
INF2029L

LifASR4 : Architecture et Système

TP

2021 – 2022

Table des matières

1 Prise en main de PENNSIM, Introduction à l’architecture LC-3 3

2 Prise en main de LOGISIM, premiers circuits 6
2.1 Avant de démarrer . 6
2.2 Circuits combinatoires de base . 6

3 Circuits combinatoires et complément à deux 7
3.1 Quelques éléments du processeur LC-3 . 7
3.2 Dépassements en C . 7
3.3 Circuits combinatoires . 8

4 Circuits séquentiels, registres, mémoire 9
4.1 Bascules . 9
4.2 Registres, compteurs et mémoire . 9
4.3 Banc de registre . 10

5 Test de circuit, circuits dédiés. 11
5.1 LOGISIM : test de circuit . 11
5.2 Circuits dédiés . 11

6 LC-3, exercices de programmation 14
6.1 Premiers programmes en langage d’assemblage LC-3 . 14
6.2 Saisie d’une chaîne de caractères . 14
6.3 Un message codé (CC-TP 2015) . 15
6.4 Saisie d’un entier au clavier . 15

7 Construisons le LC-3 - partie 1 17
7.1 Le circuit LC-3 . 17
7.2 L’unité arithmétique et logique . 18
7.3 Exécution des instructions arithmétiques . 19
7.4 Pour la suite. 20

8 Construisons le LC-3 - partie 2 21
8.1 Décodage des instructions . 21
8.2 Instructions d’accès mémoire . 21
8.3 Instructions de branchement et saut . 22

A Documentation 23
A.1 Références . 23
A.2 Mémos pour la programmation du LC3 . 23

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 2/25

TP 1
Prise en main de PENNSIM, Introduction à

l’architecture LC-3

Objectifs :
— Utiliser un simulateur de l’architecture LC-3 pour comprendre le jeu d’instructions.
— Écrire des programmes simples en langage machine.

Nous allons utiliser le simulateur LC-3 nommé PennSim dont la documentation est disponible à l’adresse (ou
google PennSim) :

http://castle.eiu.edu/~mathcs/mat3670/index/Webview/pennsim-guide.html

Fichiers fournis : tp11a.asm, tp11b.asm, tp12.asm, tp14a.asm, tp14b.asm

EXERCICE 1 Ï Installation, documentation
Commencez par récupérer tp11a.asm et tp11b.asm.

1. Lire rapidement, mais attentivement, la documentation en ligne du logiciel.
2. Assembler, charger et exécuter pas-à-pas le programme de test tp11a.asm rappelé ci-dessous. Comme

nous n’avons pas chargé l’OS, il faut amener PC à la première adresse du programme à l’aide de la com-
mande set PC x3000. Observer l’évolution de l’état des registres et de la mémoire au cours de l’exécu-
tion du programme. Pourquoi est-il possible d’exécuter ainsi le programme sans charger l’OS ?

Listing 1.1 – tp11a.asm

.ORIG X3000 ; spécifie l’adresse de chargement du programme

LD R1,a
LD R2,b
ADD R0,R1,R2

5 ADD R0,R0,−1
ST R0, r

stop: BR stop ; juste une astuce pour bloquer l’exécution ici

r: .BLKW 1
a: .FILL 10

10 b: .FILL 6
.END

3. Remettre le simulateur à zéro avec la commande reset. Assembler et charger l’OS, puis le programme
tp11b.asm. Exécuter pas-à-pas le programme, et observer bien l’exécution de l’appel système PUTS : à
quel programme appartiennent les instructions exécutées ?

Listing 1.2 – tp11b.asm

.ORIG X3000 ; spécifie l’adresse de chargement du programme

LEA R0,chaine
PUTS
HALT ; rend la main à l’OS

5 chaine: .STRINGZ "hello\n"
.END

EXERCICE 2 Ï Exécution d’un programme en langage machine
Vous auriez pu réaliser en TD le décodage du programme suivant, écrit en langage machine dans le langage
machine du LC-3 (fichier tp12.asm) :

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 3/25

http://castle.eiu.edu/~mathcs/mat3670/index/Webview/pennsim-guide.html

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

Listing 1.3 – tp12.asm

;; Author: Bill Slough for MAT 3670

.ORIG X3000 ; where to load the program in memory

.FILL x5020

.FILL x1221
5 .FILL xE404

.FILL x6681

.FILL x1262

.FILL x16FF

.FILL x03FD
10 .FILL xF025

.FILL x0006

.END

Comme vous ne l’avez pas fait, une correction se trouve Figure 1.1. Parcourir rapidement cette correction, et
répondre aux questions suivantes :

— À l’aide de quelles instructions récupère-t-on une donnée en mémoire dans ce programme ?

— Pouvait-on faire autrement?

— Comment est réalisé le saut de compteur de programme pour réaliser la boucle?

— Que devienent les labels dans le programme assemblé?

Ensuite, assembler et lancer la simulation pas à pas sur le fichier tp12.asm. Bien que l’on ait “assemblé” à la
main, il faut quand-même effectuer avec la commande as la transformation en un fichier objet .obj. Bien
suivre toutes les étapes lors d’une exécution pas-à-pas du programme. On remarquera que le simulateur LC-3
donne l’équivalent en language d’assemblage des instructions machine considérées.

Adresse Contenu Contenu binaire Détails des instructions pseudo-code

x3000 x5020 0101 000 000 1 00000 AND R0, R0, 0 R0 ← R0&0 = 0

x3001 x1221 0001 001 000 1 00001 ADD R1, R1, 1 R1 ← R0 +1 = 1

x3002 xE404 1110 010 0 0000 0100 LEA R2, Offset9=4 R2 ← x3007 (label fin)

x3003 x6681 010 011 010 00 0001 LDR R3, R2, 1 R3 ← mem[R2+1]
(label donnee→ x3008)

boucle:x3004 x1262 0001 001 001 1 00010 ADD R1, R1, 2 R1 ← R1 +2

x3005 x16FF 0001 011 011 1 11111 ADD R3, R3, -1 R3 ← R3 −1

x3006 x03FD 0000 001 1 1111 1101 BRp Offset9=-3 si R3 > 0 aller à boucle

fin:x3007 xF025 1111 0000 0010 0101 TRAP x25 H ALT

donnee:x3008 x0006 donnée -

FIGURE 1.1 – Un programme en binaire/hexadécimal (tp12.asm)

Vous pouvez exécuter plusieurs fois le programme sans avoir à le recharger : pour cela, ramener PC à
l’adresse x3000 avec set PC x3000. D’autre part, vous pouvez modifier le contenu de la mémoire “à la main” :
il suffit d’éditer le contenu de la colonne Value à l’adresse dont vous souhaitez modifier le contenu. En pro-
cédant ainsi modifiez le programme pour qu’il effectue 8 tours de boucle et qu’il a ajoute 5 à R1 à chaque
itération.

EXERCICE 3 Ï Assemblage à la main
Sur papier d’abord :

1. Écrire un programme en langage d’assemblage LC-3 qui écrit 10 fois le caractère ’Z’ sur l’écran.

