clusterEj in the cluster tree, and we
must prove that any assignment onEj is computed only once.
Let Ei be the cluster parent ofEj and suppose that all the
variables inEi are assigned and those inEj − (Ei ∩ Ej)
are not. Since the order belongs to theClass 3, the variables
of the clusters on the path from the root toEi are already
assigned and those in the subtree rooted onEj not yet. A
consistent assignmentA onEi ∩Ej is computed at the latest
when the variables inEi are assigned (before those in the
subproblem rooted inEj). Solving this subproblem leads to
a failure or a solution. In each case,A is recorded as a good
or nogood. LetA′ be an assignment onEj compatible with
A. The next assignment of variables inEi leading toA on
Ei ∩Ej will not be pursued on the subproblem rooted onEj .
A′ is not computed twice, only the variables inEi ∩ Ej are
assigned again. So the time complexity isO(exp(w + 1)). �

The properties of theClass 3offer more possibilities in the
variable ordering. So it is possible to choose any cluster to
visit next among the sons of the current cluster. And in each
cluster, the variable ordering is totally free. In section 4, we
propose two natural extensions of the complexity bound.

4 Bounded extensions of dynamic orders
We propose two extensions based on the ability given to the
heuristics to choose the next variable to assign not only in
one cluster, but also amongk variables in a path rooted on
the cluster that verifies some properties. So, we define two
new classes of orders extendingClass 3. First, we propose a
generalization of the tree-decomposition definition.

Definition 2 Let G = (X, C) be a graph andk a positive
integer, the set of directedk-covering tree-decompositions of
a tree-decomposition(E, T ) of G with E1 its root cluster, is
defined by the set of tree-decompositions(E′, T ′) of G that
verify:

• E1 ⊆ E′

1, E′

1 the root cluster of(E′, T ′)

• ∀E′

i ∈ E′, E′

i ⊆ Ei1 ∪Ei2 ∪ . . .∪EiR
andEi1 ∪Ei2 ∪

. . . ∪ EiR−1 ⊂ E′

i, with Ei1 . . . EiR
a path inT

• |E′

i| ≤ w + k + 1, wherew = maxEi∈E |Ei| − 1

Now, we give a definition of theClass 4.

Definition 3 Let (X, D, C) be a CSP, (E, T ) a tree-
decomposition of the graph (X,C) andk a positive integer.
A variable order is in theClass 4, if this order is in the Class
3 for one directedk-covering tree-decomposition of(E, T ).

We derive a natural theorem:

Theorem 2 Let the enumeration order be in the Class 4, the
time complexity of BTD isO(exp(w + k + 1)).

Proof This proof is similar to one given for Class 3 since we
can consider that BTD runs on a tree-decomposition(E′, T ′)
of width at mostw + k + 1. �

A second extension is possible in exploiting during the
search, a dynamic computing of the tree-decomposition (we



can use several directedk-covering tree-decompositions dur-
ing the search). Then, the time complexity bound changes
because sometimes it would be impossible to record nogoods.

Definition 4 Let (X, D, C) be a CSP, (E, T ) a tree-
decomposition of the graph (X,C) andk a positive integer. A
variable ordero5 is in theClass 5, if for a given assignment
A, one can find one directedk-covering tree-decomposition
(E′, T ′) of (E, T ) such that∀E′

i ∈ E′, E′

i = Ei1 ∪ Ei2 ∪
. . . ∪ EiR

, with Ei1 . . . EiR
a path inT and find an ordero3

on (E′, T ′), in the Class 3 that instantiates the variables in
A in the same way and the same ordero5 does.

This definition enforces to use directedk-covering tree-
decompositions(E′, T ′) of (E, T ) that verify the additional
condition:∀E′

i ∈ E′, E′

i = Ei1 ∪ Ei2 ∪ . . . ∪ EiR
. Hence, a

separator in(E′, T ′) is also a separator in(E, T ). We denote
by s− the minimum size of separators in(E, T ).

Theorem 3 Let the enumeration order be in the Class 5, the
time complexity of BTD isO(exp(2(w + k + 1) − s−)).

