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ABSTRACT

This document describes the Po-tree, a new indexing structure for spatio-
temporal databases with real-time constraints. Natural risks management
and other system can use arrays of spatially referenced sensors. Each on
them sending their measurements to a central database. Our solution tries
to facilitate the indexing of these data, while favoring the newer ones. It
does  so  by  combining  two  sub-structures  for  the  spatial  and  temporal
components.  While  Mobility  is  not  yet  supported,  evolutions  of  the
structures shall be able to deal with it.

INTRODUCTION

Geographic  Information  Systems  provide  solutions  to  a  wide  panel  of
problems, from agronomy to urban planning or natural risk management.
The  databases  linked  to  such  systems  usually  are  very  large  and
cumbersome. They have to keep tracks of numerous heterogeneous data.
Solutions exist to face this kind of needs. Yet, a particular aspect remains
partially untouched: spatio-temporal indexing with real time constraints.
While  our application case is  linked to natural  disasters prevention,  we
shall show that the structure we propose can be extended to cover different
needs.  We  currently  propose  a  new  database  spatio  temporal  access
method for spatially referenced sensors, the Po-tree.



This paper is divided into three chapters. First we define more precisely
the problem we intend to address, then we follow by an introduction to our
application case. Next comes a brief state of the art. Finally, we introduce
our solution, the Po-tree, and some test results to study its usefulness. 

1 Application case

Our  study  fields  is  linked  with  the  work  of  volcanologists,  trying  to
monitor  a  Mexican  volcano,  the  Popocatepetl  (CENAPRED,2003).  An
array of fixed measurement stations, hosting various sensors has been set
up around  the  volcano.  15  stations  record  data  within  1.5km from the
crater. Others are located further down the slopes. Each sensor, spatially
referenced as a fixed point,  sends measurement datum toward a central
database.  This  database is  later  on replicated to  a data  warehouse.  See
Figure  1  for  a  visual  description.  The  Po-tree  aims  at  indexing  the
database, while keeping in mind some recommendation for environmental

data warehousing (Adam & al, 2002).

Fig. 1. application case

Real  time  constraints  stems  from  the  number  of  data  to  process.
Updates occur in a periodic - chronological order. Measurement frequency
for  a sensor  can be up to  100Hz, as  for  seismographs.  On this  aspect,
update transactions are more important than lookup queries.



The volcanologists  tend to consider the most recent data as the more
valuable,  as  they help understanding the actual  activity  of  the  volcano.
Users  usually  query  the  database  so  as  to  fetch  data  coming  from  a
specific  sensor  (spatial  location)  for  given  amount  of  time  (temporal
interval).  Volcanologists  generally  use  reference  sensors  so  as  to
determine  the  global  state  of  the  volcano.  Later  on  they  query
complementary sensors to confirm their analysis. Therefore, most lookups
are  spatial-point  /  time-interval.  They are  followed  by  range /  interval
queries,  as defined by Erwig (Erwig, & al, 1999).

The  specific  needs  of  this  kind  of  application  are  now  quite  well
understood. The spatio-temporal access method used should focus on two
aspects: the update transactions cost and the priority given to the newest
data. Different studies have already opened the path for real-time, spatial,
temporal and spatio-temporal databases.

2 Other studies

Real-Time approaches  are  based  on  the  respect  of  time constraints,  as
defined in (Lam & Kuo, 2001). For databases, it means that transaction are
to  commit  before  a  deadline.  In  the  case  of  an  array  of  sensors,  the
deadline is the arrival time of a new measurement.

Spatial approaches, as defined in (Ooi & Tan, 1997) can be divided into
three categories.
 The first one tend to linearize the data, represented as points, in order to

use well known indexing structures, such as the B+-Tree.

 Another approach intends to use a non-overlapping native space. The
space  is  divided  into  non-overlapping  sub-spaces.  The  objects  are
referenced within these subspaces. An object spanning across two sub-
spaces may be duplicated or clipped. 

 The last approach is to use an overlapping native space. The space is
divided into overlapping sub-spaces.