2. Assembler ce programme à la main, puis sur le modèle du Listing 1.3, créer un programme “pré-assemblé”.

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 4/25

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

3. Utiliser le simulateur pour tester votre programme. Attention, comme vous allez devoir faire appel au
système d’exploitation du LC3, il faudra le charger en mémoire avant de tenter d’exécuter votre pro-
gramme (télécharger, assembler et charger lc3os).

EXERCICE 4 Ï Exécution d’un programme donné
Prévoir le comportement des fichiers tp14a.asm et tp14b.asm. Vérifier avec le simulateur. Quelle est la diffé-
rence entre les primitives PUTS et OUT, mises à votre disposition par le système d’exploitation?

Listing 1.4 – tp14a.asm

;; Author: Bill Slough MAT 3670

.ORIG x3000 ; specify where to load the program in memory

LEA R0,HELLO
PUTS

5 LEA R0,COURSE
PUTS
HALT

HELLO: .STRINGZ "Hello, world!\n"
COURSE: .STRINGZ "LIFASR4\n"

10 .END

Listing 1.5 – tp14b.asm

;; Author: Bill Slough for MAT 3670

.ORIG x3000
LD R1,N
NOT R1,R1

5 ADD R1,R1,#1 ; R1 = −N

AND R2,R2,#0
LOOP: ADD R3,R2,R1

BRzp ELOOP
LD R0,STAR

10 OUT
ADD R2,R2,#1
BR LOOP

ELOOP: LEA R0,NEWLN
PUTS

15 STOP: HALT
N: .FILL 6
STAR: .FILL x2A ; the character to display

NEWLN: .STRINGZ "\n"
.END

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 5/25

TP 2
Prise en main de LOGISIM, premiers circuits

Objectifs :
— Prise en main et découverte des fonctionnalités de LOGISIM.
— Réalisation de circuits combinatoires simples.

2.1 Avant de démarrer

EXERCICE 1 Ï Démarrage de cycle!
On part du principe ici que les TPs sont réalisés sous Linux, même s’il est possible de les faire sous Windows
(il faut dans ce cas savoir se débrouiller avec la ligne de commande de Windows, et il suffira d’adapter les
commandes utilisées sous Linux). Créez un répertoire pour les TP de LIF6, puis, dans votre navigateur, créez
un favori pour la page de LOGISIM (http://www.cburch.com/logisim/).

Télécharger l’archive .jar de LOGISIM dans votre répertoire de TP : vous lancerez le logiciel en entrant la
commande java -jar archive.jar dans un terminal (remplacer archive par le nom de l’archive. . .).

EXERCICE 2 Ï Tutoriel
Créez un répertoire pour le TP1, puis réalisez le tutoriel “Beginner’s tutorial” disponible sur la page de LOGISIM

On n’oubliera pas dès la création de la première porte logique de sauvegarder s on fichier, et de taper Ctrl+s
régulièrement. Vous ne passerez pas trop de temps sur ce Tutoriel (une demi-heure maximum).

2.2 Circuits combinatoires de base

Testez soigneusement et pas-à-pas tous vos circuits!

EXERCICE 3 Ï Multiplexeurs/décodeurs
Dans un nouveau fichier :

— Réalisez un décodeur 3 bits vers 8 bits. Testez. On utilisera des portes (Gates) And à 3 entrées.

— Comparez le comportement avec un décodeur de la librairie. Testez avec une source (Pin carré) 3 bits,
un afficheur (Pin rond) 8 bits, et un Splitter (Fan Out à 8 et BitWidthIn à 8) pour relier la sortie du
décodeur à l’affichage 8 bits.

— Réalisez un multiplexeur 2 bits vers 1 bit. Comparez avec un multiplexeur de la librairie.

EXERCICE 4 Ï Additionneurs à retenue
Dans un nouveau fichier :

— Réalisez l’additionneur 1 bit à retenue du cours et testez-le.

— Regardez dans la documentation comment fonctionne l’encapsulation (Subcircuits). Nommez l’ad-
ditionneur 1 bit “FA1” et utilisez le pour réaliser un additionneur 4 bits.

— Utilisez l’additionneur 8 bits de la librairie (Arithmetic->Adder) avec des “constantes”
(Wiring->Constant) en entrée de l’addition et un afficheur (Probe) 8 bits en sortie. On vérifiera que
(80)16 + (8C)16 = (00001100)2 (et 1 de retenue).

— En utilisant cet additionneur 8 bits (et les multiplexeurs de la librairie), réalisez un additionneur-soustracteur
8 bits, qui calcule a −b ou a +b suivant la valeur d’un bit de contrôle c. Nous n’avez pas le droit de du-
pliquer l’additionneur (vous pouvez vous reporter à l’exercice correspondant du cahier de TD).

— Réalisez une ALU 8 bits capable de faire une addition, une soustraction et un test d’égalité. L’opération
sera choisie avec un signal qui vaut 00 pour une addition, 01 pour une soustraction et 10 pour un test
d’égalité. On remarquera que c’est une modification mineure du circuit précédent.

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 6/25

http://www.cburch.com/logisim/

TP 3
Circuits combinatoires et complément à deux

Objectifs :
— Implantation de circuits combinatoires.
— Pratiquer le complément à 2.

Fichiers fournis : tp3_aluetu.circ , tp3_comp2etu.c

3.1 Quelques éléments du processeur LC-3

Dans la suite du cours, nous allons construire un petit processeur pédagogique, le LC-3. Nous prenons de
l’avance dans ce TP en construisant quelques sous-circuits que nous assemblerons ensemble dans un pro-
chain TP (source : équipe pédagogique Archi, Univ P7).

EXERCICE 1 Ï ALU LC-3
Récupérer sur la page web du cours le fichier tp3_aluetu.circ et le tester pour savoir ce qu’il fait. On rem-
plira les cases vides du tableau suivant avec des formules dépendant des entrées Input1, Input2 et Cst :

e2/UseCst 0 1
(00)
(01)
(10)
(11)

EXERCICE 2 Ï NZP LC-3
Dans un nouvel onglet du fichier précédent (nommé NZP), créer un circuit qui prend une entrée 16 bits nom-
mée RES considérée en complément à 2 sur 16 bits, et qui en sortie a un “Pin” 3 bits nommé NZP. Le bit de
poids faible (P) est égal à 1 ssi RES > 0, le bit du milieu (Z) est égal à 1 ssi RES = 0, et le bit de poids fort est à 1
ssi RES < 0. Bien tester.

EXERCICE 3 Ï Extensions de signe
D’après un des exercices de TD, l’extension de signe en complément à 2 se fait en dupliquant le bit de poids
fort autant de fois que nécessaire. Créez dans un même fichier deux onglets différents :

— dans un onglet appelé Ext8vers16, construire un sous-circuit pour l’extension de signe d’un entier codé
en complément à 2 sur 8 bits vers 16 bits. Tester le sous-circuit dans un onglet Brouillon.

— Comparez votre sous-circuit Ext8vers16 avec le composant BitExtender de la librairie (dans Wiring).

3.2 Dépassements en C

EXERCICE 4 Ï Dépassement de capacité en complément à 2
Récupérer le fichier tp3_comp2etu.c sur la page web du cours. En supposant qu’un char prend un octet et
un short 2 octets, prédire le comportement de ce programme à l’exécution. Vérifier.

