
The Po-tree, a Real-time Spatiotemporal Data
Indexing Structure

Guillaume Noël, Sylvie Servigne, Robert Laurini

Liris, INSA-Lyon,
 Bat B. Pascal,20 av. A. Einstein,
69622 Villeurbanne Cedex FRANCE
{noel.guillaume, sylvie.servigne, laurini}@insa-lyon.fr

KEYWORDS: Spatio-temporal, Database indexing, Soft Real-time,
Natural disaster prevention

ABSTRACT

This document describes the Po-tree, a new indexing structure for spatio-
temporal databases with real-time constraints. Natural risks management
and other system can use arrays of spatially referenced sensors. Each on
them sending their measurements to a central database. Our solution tries
to facilitate the indexing of these data, while favoring the newer ones. It
does so by combining two sub-structures for the spatial and temporal
components. While Mobility is not yet supported, evolutions of the
structures shall be able to deal with it.

INTRODUCTION

Geographic Information Systems provide solutions to a wide panel of
problems, from agronomy to urban planning or natural risk management.
The databases linked to such systems usually are very large and
cumbersome. They have to keep tracks of numerous heterogeneous data.
Solutions exist to face this kind of needs. Yet, a particular aspect remains
partially untouched: spatio-temporal indexing with real time constraints.
While our application case is linked to natural disasters prevention, we
shall show that the structure we propose can be extended to cover different
needs. We currently propose a new database spatio temporal access
method for spatially referenced sensors, the Po-tree.

This paper is divided into three chapters. First we define more precisely
the problem we intend to address, then we follow by an introduction to our
application case. Next comes a brief state of the art. Finally, we introduce
our solution, the Po-tree, and some test results to study its usefulness.

1 Application case

Our study fields is linked with the work of volcanologists, trying to
monitor a Mexican volcano, the Popocatepetl (CENAPRED,2003). An
array of fixed measurement stations, hosting various sensors has been set
up around the volcano. 15 stations record data within 1.5km from the
crater. Others are located further down the slopes. Each sensor, spatially
referenced as a fixed point, sends measurement datum toward a central
database. This database is later on replicated to a data warehouse. See
Figure 1 for a visual description. The Po-tree aims at indexing the
database, while keeping in mind some recommendation for environmental

data warehousing (Adam & al, 2002).

Fig. 1. application case

Real time constraints stems from the number of data to process.
Updates occur in a periodic - chronological order. Measurement frequency
for a sensor can be up to 100Hz, as for seismographs. On this aspect,
update transactions are more important than lookup queries.

The volcanologists tend to consider the most recent data as the more
valuable, as they help understanding the actual activity of the volcano.
Users usually query the database so as to fetch data coming from a
specific sensor (spatial location) for given amount of time (temporal
interval). Volcanologists generally use reference sensors so as to
determine the global state of the volcano. Later on they query
complementary sensors to confirm their analysis. Therefore, most lookups
are spatial-point / time-interval. They are followed by range / interval
queries, as defined by Erwig (Erwig, & al, 1999).

The specific needs of this kind of application are now quite well
understood. The spatio-temporal access method used should focus on two
aspects: the update transactions cost and the priority given to the newest
data. Different studies have already opened the path for real-time, spatial,
temporal and spatio-temporal databases.

2 Other studies

Real-Time approaches are based on the respect of time constraints, as
defined in (Lam & Kuo, 2001). For databases, it means that transaction are
to commit before a deadline. In the case of an array of sensors, the
deadline is the arrival time of a new measurement.

Spatial approaches, as defined in (Ooi & Tan, 1997) can be divided into
three categories.
 The first one tend to linearize the data, represented as points, in order to

use well known indexing structures, such as the B+-Tree.

 Another approach intends to use a non-overlapping native space. The
space is divided into non-overlapping sub-spaces. The objects are
referenced within these subspaces. An object spanning across two sub-
spaces may be duplicated or clipped.

 The last approach is to use an overlapping native space. The space is
divided into overlapping sub-spaces.

Among the main indexes, two can be noted. The R-tree (Guttman,
1984) family uses minimum bounding structure as sub-spaces to create a
hierarchy accessible through a B-tree. In the Kd-tree (Bentley, 1975), a
binary tree, points are sorted according to reference points and reference
dimensions.