Proof Let (X, D, C) be a CSP,(E, T ) a tree-decomposition
of the graph(X, C) andE1 its root cluster. We have to prove
that any assignment on a setV of 2(w+k+1)−s− variables
on a path of the treeT is computed only once. LetA be an
assignment containingV . The order in which the variables
of A were assigned is in theClass 3for a directedk-covering
tree-decomposition(E′, T ′) of (E, T ) that verifies∀E′

i ∈ E′,
E′

i = Ei1 ∪Ei2 ∪ . . .∪EiR
, with Ei1 . . . EiR

a path inT . The
size of the clusters in(E′, T ′) is bound byw+k+1, so the set
V is covered by at least two clusters sinces− is the minimum
size of the separators. LetE′

i1
. . . E′

iq
be a path on(E′, T ′)

coveringV . The solving of the subproblem rooted onE′

i1
with the assignmentA leads to the recording of (no)goods on
the separators of these clusters. IfE′

i1
is the root cluster of

(E′, T ′), thenV containsE1. ThusA will not be computed
again because it contains the first variables in the search. We
suppose thatE′

i1
is not the root cluster of(E′, T ′). Sinceq ≥

2, we record a (no)good on the separator ofE′

i1
and its parent

and at least an other on the separator ofE′

i1
andE′

i2
. LetB be

a new assignment that we try to extend onV with the same
values inA. One of the (no)goods will be computed first.
Thus before all the variables inV are assigned, the search is
stopped thanks to this (no)good. SoA is not computed again.
We prove that any assignment onV is computed only once.�

Note that the new defined classes are included in the hier-
archy presented in section 3:Class i⊂ Class j, if i < j and
for 1 ≤ i < j ≤ 5, with alsoClass 5⊂ Class ++.

To define the value ofk, we have several approaches to
choose variables to group. A good one consists in trying to
reduce the value of the parameters and, by this way, to en-
hance the space complexity bound. Then, we can observe that
grouping clusters with large separators permits to achievea
significant reduction ofs.

5 Experimental study
Applying a structural method on an instance generally as-
sumes that this instance presents some particular topological
features. So, our study is first performed on instances hav-
ing a structure which can be exploited by structural methods.

In practice, we assess here the proposed strategies on random
partial structured CSPs in order to point up the best ones w.r.t.
CSP solving. For building a random partial structured in-
stance of a class(n, d, w, t, s, nc, p), the first step consists in
producing randomly a structured CSP according to the model
described in[Jégou and Terrioux, 2003]. This structured in-
stance consists ofn variables havingd values in their domain.
Its constraint graph is a clique tree withnc cliques whose
size is at mostw and whose separator size does not exceed
s. Each constraint forbidst tuples. Then, the second step
removes randomlyp% edges from the structured instance.
Secondly, we experiment the proposed heuristics on bench-
mark instances of the CP’2005 solver competition1. All these
experimentations are performed on a Linux-based PC with a
Pentium IV 3.2GHz and 1GB of memory. For each consid-
ered random partial structured instance class, the presented
results are the average on instances solved over 50. We limit
the runtime to 30 minutes for random instances and to 10 min-
utes for CP’2005 benchmark instances. Above, the solver is
stopped and the involved instance is considered as unsolved
(what is denoted by the letter T in tables). In the following
tables, the letter M means that at least one instance cannot be
solved because it requires more than 1GB of memory.

In [Jégouet al., 2005], a study was performed on triangu-
lation algorithms to find out the best way to compute a good
tree-decomposition w.r.t. CSP solving. As MCS[Tarjan and
Yannakakis, 1984] obtains the best results and is very easy
to implement, we use it to compute tree-decompositions in
this study. We do not provide the results obtained by clas-
sical enumerative algorithms like FC or MAC since they are
often unable to solve several instances of each class within30
minutes.

Here, for lack of place, we only present the more efficient
heuristics:
• minexp(A): this heuristic is based on the expected num-

ber of partial solutions of clusters[Smith, 1994] and on
their size. It chooses as root cluster one which minimizes
the ratio between the expected number of solutions and
the size of the cluster.

• size(B): we choose the cluster of maximum size as root
cluster

• minexps(C ): this heuristic is similar tominexp and or-
ders the son clusters according to the increasing value of
their ratio.

• minseps (D): we order the son clusters according to the
increasing size of their separator with their parent.

• nv(E ): we choose a dynamic variable ordering heuristic
and we visit first the son cluster where appears the next
variable in the heuristic order among the variables of the
unvisited son clusters.

• minexpsdyn(F ): the next cluster to visit minimizes the
ratio between the current expected number of solutions
and the size of the cluster. The current expected num-
ber of solutions of a cluster is modified by filtering the
domains of unassigned variables.

1This competition held during the Second International Work-
shop on Constraint Propagation and Implementation of CP’2005.