1 #include <stdio.h>
#include <stdlib.h >

int main() {
unsigned char uc1, uc2, uc3 ;

6 signed char sc1, sc2, sc3 ;

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 7/25

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

printf("Taille de unsigned char : %u octet(s) \n", sizeof(char)) ;

printf("Taille de signed char : %u octet(s) \n\n", sizeof(char)) ;

11 uc1 = 200 ; u c 2 = 6 0 ; u c 3 = u c 1 + u c 2 ;

printf("(unsigned char) uc1 = %4d, uc2 = %4d, uc1+uc2 = %4d \n", uc1, uc2, uc3) ;

sc1 = 100 ; s c 2 = 6 0 ; s c 3 = s c 1 + s c 2 ;

printf("(signed char) sc1 = %4d, sc2 = %4d, sc1+sc2 = %4d \n", sc1, sc2, sc3) ;
16

sc1 = −100 ; s c 2 = −60; s c 3 = s c 1 + s c 2 ;

printf("(signed char) sc1 = %4d, sc2 = %4d, sc1+sc2 = %4d \n", sc1, sc2, sc3) ;

return 0 ;
21 }

3.3 Circuits combinatoires

EXERCICE 5 Ï Retenue anticipée
L’inconvénient des additionneurs 8 bits en cascade est que chaque additionneur 1 bit doit attendre que sa
retenue entrante soit disponible pour réaliser l’opération. Un additionneur 8 bits a donc un temps de traversée
égal à 8 fois le temps de traversée d’un additionneur 1 bit. Un additionneur à retenue anticipée (carry select)
peut être construit en utilisant le temps de traversée d’un additionneur 4 bits (utilisé pour additionner les 2×4
bits de poids faible) pour précalculer les deux résultats possibles de l’addition des 2×4 bits de poids forts (l’un
avec une retenue entrante égale à 1, l’autre avec une retenue entrante nulle). Un multiplexeur est utilisé pour
sélectionner le bon résultat lorsque la retenue entrante est finalement connue. Réalisez un tel additionneur en
utilisant des additionneurs 4 bits de la librairie.

EXERCICE 6 Ï Circuits à construire
En commençant par écrire la table de vérité des fonctions booléennes désirées, construire les circuits sui-
vants 1 :

— Encodeur octal : c’est un circuit à à 8 entrées e7, . . . ,e0 et à trois sorties s2, s1, s0. Si ei est à 1, on veut que
(s1s1s0)2 = i . On suppose qu’un seul des ei est à 1.

— Parité impaire sur 3 bits : c’est un circuit à 3 entrées et une sortie qui vaut 1 si et seulement si le nombre
des entrées à 1 est impair.

1. Ces deux exercices sont aussi dans le cahier de TD.

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 8/25

TP 4
Circuits séquentiels, registres, mémoire

Objectifs : Écrire des circuits séquentiels simples en LOGISIM, utiliser la librairie LOGISIM pour la mémoire,
réaliser et mettre en œuvre un banc de registres.

4.1 Bascules

EXERCICE 1 Ï Bascules
Le but est de bien comprendre le principe des bascules D (flip-flop).

— Montez une bascule D (flip-flop) de la librairie (en mode front montant Rising Edge puis testez son com-
portement. Montez ensuite deux bascules D en série en les reliant au même signal d’horloge ; vérifiez le
comportement sur deux cycles d’horloge successifs.

— Construisez un chenillard à 5 leds en utilisant 5 bascules D montées en série. Le principe est qu’à chaque
cycle d’horloge, une seule led est allumée, et la led allumée est décalée d’un cran vers la droite à chaque
cycle d’horloge. Le cycle suivant l’allumage de la led 5, c’est la led 1 qui doit de nouveau être allumée.
Testez votre circuit.

4.2 Registres, compteurs et mémoire

EXERCICE 2 Ï Registre
Un registre n-bits est une mémoire constituée d’un assemblage en parallèle de bascules D. Construisez un
registre 4 bits, que vous testerez, puis que vous comparerez avec celui de la bibliothèque (toujours sur front
montant).

EXERCICE 3 Ï Compteur
Réalisez un compteur 4 bits en utilisant les outils suivants de la bibliothèque : un registre 4 bits et un addition-
neur. Testez en mettant une horloge, avec l’option Simulate->Ticks Enabled, puis ajoutez un signal reset
qui permet de remettre le compteur à 0.

EXERCICE 4 Ï Utilisation de la RAM
En vous aidant de la documentation :

— Instanciez une RAM avec adressage 4 bits et contenu 8 bits (en mode One synchronous load/store
port, comme dans le cours).

— Faites la fonctionner en lecture. Pour remplir la mémoire avant de tester la lecture, on pourra faire un
clic droit sur le composant de mémoire, puis Edit Contents. Il n’est pas nécessaire de sauvegarder le
contenu de la mémoire dans un fichier.

— Dans un autre onglet, faire fonctionner une mémoire en écriture.

— Comment faire pour faire fonctionner la même mémoire en écriture et en lecture ? On pourra judicieu-
sement regarder le cours, la documentation de la RAM ainsi que le composant Buffer.

— Modifiez votre circuit de manière à ce qu’il affiche successivement (dans deux afficheurs hexadécimaux)
le contenu de chaque case de la mémoire. Pour cela, vous utiliserez un compteur 4 bits, et à chaque
cycle d’horloge votre circuit affichera le contenu de la case mémoire dont l’adresse est donnée par le
compteur.

On peut aussi utiliser un composant Probe et afficher en Hexa directement.

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 9/25

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

4.3 Banc de registre

EXERCICE 5 Ï Banc de registres
Construire un banc de registres, avec 4 registres 4 bits capable de lire deux registres et d’écrire un registre. On
commencera par se poser la question du nombre d’entrées et de sorties d’un tel circuit.

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 10/25

TP 5
Test de circuit, circuits dédiés.

Objectifs :
— Utiliser le simulateur de LOGISIM pour tester ses circuits.
— Concevoir un “circuit dédié”.

Fichiers fournis : tp5_cpt4.circ, tp5_test_add4.circ, tp5_pgcdetu.circ

5.1 LOGISIM : test de circuit

EXERCICE 1 Ï Simulation en ligne de commande
Récupérez le compteur 4 bits du tp précédent, fichier tp5_cpt5.circ.

— Lisez la documentation (Command Line Verification) et lancez une simulation en ligne de commande.

— En rajoutant une sortie nommée halt (voir la doc), faire en sorte que la simulation termine après un
cycle du compteur. Indication : après quelle valeur du compteur la simulation doit-elle s’arrêter ?

On va maintenant comparer ce compteur avec le compteur de la bibliothèque LOGISIM :

— Récupérer le compteur 4 bits de la bibliothèque, et lire sa documentation.

— En ajoutant un comparateur 4 bits, construire une unique sortie same qui est vraie ssi à chaque tic d’hor-
loge la sortie de notre compteur est la même que celle de celui de la bibliothèque. Que doit produire la
simulation si votre compteur fonctionne correctement?