Among  the  main  indexes,  two  can  be  noted.  The  R-tree  (Guttman,
1984) family uses minimum bounding structure as sub-spaces to create a
hierarchy accessible through a B-tree.  In the Kd-tree  (Bentley, 1975),  a
binary tree, points are sorted according to reference points and reference
dimensions.

In  temporal  approaches,  the  notion  of  time  can  lead  to  the  use  of
balanced trees,  such as the  AP-tree  (Gunadhi & Segev, 1993).  Another



approach  is  simply  to  consider  the  time  dimension  as  another  spatial
dimension.

This  distinction  has  lead  to  different  spatio-temporal  approaches,  as
defined in (Wang, & al, 2000). Objects can be considered as:
 Objects that continuously move
 Objects that discretely change, such as in our case
 Continuous change of movements

Different families of access method can be defined.
 Time can be considered as another spatial dimension, as in the 3D-R-

Tree case (Theodoridis, Vazirgiannis & Sellis, 1996)
 Multiversion  tables  can  be  kept  to  track  the  data,  as  for  MVLQ

(Tzouramanis T., Vassilakopoulos M. & Manolopoulos Y, 2000)
 Overlapping snapshots can be used as an alternative to multiversioning.

HR-trees are a good example (Nascimento,M. & Silva J., 1998).
 A dimension  can  be  prioritized  over  another,  as  the  spatial  priority

given in TR-trees (Xu, Han & Lu, 1990).

None  of  these  approaches  are  completely  compatible  with  our  case
study. R-trees require lengthy Construction times. Approaches usually do
not focus on the most recent data. However some ideas have lead to the
development of a new tree: the Po-tree.

3 Po-Tree

Our solution, the Po-tree, is based on the differentiation of temporal and
spatial data, with a focus given to the latter. The spatial aspect is indexed
through a Kd-tree, while the temporal aspect uses modified B+-trees (see
figure 2). The measurement stations being immobile, the current structure
does  not  allow  mobile  sources  of  information,  mobile  sensors.  Every
spatial location, similar to a spatial object (sensor) is directly linked to a
specific  temporal  tree.  Queries  shall  first  determine  the  spatial  nodes
concerned by a transaction and later on determine the temporal nodes. 

3.1 Po-tree Structure

The Po-tree  can be divided in to parts.  A first  sub-structure  covers the
spatial  aspect.  Each location,  each  sensor  is  linked  through this  spatial
sub-tree to a temporal sub-tree.



Fig. 2. Po-tree structure

3.2 Spatial Component

Kd-trees  are  simple  spatial  structures  but  not  perfect  ones.  Their  main
problem is the fact that their final shape relies on the data insertion order.
If data are entered in different orders, the final trees may have different
shapes. 

However, Index Concurrency Control methods, originally designed for
B-trees with real-time constraints can easily be adapted to cover Kd-trees.
Latches, 'fast locks', can be converted to be used on binary trees. Different
tests have also proven that Kd-trees fared reasonably well compared to R-
trees for small number of data (Paspalis, 2002).

Within a Kd-tree, entries take the from <left-pointer;  reference-point;
right-pointer>. In order to create a Kd- tree, a reference dimension D and a
reference point  Pi are taken. Then, all points with a greater value for the
dimension  D than  Pi shall  fall to the right part of the branch, and those
with a lesser value to the left. At the next level of the tree, other reference
points Pi+1 and Pi+2 are taken, and the reference dimension becomes D+1.

In the Po-tree, each spatial point is composed of a spatial definition of
the point and a link to a temporal sub-tree. It does not directly record the
temporal components. Therefore, a whole definition of a spatial sub-tree
entry would be <left-pointer;  point-position;  link-to-temporal-tree;  right-
pointer>.  As spatial  deletes  should not  occur,  there  shall  not  be empty
spatial nodes.



3.3 Temporal Component

The temporal components to index are held within modified B+-trees. The
tree  records  the  measurement  times  and  links  to  the  actual  measured
values. Each spatial object is linked to a different temporal sub-tree.