CSP Class 1 Class 2 Class 3 Class 4
w+ s B A B A A B B A A B

(n, d, w, t, s, nc, p) D C D C F G D C F G

(150, 25, 15, 215, 5, 15, 10) 13.00 12.22 9.31 28.12 3.41 2.52 2.45 5.34 2.75 2.17 2.08 2.65
(150, 25, 15, 237, 5, 15, 20) 12.54 11.90 9.99 5.27 5.10 2.47 1.99 5.47 2.58 1.76 1.63 2.97
(150, 25, 15, 257, 5, 15, 30) 12.16 11.40 13.36 27.82 3.38 5.06 4.97 3.55 1.41 1.05 1.13 1.30
(150, 25, 15, 285, 5, 15, 40) 11.52 10.64 3.07 8.77 1.13 0.87 1.27 1.17 1.67 0.39 0.63 1.75
(250, 20, 20, 107, 5, 20, 10) 17.82 16.92 54.59 57.75 15.92 12.39 12.14 14.93 10.18 7.75 7.34 10.26
(250, 20, 20, 117, 5, 20, 20) 17.24 16.56 55.39 79.80 23.38 14.26 13.25 24.14 10.05 8.81 8.39 10.34
(250, 20, 20, 129, 5, 20, 30) 16.80 15.80 26.21 21.14 7.23 5.51 6.19 7.84 33.93 4.61 4.41 34.20
(250, 20, 20, 146, 5, 20, 40) 15.92 15.24 44.60 30.17 26.24 3.91 4.51 17.99 11.38 3.17 3.17 10.63
(250, 25, 15, 211, 5, 25, 10) 13.04 12.34 28.86 38.75 15.33 11.67 13.37 18.12 5.86 7.71 6.65 6.44
(250, 25, 15, 230, 5, 25, 20) 12.86 11.98 20.21 34.47 8.60 7.12 14.84 19.47 4.19 3.94 3.36 6.81
(250, 25, 15, 253, 5, 25, 30) 12.38 11.82 11.36 16.91 5.18 11.13 5.14 5.26 2.80 3.71 3.52 3.06
(250, 25, 15, 280, 5, 25, 40) 11.80 11.16 7.56 32.74 3.67 16.32 17.49 4.91 4.03 1.40 1.26 3.55
(250, 20, 20, 99, 10, 25, 10) 17.92 17.02 M M M M M M 66.94 63.15 62.99 66.33
(500, 20, 15, 123, 5, 50, 10) 13.04 12.58 12.60 13.63 7.01 8.08 7.31 7.54 5.48 4.50 4.41 5.86
(500, 20, 15, 136, 5, 50, 20) 12.94 12.10 47.16 19.22 25.54 23.49 27.01 15.11 4.86 4.92 3.94 5.24

Table 1: Parametersw+ ands of the tree-decomposition and runtime (in s) on random partial structured CSPs withmdd for
class 1 andmdddyn for classes 2, 3 and 4.

CSP Class 1 Class 2 Class 3
Instance n e w+ s B A B A A E B

D D C C F G G

qa 5 26 309 25 9 32.01 132.82 2.67 77.82 84.19 80.86 2.62
qcp-10-64-45-QWH-10 100 900 91 82 T M 69.83 T T 70.10 69.82

qcp-15-120-278-QWH-15 225 3,150 211 197 T T 120.69 10.47 10.92 122.26 122.47
qwh-15-106-392-QWH-15 225 3,150 211 197 T M 0.89 169.49 181.18 0.86 0.89
qwh-15-106-974-QWH-15 225 3,150 211 197 T 94.58 2.55 75.77 79.46 2.67 2.54

Table 2: Parametersw+ and s of the tree-decomposition and runtime (in s) on some instances from the CP’2005 solver
competition withmdd for class 1 andmdddyn for classes 2 and 3.

• nvsdyn(G): it is similar to nv . We visit first the son
cluster where appears the next variable in the heuristic
order among the variables of the unvisited son clusters.

Inside a cluster, the heuristic used for choosing the next vari-
able is min domain/degree (static versionmdds for class 1
and dynamicmdddyn for the other classes).

Table 1 shows the runtime of BTD with several heuristics
of Classes 1, 2, 3 and 4. For Class 5, we cannot get good re-
sults and then, the results are not presented. Also it presents
the width of the computed tree-decomposition and the max-
imum size of the separators. Clearly, we observe that Class
1 orders obtain poor results. This behaviour is not surprising
since static variable orders are well known to be inefficient
compared to dynamic ones. A dynamic strategy allows to
make good choices by taking in account the modifications of
the problem during search. Thus these choices are more jus-
tified than in a static case. That explains the good results of
Classes 2 and 3 orders. The results show as well the crucial
importance of the root cluster choice since each heuristic of
the Classes 2 and 3 fails to solve an average of 4 instances
over all instances of all classes because of a bad choice of
root cluster. We note that the unsolved instances are not the
same forsize andminexp heuristics. The memory problems
marked by M can be solved by using aClass 4order with the
sep heuristic for grouping variables (we merge cluster whose

intersection is greater than a valuesmax). Table 1 gives the
runtime of BTD for this class withsmax = 5.