EXERCICE 2 Ï Comparaison de circuits combinatoires
Récupérez le fichier tp5_test_add4.circ : ce fichier contient une tentative de réalisation d’un additionneur
4 bits (sous-circuit add4). Pour toutes les entrées possibles, on souhaite comparer les sorties de add4 avec
celles produites par un additionneur de la librairie de LOGISIM. Si une différence existe, on pourra présumer
qu’il y a une erreur dans l’implantation de add4.

— Dans le circuit principal (main), on fournit une partie de l’infrastructure pour effectuer la comparaison :
combien d’entrées distinctes faut-il tester pour être sûr d’avoir passé toutes les entrées possibles en
revue? Est-ce que cela correspond bien à ce qui est prévu dans main?

— Complétez le circuit main, puis lancer la simulation en ligne de commande : comment détectez vous
que le sous-circuit add4 comporte effectivement une erreur ?

— Corrigez l’erreur qui produit le mauvais fonctionnement de add4. Relancez la simulation pour vous as-
surer que vous avais bien détecté tous les problèmes : comment faire pour vérifier que tous les tests ont
eu lieu avec succés ?

5.2 Circuits dédiés

EXERCICE 3 Ï Une calculette à PGCD
D’après http://dept.cs.williams.edu/~tom/courses/237/. Nous allons contruire un circuit qui réalise
le calcul du PGCD pour les entiers positifs (8 bits). La figure 5.1 vous fournit une définition et un programme
C pour ce calcul.

— Quel est le pgcd de 12 et 8 ?

— Expliquer la différence entre cet algorithme et celui que vous connaissez pour calculer le pgcd ?

Pour vous simplifier la vie, nous vous fournissons un circuit (figure 5.2) qui possède déjà les composants
de données et de calcul. Nous n’aurez plus qu’à ajouter les composants de contrôle.

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 11/25

http://dept.cs.williams.edu/~tom/courses/237/

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

“En arithmétique élémentaire, le plus
grand commun diviseur, abrégé en géné-
ral PGCD, de deux nombres entiers na-
turels non nuls est le plus grand entier
qui divise simultanément ces deux en-
tiers. Par exemple le PGCD de 20 et 30
est 10. En effet, leurs diviseurs communs
sont 1, 2, 5 et 10.”

Listing 5.1 – ’Afficherec.asm’

int gcd(int x, int y){
while (x != y){
if (x<y) y=y−x;

4 else x=x−y;
return x;

}

FIGURE 5.1 – Documentation pour le PGCD (Wikipédia)

FIGURE 5.2 – Le circuit fourni

— Sur la page web du cours, téléchargez le circuit tp5_pgcdetu.circ.

— Observez le circuit : les entrées de gauche seront utilisées pour rentrer les valeurs initiales pour x et y (en
binaire). Des sondes (Probe) décimales ont été ajoutées pour pouvoir lire ces valeurs en base 10 (ainsi
que les valeurs en sortie des registres).

— Remarquez bien qu’un “tick” d’horloge effectue 1 étape dans le calcul, le calcul n’est pas instantané !

— Rajoutez les composants de contrôle : quand les entrées sont disponibles, l’entrée (Pin) reset=1 doit
permettre d’initialiser les registres X et Y avec ces valeurs (au premier appui sur Clock). Ensuite, on
remettra l’entrée reset à 0. Puis chaque appui du bouton Clock cause l’exécution d’une étape de l’al-
gorithme. Une fois que le PGCD est trouvé, plus aucun changement ne doit arriver. On pourra judi-
cieusement se poser les deux questions suivantes : quelles sont les conditions de sélection de l’entrée 1 du
multiplexeur du haut (resp. du bas)? Quelles sont les conditions d’écriture de chacun des registres (entrée
Enable) ?

— Vérifiez avec x = 42 et y = 56. Le PGCD trouvé est?

EXERCICE 4 Ï Un automate reconnaisseur
Construire en LOGISIM un automate séquentiel reconnaissant le motif 111 : la sortie doit être à 1 sur un cycle
si, lors des trois cycles précédents, l’entrée était à 1 (en tout cas sur le front montant de l’horloge, en fin de
cycle). On utilisera obligatoirement la méthodologie suivante :

— Décrire la machine voulue en langage courant. En particulier, que veut dire “reconnaître” ?

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 12/25

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

— Quelles sont les entrées et les sorties de l’automate à construire ?

— Dessiner un automate équivalent au circuit à construire.

— Construire la table de vérité du circuit. L’état suivant est calculé à partir de l’état courant et de l’entrée, et
la sortie est calculée à partir de l’état courant uniquement.

— Dessiner sur papier le circuit.

— Dessiner avec LOGISIM et tester (ce n’est pas si simple !)

— Dans un autre onglet, construire un circuit qui utilise des flips-flops pour se rappeler de 3 valeurs suc-
cessives de l’entrée.

— (optionnel) Tester l’égalité fonctionnelle de ces deux circuits.

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 13/25

TP 6
LC-3, exercices de programmation

Objectifs :
— Utiliser le simulateur de l’architecture LC-3 pour bien comprendre le jeu d’instructions.
— Écrire des programmes en langage d’assemblage LC-3.

Les exercices ci-dessous seront conçus sur papier puis testés à l’aide du logiciel PENNSIM.

Fichiers fournis : tp61.asm, tp6_codage.asm, tp6_saisie.asm

6.1 Premiers programmes en langage d’assemblage LC-3

Jusqu’à présent nous avons écrit des programmes en remplissant la mémoire directement avec les codages
des instructions. Nous allons maintenant écrire des programmes de manière plus simple, en écrivant les ins-
tructions en langage d’assemblage LC-3.

EXERCICE 1 Ï Multiplication par 6 des entiers d’un tableau

Dans le fichier tp61.asm, vous devez compléter la routine mul6tab pour qu’elle multiplie les entiers d’un
tableau par 6 modulo 16 : en entrée R0 contient l’adresse de la première case du tableau, R1 l’adresse de la
dernière case. Vous traduirez pour cela le pseudo-algorithme suivant :

R2 <- R0
while(R2 <= R1) { // (R2 <= R1) <=> (R2-R1 <= 0)

R3 <- mem[R2];
R3 <- 2*R3+4*R3; // R3 <- 6*R3
R3 <- R3 & 0x000F; // R3 <- R3 modulo 16
mem[R2] <- R3;
R2++;

}

1. Qu’est-il prévu dans le programme principal du fichier source tp61.asm?
2. En utilisant uniquement R4 comme registre intermédiaire, montrez comment traduire la ligne R3 <-

2*R3+4*R3.
3. A la ligneR3 <- R3 & 0x000F, le&désigne le AND bit-à-bit : justifier le fait que l’opérationR3 & 0x000F

calcule bien le reste dans la division euclidienne de R3 par 16. Comment traduirez-vous cette ligne en
langage d’assemblage ?

4. Traduisez l’algorithme proposé. Vous pouvez utiliser R4 et/ou R5 pour les calculs intermédiaires.
5. Exécutez pas-à-pas votre programme, et assurez-vous qu’il fonctionne correctement : vérifiez que la

routine multiplie bien par 6 modulo 16 les entiers du tableau !