As for the temporal aspect, it has been noticed that the most recent data
are considered of higher interest than older data. It has also been noticed
that  data insertions are generally held at  rightmost leaf of  the temporal
sub-structure, where are found the newest nodes. 

Therefore, the temporal sub-tree has been modified to add a direct link
between the root and the last node. While maintaining this link requires
minimum  computation  from  the  system,  a  simple  test  during  query
processing prevents being forced to traverse the whole tree so as to append
or to  find the  requested data.  This  direct  link,  updated during the  data
insertion procedure, is useful to save processing time. 

As  each  temporal  sub-tree  is  linked  to  an  object,  it  is  possible  to
develop  a  secondary  structure  in  order  to  directly  access  the  data  of
specific objects, without the need to search through their spatial position.
This would however incur the addition of an Information Source identifier
to the temporal sub-structure. However, this could be useful for the notion
of hierarchy of information sources.

As most, if not all, of the updates take place to the rightmost part of the
temporal sub-tree, the fill factor of leaf nodes can be placed higher than
usual.  Delete  transactions  should  be  somehow  rare  under  normal
conditions, and a posteriori updates should be as rare. The exception being
when  the  transmitting  systems  experience  lag  time  due  to  network
problems between the sensors and the database, or when the database has
to  restart  update  transactions,  which  can  occur  because  of  real-time
constraints  and  node  access  concurrency  control.  Therefore  split  and
merge procedures can be changed so that the nodes can be filled almost at
their maximum capacity.

Within the temporal  sub-tree,  the data are indexed according to their
start-time.  The  periodicity  of  the  sensors,  and the assumption that  they
shall not go down unnoticed makes us considering the start-time only. For
lower  frequencies  the  end-time should  be  included  as  well  in  order  to
define the data lifetime. So far, entries take the shape of <pointer-0; key-1;
pointer-1; key-2...; pointer-n>. Furthermore, a direct link between the root
and the last node accelerate the query processing of the newest  data. A
simple test between the value to process and the first key of the last node
determines if the query is related to the most recent data or to older one. If



the  value  is  greater  than  the  key,  the  last  node  is  directly  returned,
searched or updated. This greatly helps in lowering the processing time by
preventing lengthy tree traversals.

3.4 Spatio-temporal linking

Requests  on the  Po-tree  can be divided  in  three  different  parts:  spatial
localization, Information Source linking and temporal localization.

Lookups start by searching the spatial tree. For point lookups, it directly
fetches the Information Source and its temporal sub-tree. From here on,
the lookup query searches the temporal sub-tree. 

For  range  lookups,  the  query  starts  by  determining  the  different
Information Sources within the spatial range. Then, for each of them, it
then  starts  a  temporal  lookup.  The  queries  are  answered  by giving the
specific results of Information Sources one by one.

For insertions, the transaction starts by defining the spatial position of
the inserted data.  If the position is  already defined,  the transaction can
directly proceed with its temporal part. If the position is not defined, the
transaction starts by inserting the spatial point in the sub-tree. After this
first  step,  it  creates  a  new  temporal  sub-tree  and  links  it  to  a  new
Information Source.

Information Source linking references the change between the spatial
and the temporal sub-trees as each of them holds a part of the indexed
data.

Temporal queries start by comparing the timestamp or the end of the
interval with the first temporal key of the last node. This node is directly
accessible through the root of the tree. If the query deals with recent data,
the query can act directly on the last node. On other cases, the query then
proceeds with a B+-tree lookup.

Temporal intervals are dealt with by first finding the end of the interval
in the tree and by using the node-links to cover the entire interval length.

Queries use the B+-tree rules. For updates however, if a new leaf-node
is created to the right of the tree the link between the root and the last node
is accordingly updated.

This configuration implies the Po-tree is more specifically designed for
queries on the most recent data. Spatial range / Temporal interval requests
that does not ends at the present time does not fully take the advantages of
the specificities of the tree.