When we analyze the value of the parameterk, we observe
that its value is generally limited (between 1 to 6). Neverthe-
less, for the CSPs(250, 20, 20, 99, 10, 25, 10), the value ofk
is near 40, but this high value allows to solve these instances.

The heuristics for the Classes 2 and 3 improve very sig-
nificantly the results obtained. The impact of the dynamic-
ity is obvious. minexp andnv heuristics solve all the in-
stances except one due to a bad root cluster choice,size solve
all the instances. Except the unsolved instance,minexp ob-
tains very promising results. The son cluster ordering has
a limited effect because the instances considered have a few
son clusters reducing the possible choices and so their im-
pact. We can expect a more important improvement for in-
stances with more son clusters. The best results are obtained
by minexp + minexpsdyn , but size + minseps obtains of-
ten similar results and succeed in solving all instances in
the Class 4. The calculus of the expected number of solu-
tion assumes that the problem constraints are independent,
what is the case for the problems considered here. Thus,
size + minsep may outperformminexp + minexpsdyn on
real-world problems which have dependent constraints.

When we observe the results in table 1, we see the rele-
vance of extending the dynamic order. Merging clusters with



k less than 6 decreases the maximal size of separators and
allows a more dynamic ordering of variables. That leads to
an important reduction of the runtime. These experiments
highlight the importance of dynamic orders and make us con-
clude that the Class 4 gives the best variable orders w.r.t CSP
solving with a good value ofk. Of course, this behaviour
has been observed on random instances. The next step of our
study consists in assessing the proposed heuristics on bench-
mark instances of the CP’2005 solver competition. At the
beginning of the section, we reminded that structural meth-
ods like BTD assume the CSP has interesting topological fea-
tures. This is not the case for a great part of instances of
this competition. Since the space complexity of BTD is in
O(n.s.ds), if the size of the cluster separators of the com-
puted tree-decomposition of CSP is too large, the method
needs more than 1GB of memory. Many instances have tree-
decompositions with very large separators and clusters. Re-
ducing the required space memory leads to group all the vari-
ables in one cluster and so to perform like the FC algorithm.
In table 2, which provides results on these instances, we do
not present the results for instances with very bad topological
features for which BTD has a behavior close to FC one.

On these instances, thesize heuristic outperformsminexp
except on qcp instance. To resume, we can say that the
dynamicity improves significantly the method and the ex-
pected number of solutions provides an important improve-
ment on random CSPs, while thesize + minsep heuristic
outperforms the others on real-world instances.

6 Discussion and Conclusion

In this article, we have studied the CSP solving methods
based on tree-decompositions in order to improve their prac-
tical interest. This study was done both theoretically and em-
pirically. The analysis of the variable orders allows us to de-
fine more dynamic heuristics without loosing the time com-
plexity bound. So, we have defined classes of variable orders
which allow a more and more dynamic ordering of variables
and preserve the theoretical time complexity bound. This
bound has been extended to enforce the dynamic aspect of
orders that has an important impact on the efficiency of enu-
merative methods. Even though these new bounds are theo-
retically less interesting that the initial, it allows us todefine
more efficient heuristics which improve significantly the run-
time of BTD. This study, which could not be achieved pre-
viously, takes now on importance for solving hard instances
with suitable structural properties. For example, the struc-
tured instances used here are seldom solved by enumerative
methods like FC or MAC.

We have compared the classes of variable orders with rel-
evant heuristics w.r.t. CSP solving. This comparison points
up the importance of a dynamic variable ordering. Indeed the
best results are obtained byClass 4orders because they give
more freedom to the variable ordering heuristic while their
time complexity isO(exp(w+k+1)) wherek is a constant to
parameterize. Note that for the most dynamic class (the Class
5), we get a time complexity inO(exp(2(w + k + 1)− s−)).
It seems that this bound should be too large to expect a sig-
nificant practical improvement.

Concerning heuristics, we exploit the notion of expected
number of partial solutions in order to guide the traversal of
the cluster tree during the solving. Even though the other
heuristics presented (size + minsep) are less efficient, of-
ten they obtain similar results. They are also more general
what induces a stabler behaviour. So, on real-world prob-
lems with dependent constraints, they may outperform the ex-
pected number of solutions based heuristics. Then, forClass
4, we aim to improve the criteria used to compute the value
of k and to define more general ones by exploiting better the
problem features.

This study will be pursued on the Valued CSPs[Schiexet
al., 1995] which are well known to be more difficult.
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