EXERCICE 2 Ï Min et max de deux entiers
Écrire un programme en langage d’assemblage LC-3 qui calcule le min et le max de deux entiers, et stocke le
résultat à un endroit précis en mémoire, de label min. Tester avec différentes valeurs.

6.2 Saisie d’une chaîne de caractères

Le système d’exploitation du LC-3 fournit une interruption permettant d’afficher une chaîne de caractères
(PUTS ≡ TRAP x22), mais on n’a pas la possibilité de saisir une chaîne de caractères. Le but est d’écrire une
routine permettant cela. On complétera progressivement le programme ci-dessous.

Listing 6.1 – ’SaisieChaine.asm’

.ORIG x3000

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 14/25

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

; Programme principal

LEA R6,stackend ; initialisation du pointeur de pile

; *** A COMPLETER ***

5 HALT
; Pile

stack: .BLKW #32
stackend: .FILL #0

.END

1. Avant de déclencher une interruption vers le système d’exploitation dans une routine, il est important
de sauvegarder l’adresse de retour contenue dans R7 : pourquoi ?

2. Écrire une routine saisie permettant de saisir une chaîne de caractères au clavier, en rangeant les ca-
ractères lus à partir de l’adresse contenue dans R1. La saisie se termine lorsqu’un retour à la ligne (code
ASCII 10) 1 est rencontré, et la chaîne de caractères doit être terminée par un caractère ’\0’ (de code
ASCII 0).

3. Tester la routine en écrivant un programme qui affiche "Entrez une chaîne : ", effectue la saisie d’une
chaîne en la rangeant à une adresse désignée par une étiquette ch, puis affiche "Vous avez tapé : " suivi
de la chaîne qui a été saisie.

6.3 Un message codé (CC-TP 2015)

Récupérez le fichier tp6_codage.asm sur la page web du cours. Il s’agit de compléter la routine dechiffre
pour qu’elle permette de déchiffrer le message qui se trouve rangé à partir de l’adresse msg sous la forme d’une
chaîne de caractères se terminant par 0. La routine prend comme paramètres l’adresse du début du message
dans R0, et la clé du chiffrement k dans R1. Pour décoder, la routine remplacera chacun des caractères c du
message par kˆc (ou-exclusif bit-à-bit entre k et c), sauf le caractère 0 final.

1. Assemblez et exécutez une première fois le programme : quel est le message affiché ?

2. Si a et b sont deux variables booléennes, on rappelle que a ⊕b désigne le ou-exclusif entre a et b. En
utilisant les lois de Morgan, vérifiez que

a ⊕b = (
a·b)·(a·b)

3. On suppose que R1 contient la clé et R3 un caractère du message. Donnez un morceau de code en lan-
gage d’assemblage pour remplacer R3 par R1ˆR3, en utilisant R4 et R5 comme variables intermédiaires
du calcul.

4. En utilisant R2 comme un pointeur pour parcourir le message, donnez sur papier un pseudo-code pour
la routine dechiffre. Vous référencerez simplement le code de la question précédente par (*).

5. Complétez la routine dechiffredans le fichier tp6_codage.asm, d’après le pseudo-code de la question
précédente. Testez votre programme, en l’assemblant et en l’exécutant : quelle est la chaîne de caractères
affichée ?

6. Comment faire pour coder un message avec la clé fournie ? Complétez le programme (tp6_codage.asm)
pour tester votre proposition.

6.4 Saisie d’un entier au clavier

Vous modifierez et compléterez progressivement le fichier tp6_saisie.asm.

1. La routine saisie permet de lire un entier naturel en base 10 au clavier, et place l’entier lu dans R1.
Modifiez-la pour qu’elle affiche « Entrez un entier naturel : » avant d’effectuer la saisie.

1. Dans une ancienne version du simulateur, le retour chariot (code ASCII 13) était utilisé, d’où la présence de ce code dans certains
des exercices de TD : en tout cas, avec LOGISIM, c’est bien le retour à la ligne qui est lu quand on tape « Entrée. »

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 15/25

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

2. Complétez la routine aff de façon à ce qu’elle affiche autant d’étoiles « * » que l’entier naturel contenu
dans R1 lors de son appel. Après avoir affiché R1 étoiles, la routine doit aussi afficher un retour à la ligne.
Suivez les consignes données en commentaire dans le fichier.

3. Modifiez le programme principal main pour qu’il effectue la lecture d’un entier au clavier avec saisie,
puis son affichage avec aff.

4. La routine mul10 fournie permet de multiplier par 10 le contenu de R1. Mais, telle qu’elle vous est four-
nie, elle exécute 10 instructions : modifiez cette routine de façon à ce qu’elle exécute au plus 6 instruc-
tions, tout en calculant toujours le même résultat.

5. L’adresse de retour contenue dans R7 est sauvegardée et restaurée à l’aide de la pile dans saisie et aff,
mais pas dans mul10 : pourquoi ?

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 16/25

TP 7
Construisons le LC-3 - partie 1

Objectifs : Le but de ce TP est de découvrir un circuit LOGISIM qui implémente une partie des instruc-
tions du LC-3 et que vous aurez à modifier dans le TP suivant. Le TP s’inspire fortement des TPs et projet de
l’équipe pédagogique d’architecture de Paris 7 : http://www.liafa.jussieu.fr/~carton/Enseignement/
Architecture/, dont il reprend une partie du code source fourni aimablement par leurs auteurs.

Fichiers fournis : LC3_etu.circ, AddSimple.mem

7.1 Le circuit LC-3

Récupérez le fichier LC3_etu.circ (Figure 7.1) et ouvrez-le avec LOGISIM. Ce fichier contient une implé-
mentation partielle du LC-3, dans laquelle seules les instructions ADD, AND, NOT sont cablées, même si beau-
coup d’infrastructure est déjà en place pour plus tard.

FIGURE 7.1 – Le circuit LC-3 fourni, onglet principal

Bref mode d’emploi. Pour simuler l’exécution de programmes LC-3 avec ce circuit :

— Entrez dans la RAM les octets d’un programme LC-3, d’une des trois manières suivantes :

— En mode “Poke”, on peut directement cliquer sur une case de la RAM et la remplir au clavier.

— En faisant un clic-droit sur la RAM, on peut choisir “Edit Contents”, ce qui ouvre un éditeur.

— Le menu obtenu par un clic-droit sur la RAM propose aussi “Load Image” pour charger dans la
RAM le contenu d’un fichier mémoire (voir ci-dessous).

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 17/25

http://www.liafa.jussieu.fr/~carton/Enseignement/Architecture/
http://www.liafa.jussieu.fr/~carton/Enseignement/Architecture/

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

— Pour faire avancer la simulation d’un programme, il faut changer l’état de l’horloge (Clock) du circuit
(c’est-à-dire lui faire passer un front montant ou un front descendant) : vous pouvez soir cliquer sur le
bouton d’horloge (en haut à gauche du circuit), soit envoyer un tic manuel via Ctrl-T.

— Si vous souhaitez relancer l’exécution du programme (remettre PC à 0, et vider le banc de registres),
mettez l’horloge Clock à son niveau bas, puis faites passer l’entrée Reset à 1, puis de nouveau à 0.