4 Tests

Different tests  have been conducted between the Po-tree, R and R*-tree
structures (Hadjieleftheriou, 2003).  Randomly generated data have been
generated  and  sequentially  issued  to  a  fixed  number  of  random points
acting as Information Sources.  Tests have been conducted changing the
total number of data to index (1000-200000), the number of information
sources  (10-5000) used and the portion of the base to scan for interval
queries (the 5 – 30 last percents). The tests have been conducted on a 1.6
G Hz, 128 Mo RAM computer, running Linux. The programming phase
was done under Java SDK 1.2 
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Fig. 3. Po-tree Construction Time

The first notable fact about the Po-tree comes from its construction time
(see Figure 3). Tests with a fixed set of 30 sensor, compatible with our test
case, along with 200 000 updates (batch) show a linear building time. 

From this point, it is interesting to examine the effect of the number of
different positions for queries, as we use two complementing structures so
as to obtain our Po-tree (see Figure 4). The tests have dealt with a fixed
total  set  of  data  and a varying number of  spatial  positions,  from 50 to
5000. The actual variation of the construction time (similar results have
been found for lookups) is steady, increasing by steps. Note that the Kd-
tree performances are linked to the order of insertion of data, as the shape
of this tree is not deterministic.
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Complementary tests between the Po-tree and the R*-tree have shown
some  interesting  properties  of  the  new  structure.  First  of  all,  the
construction time of the Po-tree is by far lesser for the Po-tree. To index
(batch) 25 000 points from 30 information sources, the R*-tree takes some
45 seconds, while the Po-tree takes less than one. 

This can be partly explained by the fact that the R*-tree has to deal with
Minimum Bounding Structures, while the Po-tree simply has to determine
which B+-tree to append. While the R*-tree must consider the whole set
of data for answering queries, the Po-tree segments the dataset in spatially
different sub-parts.
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As for lookups, the R*-tree performs slightly better for small number of
objects,  but  this  trend  soon  changes  when  there  are  more  than  5000
objects (see Figure 5). This can be explained by the fact that the R*-tree
must work with the whole set of data while the Po-tree, with a first spatial
filtering later on only has to consider a part of the set. The more data are
processed, the bigger the differences are. This has been verified for spatial
Point / temporal Point, Point / Interval and Range / Interval queries.

The results obtained have shown that the Po-tree was compatible with
the  constraints  set  by  our  application  case:  favoring  the  newest  data,
processing of big quantities of data in a given time, fixed set of spatial
sources, possibility to use in a real-time system. Even though the mobility
is not yet easily managed, the Po-tree meets the initial specifications.

CONCLUSION

The Po-tree aims at indexing spatio-temporal data issued from a network
of spatially referenced sensors, with a focus given to the newest data. Our
goal was to accelerate answering time to real-time queries. Our application
case is linked to volcanic monitoring, yet it can be extended to include
other  natural  disaster  prevention scenarios,  or  scenarios  where  a  set  of
fixed spatially referenced sensors sends huge quantities of data to a central
database. The structure of the Po-tree uses two parts. The main difference
with the existing solutions stems from this division. The Po-tree uses the
spatial dimension to divide the dataset into temporal sub-trees. The spatial
sub-tree  references  the  positions  of  fixed  sensors,  Information  Sources.
Each position, each sensor, is then linked to a temporal sub-tree pointing
to the actual data. The spatial sub-tree is based on the Kd-tree, compatible
with Index Concurrency Control  protocols,  yet sensible  to the  insertion
order while the temporal tree is a modified B+-tree, akin to an AP-tree.
Different tests have shown that this solution can be used with ease when
updates from a given set of sensor are frequent. The lookup strategy has
been designed to favor the newest data thanks to a direct link between the
root  of  the  temporal  sub-tree  and last  node.  The notion of  Information
Source  allow fast  interval  queries  as  the  data  from a  given source  are
linked through the temporal sub-tree. 

Further developments of the structure will include mobility and the use
of Quadtrees to replace the actual spatial sub-tree. Another point that shall
be studied will be the linkage of the database to the data warehouse. The
Po-tree has been designed with specific needs in mind, but it can be easily



adapted to cover a majority of natural disaster cases where fixed sensors
are the main source of information.
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