Fichier mémoire. Un fichier mémoire chargeable dans une RAM LOGISIM est un simple fichier texte dont
la première ligne est v2.0 raw. Viennent ensuite les différents octets de la mémoire en hexadécimal. Voir
la section “Memory Components” de la documentation LOGISIM pour plus de détails. Voici par exemple le
contenu du fichier AddSimple.mem :

v2.0 raw
5020 1025 5260 1266 1440

Ce programme correspond au code en langage d’assemblage contenu dans le fichier AddSimple.asm :

Listing 7.1 – ’AddSimple.asm’

1 .ORIG x0000 ; c o d e h e x a

2 AND R0,R0,0 ; 5 0 2 0

3 ADD R0,R0,5 ; R0 < − 5 ; 1 0 2 5

4 AND R1,R1,0 ; 5 2 6 0

5 ADD R1,R1,6 ; R1 < − 6 ; 1 2 6 6

6 ADD R2,R1,R0 ; R2 < − R1 + R0 ; 1 4 4 0

7 .END

EXERCICE 1 Ï Simulation d’un programme
Ouvrez le circuit LC3_etu.circ, puis récupérez le programme AddSimple.mem sur la page du cours. Chargez-le
dans la RAM et lancez sa simulation. Observez en particulier l’évolution des contenu des registres (PC, IR, R0,
. . . ,R7).

EXERCICE 2 Ï Cycle d’instruction
Placez vous dans le sous-circuit Seq (Figure 7.2), et expérimentez. Représenter les signaux Clock, Fetch et
Exec sur un chronogramme, en supposant que ClockOrig est un signal créneau périodique. Que se passe-t’il
quand Reset est activé, puis relaché un peu plus tard? Quel est le rôle joué par ce circuit dans cette implanta-
tion du LC-3 ?

FIGURE 7.2 – Composant Seq du LC-3

7.2 L’unité arithmétique et logique

Placez-vous dans le module ALU (Figure 7.3), qui contient l’unité arithmétique et logique. Notez l’usage
d’un multiplexeur, qui sélectionne parmi quatre entrées (dont une actellement non affectée) en fonction d’un
fil de contrôle sur 2 bits.

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 18/25

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

FIGURE 7.3 – Composant ALU du LC-3

EXERCICE 3 Ï Valeurs de contrôle
Expérimentez différentes valeurs pour e1 et e2. Quelles valeurs donner à e1 et e2 pour :

— obtenir en sortie le ET bit à bit de Input1 et Input2?

— obtenir l’addition de Input1 et Cst

— obtenir le NON bit à bit de Input1?

EXERCICE 4 Ï Contrôle de l’ALU
Reprenez le jeu d’instructions du LC-3 (cf cours) Les opérandes des instructions arithmétiques sont soit deux
registres, soit un registre et une constante littérale.

— Comment sont différenciés les deux cas?

— Quels bits différencient les opcodes des instructions arithmétiques ADD, AND et NOT? Déduisez-en à
quoi devront être branchés e1 et les deux bits de e2 dans le circuit complet.

7.3 Exécution des instructions arithmétiques

On suppose que vous avez ouvert le circuit LC3_etu.circ, puis chargé le programme AddSimple.mem
dans la RAM : servez vous de la simulation de ce programme pour répondre aux questions suivantes.

EXERCICE 5 Ï Phase Fetch

1. En observant le module RegPC, expliquez comment est calculé PC+1. A quel instant PC+1 remplace PC?

2. Lors du cycle du chargement, comment une instruction est-elle chargée dans le registre RegIR?

3. Pour l’instant, on n’exécute que des instructions arithmétiques : expliquez les valeurs de sorties pro-
duites par DecodeIR.

EXERCICE 6 Ï Phase Exec

1. Observez le fonctionnement du module Registres : pourquoi utiliser trois ports de lecture ? Dans quel
cas sera utilisé le port de lecture OUT (SR)?

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 19/25

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

2. En vous plaçant dans la phase exec de l’instruction ADD R0,R0,5 (de code x1025 en mémoire), expli-
quez comment est exécutée cette instruction. Comment les opérandes sources sont aménées à l’ALU ?
Comment le résultat de l’opération est rangé dans le registre destination? A quel instant le résultat est
définitivement stocké ?

EXERCICE 7 Ï Chronogramme
En supposant que l’horloge générale Clock du circuit est un signal créneau périodique, représenter l’évolution
de l’état du circuit sur un chronogramme au cours des cycles des deux premières instructions du programme
AddSimple.mem. Vous représenterez les signaux suivants : Clock, Fetch, Exec ; les valeurs suivantes : PC, IR,
GetOp, R0, R1 sur la Figure 7.4.

FIGURE 7.4 – Chronogramme pour AddSimple

7.4 Pour la suite. . .

EXERCICE 8 Ï Un programme

Préparez un fichier Cst2007.mem contenant les instructions en langage machine pour charger 2007 dans
le registre R1. Pour cela utilisez soit un éditeur de texte séparé, soit l’éditeur hexadécimal intégré puis l’entrée
de menu “Save Image”. Simulez ce programme : que constatez-vous?

EXERCICE 9 Ï Opcode LC-3
Construisez la table de vérité de toutes les instructions du LC-3 en fonction des 4 bits de l’opcode (cette table
sera utile plus tard). Que pouvez-vous observer ? Comment caractériser les instructions qui peuvent modifier
des registres R0, . . . , R7?

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 20/25

TP 8
Construisons le LC-3 - partie 2

Objectifs : Le but de ce TP est de terminer le circuit LOGISIM qui implémente une partie des instructions
du LC-3. Le circuit fourni au TP précédent implante déjà les instructions NOT, ADD, AND du LC-3. Il reste à lui
ajouter des composants pour qu’il implante d’autres instructions :

— deux instructions d’accès mémoire, LD et ST ;

— une instruction de branchement, BR.

Ce TP s’inspire fortement des TPs et projet de l’équipe pédagogique d’architecture de Paris 7 : http://
www.liafa.jussieu.fr/~carton/Enseignement/Architecture/.

8.1 Décodage des instructions

À l’issue de ce TP, la version simplifiée du processeur que nous allons construire permettra d’exécuter
les instructions arithmétiques (ADD, AND, NOT), deux instructions d’accès direct à la mémoire (LD, ST) et une
instruction de branchement (BR).

EXERCICE 1 Ï Circuit DecodeIR
Les signaux de sortie du sous-circuitDecodeIR (Load,Store,Arith,GetOp,WriteEnable,Branch etOffset9)
permettent d’activer correctement le chemin de données en fonction de la classe d’instruction à exécuter. Dé-
terminez en fonction de IR[13,12] (bits 13 et 12 du registre d’instruction) comment doivent être activés ces
signaux. Complétez le sous-circuit DecodeIR N’oubliez pas Offset9 !

8.2 Instructions d’accès mémoire

Dans cette section on va ajouter les composants du circuit pour les instructions LD et ST.

EXERCICE 2 Ï Programme de test

Écrire en langage machine LC-3 un programme de taille minimale pour tester les instructions LD et ST :
ce programme chargera deux entiers depuis les adresses (5)10 et (6)10 dans deux registres, puis rangera leur
somme à l’adresse (6)10. Vous utiliserez judicieusement PennSim pour traduire votre programme en langage
machine chargeable dans la RAM du LC-3 de LOGISIM 1

EXERCICE 3 Ï Implantation de LD
Dans cet exercice, on se concentre sur l’implantation de l’instruction LD.

1. Quelle action doit être effectuée dans le chemin de données du processeur lors de la phase d’exécution
d’une instruction LD DR, label?

2. Lors de l’exécution d’une instruction LD, quel sous-circuit est chargé de placer la mémoire RAM en mode
lecture?

3. L’unité GetAddr se charge de calculer l’adresse de la mémoire qui doit être accédée Addr dans la RAM.
Au cours de la phase de Fetch, que doit valoir Addr? Même question au cours de la phase Exec d’une
instruction LD.

4. Complétez à l’aide des signaux Offset9, PC, Load, Store, Fetch la formule valable pour l’exécu-
tion de toutes les instructions :

1. Au passage, pourquoi peut-on utiliser ici le codage fourni par PennSim, qui stocke le programme à partir de l’adresse x3000, alors
que notre circuit stocke le programme à partir de l’adresse x0000?

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 21/25

http://www.liafa.jussieu.fr/~carton/Enseignement/Architecture/
http://www.liafa.jussieu.fr/~carton/Enseignement/Architecture/

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

Si ...
Alors Addr = PC
Sinon Addr =

5. Complétez GetAddr de façon à ce que le circuit permette l’exécution de LD.

6. Au niveau du banc de registres, comment doit-être effectuée l’écriture dans DRde la donnée ? On vérifiera
qu’il n’y a rien à mettre à jour à l’intérieur du composant Registres, mais par contre des modifications
sont à faire dans le circuit principal pour bien amener la bonne donnée en entrée.

7. Expérimentez votre circuit en exécutant les trois premières instructions de votre programme de test.

EXERCICE 4 Ï Implantation de ST
On se concentre maintenant sur l’implantation de l’instruction ST.

1. Quelle action doit-être effectuée dans le chemin de données du processeur lors de la phase d’exécution
d’une instruction ST SR,label?

2. Comment la RAM est-elle placée en mode écriture lors de l’exécution d’un ST?

3. Comment est calculée l’adresse de destination dans la RAM?

4. Mettre à jour votre circuit au voisinage du banc de registres, si nécessaire.

5. Expérimentez votre cicuit en exécutant l’instruction ST de votre programme de test.

8.3 Instructions de branchement et saut

Dans cette section on cherche à rajouter les composants du circuit pour l’instruction BR.

EXERCICE 5 Ï Programme de test
Écrire en langage machine LC-3 un programme qui permettra de tester BR.

EXERCICE 6 Ï Conditions d’activation - NZP
On veut implanter le sous-circuit NZP. On rappelle que l’architecture du LC-3 spécifie trois drapeaux N, Z et P,
qui indiquent respectivement si la dernière valeur chargée dans le banc de registres était strictement négative,
nulle, ou strictement positive. Le circuit NZP contient un registre 3 bits (falling edge triggered) qui stocke l’état
des drapeaux.

1. Ecrire, en fonction des 16 bits formant l’entrée IN du circuit (valeur à tester), les fonctions logiques don-
nant les valeurs que doivent prendre N, Z et P.

2. Quand doit-être mis à jour le registre 3 bits contenant l’état des drapeaux N, Z et P?

3. La sortie Cond du sous-circuit prend la valeur 1 si, d’après les drapeaux N, Z et P, le BR en cours d’exécu-
tion doit provoquer un saut : donnez une formule pour Cond.

4. Complétez le sous-circuit NZP.

5. Modifiez le chemin de donnée du LC-3, de façon à ce que les drapeaux N, Z et P soient mis à jour : soit
d’après MemOUT dans le cas de l’exécution d’une instruction de chargement mémoire (signal Load à 1),
soit d’après la sortie Res de l’ALU dans tous les autres cas. On fera attention au choix signal comman-
dant l’écriture dans le registre (entrée Clock du composant NZP), qui ne peut être l’horloge du circuit,
pourquoi ?)

EXERCICE 7 Ï Calcul de l’adresse de saut
Il ne nous reste plus qu’à mettre à jour le calcul de la prochaine valeur du registre PC. Cela se passe dans le
sous-circuit RegPC.

1. Quelle action doit effectuer une instruction BR[n][z][p], label durant la phase Exec?

2. Complétez le sous-circuit RegPC, puis testez à l’aide de votre programme.

3. Que faudrait-il faire pour prendre en comptre l’instruction JSR?

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 22/25

Annexe A
Documentation

A.1 Références

Le logiciel LOGISIM que nous utilisons en TP pour les circuits est disponible sur la page :

http://www.cburch.com/logisim/index.html

C’est un outil à vocation pédagogique, qui permet de dessiner et de simuler des circuits logiques simples.
Le LC-3 est un processeur développé dans un but pédagogique par Yale N. Patt et J. Patel dans [Introduction

to Computing Systems : From Bits and Gates to C and Beyond, McGraw-Hill, 2004]. Des sources et exécutables sont
disponibles à l’adresse :

http://highered.mcgraw-hill.com/sites/0072467509/

L’ISA du LC3 est documentée ici :

http://highered.mheducation.com/sites/dl/free/0072467509/104653/PattPatelAppA.pdf

A.2 Mémos pour la programmation du LC3

Description du LC-3

La mémoire et les registres : La mémoire du LC-3 est organisée par mots de 16 bits, avec un adressage éga-
lement de 16 bits (adresses de (0000)H à (FFFF)H).

Le LC-3 comporte 8 registres généraux 16 bits : R0, . . . , R7. R6 est réservé pour la gestion de la pile d’exécu-
tion, et R7 pour stocker l’adresse de retour des routines. Il comporte aussi des registres spécifiques 16 bits : PC
(Program Counter), IR (Instruction Register), PSR (Program Status Register) qui regroupe plusieurs drapeaux.

Le PSR contient trois bits N, Z, P, indiquant si la dernière valeur (regardée comme le code d’un entier naturel
en complément à 2 sur 16 bits) placée dans l’un des registres, R0, . . . , R7 est négative strictement pour N, nulle
pour Z, ou positive strictement pour P.

Les instructions :

syntaxe action NZP
NOT DR,SR DR <- not SR *
ADD DR,SR1,SR2 DR <- SR1 + SR2 *
ADD DR,SR1,Imm5 DR <- SR1 + SEXT(Imm5) *
AND DR,SR1,SR2 DR <- SR1 and SR2 *
AND DR,SR1,Imm5 DR <- SR1 and SEXT(Imm5) *
LEA DR,label DR <- PC + SEXT(PCoffset9) *
LD DR,label DR <- mem[PC + SEXT(PCoffset9)] *
ST SR,label mem[PC + SEXT(PCoffset9)] <- SR
LDR DR,BaseR,Offset6 DR <- mem[BaseR + SEXT(Offset6)] *
STR SR,BaseR,Offset6 mem[BaseR + SEXT(Offset6)] <- SR
BR[n][z][p] label Si (cond) PC <- PC + SEXT(PCoffset9)
NOP No Operation
RET PC <- R7
JSR label R7 <- PC; PC <- PC + SEXT(PCoffset11)

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 23/25

http://www.cburch.com/logisim/index.html
http://highered.mcgraw-hill.com/sites/0072467509/
http://highered.mheducation.com/sites/dl/free/0072467509/104653/PattPatelAppA.pdf

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

Directives d’assemblage :

.ORIG adresse Spécifie l’adresse à laquelle doit commencer le bloc d’instructions qui suit.

.END Termine un bloc d’instructions.

.FILL valeur Réserve un mot de 16 bits et le remplit avec la valeur constante donnée en paramètre.

.BLKW nombre Cette directive réserve le nombre de mots de 16 bits passé en paramètre.
; Les commentaires commencent par un point-virgule.

Les interruptions prédéfinies : TRAP permet de mettre en place des appels système, chacun identifié par
une constante sur 8 bits, gérés par le système d’exploitation du LC-3. On peut les appeler à l’aide des macros
indiquées ci-dessous.

instruction macro description
TRAP x00 HALT termine un programme (rend la main à l’OS)
TRAP x20 GETC lit au clavier un caractère ASCII et le place dans R0
TRAP x21 OUT écrit à l’écran le caractère ASCII placé dans R0
TRAP x22 PUTS écrit à l’écran la chaîne de caractères pointée par R0
TRAP x23 IN lit au clavier un caractère ASCII, l’écrit à l’écran, et le place dans R0

Constantes : Les constantes entières écrites en hexadécimal sont précédées d’un x (en décimal elles peuvent
être précédées d’un # optionnel) ; elles peuvent apparaître comme paramètre : des instructions du LC3 (opé-
randes immédiats, attention à la taille des paramètres), des directives .ORIG, .FILL et .BLKW.

Codage des instructions LC3

On donne ici un tableau récapitulatif du codage des instructions LC3.

syntaxe action NZP codage
opcode arguments

F E D C B A 9 8 7 6 5 4 3 2 1 0
NOT DR,SR DR ← not SR * 1 0 0 1 DR SR 1 1 1 1 1 1
ADD DR,SR1,SR2 DR ← SR1 + SR2 * 0 0 0 1 DR SR1 0 0 0 SR2
ADD DR,SR1,Imm5 DR ← SR1 + SEXT(Imm5) * 0 0 0 1 DR SR1 1 Imm5
AND DR,SR1,SR2 DR ← SR1 and SR2 * 0 1 0 1 DR SR1 0 0 0 SR2
AND DR,SR1,Imm5 DR ← SR1 and SEXT(Imm5) * 0 1 0 1 DR SR1 1 Imm5
LEA DR,label DR ← PC + SEXT(PCoffset9) * 1 1 1 0 DR PCoffset9
LD DR,label DR ← mem[PC + SEXT(PCoffset9)] * 0 0 1 0 DR PCoffset9
ST SR,label mem[PC + SEXT(PCoffset9)] ← SR 0 0 1 1 SR PCoffset9
LDR DR,BaseR,Offset6 DR ← mem[BaseR + SEXT(Offset6)] * 0 1 1 0 DR BaseR Offset6
STR SR,BaseR,Offset6 mem[BaseR + SEXT(Offset6)] ← SR 0 1 1 1 SR BaseR Offset6
BR[n][z][p] label Si (cond) PC ← PC + SEXT(PCoffset9) 0 0 0 0 n z p PCoffset9
NOP No Operation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RET PC ← R7 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
JSR label R7 ← PC; PC ← PC + SEXT(PCoffset11) 0 1 0 0 1 PCoffset11

Traduction de programmes en langage d’assemblage

Il vous est demandé de toujours commencer par écrire un pseudo-code pour le programme ou la routine
demandé, en faisant apparaître les registres que vous allez utiliser pour effectuer vos calculs, et en ajoutant
tous les commentaires utiles. Vous traduirez ensuite votre pseudo-code vers le langage d’assemblage du LC3
en utilisant les règles de traduction suivantes.
Traduction d’un « bloc if » : On suppose que la condition d’entrée dans le bloc consiste simplement en la
comparaison du résultat d’une expression arithmétique e à 0. Dans ce qui suit, cmp désigne une relation de
comparaison : <, ≤, = , 6=, ≥ , >. On note !cmp la relation contraire de la relation cmp, traduite dans la syntaxe
des bits nzp de l’instruction BR. Si par exemple cmp est <, alors BR!cmp désigne BRpz (pour « positive or zero »).

/* En pseudo-code */
if e cmp 0 {

corps du bloc
}

; En langage d’assemblage du LC3
evaluation de e
BR!cmp endif ; branchement sur la sortie du bloc
corps du bloc

endif:
Traduction d’un bloc « if-else » :

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 24/25

L3 informatique – Lyon 1 TD LifASR4 2021 – 2022

/* En peudo-code */
if e cmp 0 {

corps du bloc 1
}
else {

corps du bloc 2
}

; En langage d’assemblage du LC3
evaluation de e
BR!cmp else ; branchement sur le bloc else
corps du bloc 1
BR endif ; branchement sur la sortie du bloc

else:
corps du bloc 2

endif:
Traduction d’une « boucle while » :

/* En peudo-code */
while e cmp 0 {

corps de boucle
}

; En langage d’assemblage du LC3
loop:

evaluation de e
BR!cmp endloop ; branchement sur la sortie de boucle
corps de boucle
BR loop ; branchement inconditionnel

endloop:
Quelques « astuces » à connaître :

— Initialisation d’un registre à 0 : AND Ri,Ri,#0
— Initialisation d’un registre à une constante n (représentable en complément à 2 sur 5 bits) :

AND Ri,Ri,#0
ADD Ri,Ri,n

— Calcul de l’opposé d’un entier (on calcule le complément à 2 de Rj dans Ri) :

NOT Ri,Rj
ADD Ri,Ri,#1

— Multiplication par 2 de Rj, résultat dans Ri : ADD Ri,Rj,Rj

— Copie du contenu de Rj dans Ri : ADD Ri,Rj,#0

N. Louvet, L. Gonnord, X. Urbain, S. Brandel 25/25

	Prise en main de PennSim, Introduction à l'architecture LC-3
	Prise en main de Logisim, premiers circuits
	Avant de démarrer
	Circuits combinatoires de base

	Circuits combinatoires et complément à deux
	Quelques éléments du processeur LC-3
	Dépassements en C
	Circuits combinatoires

	Circuits séquentiels, registres, mémoire
	Bascules
	Registres, compteurs et mémoire
	Banc de registre

	Test de circuit, circuits dédiés.
	Logisim : test de circuit
	Circuits dédiés

	LC-3, exercices de programmation
	Premiers programmes en langage d'assemblage LC-3
	Saisie d'une chaîne de caractères
	Un message codé (CC-TP 2015)
	Saisie d'un entier au clavier

	Construisons le LC-3 - partie 1
	Le circuit LC-3
	L'unité arithmétique et logique
	Exécution des instructions arithmétiques
	Pour la suite…

	Construisons le LC-3 - partie 2
	Décodage des instructions
	Instructions d'accès mémoire
	Instructions de branchement et saut

	Documentation
	Références
	Mémos pour la programmation du LC3