In temporal approaches, the notion of time can lead to the use of
balanced trees, such as the AP-tree (Gunadhi & Segev, 1993). Another

approach is simply to consider the time dimension as another spatial
dimension.

This distinction has lead to different spatio-temporal approaches, as
defined in (Wang, & al, 2000). Objects can be considered as:
 Objects that continuously move
 Objects that discretely change, such as in our case
 Continuous change of movements

Different families of access method can be defined.
 Time can be considered as another spatial dimension, as in the 3D-R-

Tree case (Theodoridis, Vazirgiannis & Sellis, 1996)
 Multiversion tables can be kept to track the data, as for MVLQ

(Tzouramanis T., Vassilakopoulos M. & Manolopoulos Y, 2000)
 Overlapping snapshots can be used as an alternative to multiversioning.

HR-trees are a good example (Nascimento,M. & Silva J., 1998).
 A dimension can be prioritized over another, as the spatial priority

given in TR-trees (Xu, Han & Lu, 1990).

None of these approaches are completely compatible with our case
study. R-trees require lengthy Construction times. Approaches usually do
not focus on the most recent data. However some ideas have lead to the
development of a new tree: the Po-tree.

3 Po-Tree

Our solution, the Po-tree, is based on the differentiation of temporal and
spatial data, with a focus given to the latter. The spatial aspect is indexed
through a Kd-tree, while the temporal aspect uses modified B+-trees (see
figure 2). The measurement stations being immobile, the current structure
does not allow mobile sources of information, mobile sensors. Every
spatial location, similar to a spatial object (sensor) is directly linked to a
specific temporal tree. Queries shall first determine the spatial nodes
concerned by a transaction and later on determine the temporal nodes.

3.1 Po-tree Structure

The Po-tree can be divided in to parts. A first sub-structure covers the
spatial aspect. Each location, each sensor is linked through this spatial
sub-tree to a temporal sub-tree.

Fig. 2. Po-tree structure

3.2 Spatial Component

Kd-trees are simple spatial structures but not perfect ones. Their main
problem is the fact that their final shape relies on the data insertion order.
If data are entered in different orders, the final trees may have different
shapes.

However, Index Concurrency Control methods, originally designed for
B-trees with real-time constraints can easily be adapted to cover Kd-trees.
Latches, 'fast locks', can be converted to be used on binary trees. Different
tests have also proven that Kd-trees fared reasonably well compared to R-
trees for small number of data (Paspalis, 2002).

Within a Kd-tree, entries take the from <left-pointer; reference-point;
right-pointer>. In order to create a Kd- tree, a reference dimension D and a
reference point Pi are taken. Then, all points with a greater value for the
dimension D than Pi shall fall to the right part of the branch, and those
with a lesser value to the left. At the next level of the tree, other reference
points Pi+1 and Pi+2 are taken, and the reference dimension becomes D+1.

In the Po-tree, each spatial point is composed of a spatial definition of
the point and a link to a temporal sub-tree. It does not directly record the
temporal components. Therefore, a whole definition of a spatial sub-tree
entry would be <left-pointer; point-position; link-to-temporal-tree; right-
pointer>. As spatial deletes should not occur, there shall not be empty
spatial nodes.

3.3 Temporal Component

The temporal components to index are held within modified B+-trees. The
tree records the measurement times and links to the actual measured
values. Each spatial object is linked to a different temporal sub-tree.

As for the temporal aspect, it has been noticed that the most recent data
are considered of higher interest than older data. It has also been noticed
that data insertions are generally held at rightmost leaf of the temporal
sub-structure, where are found the newest nodes.

Therefore, the temporal sub-tree has been modified to add a direct link
between the root and the last node. While maintaining this link requires
minimum computation from the system, a simple test during query
processing prevents being forced to traverse the whole tree so as to append
or to find the requested data. This direct link, updated during the data
insertion procedure, is useful to save processing time.

As each temporal sub-tree is linked to an object, it is possible to
develop a secondary structure in order to directly access the data of
specific objects, without the need to search through their spatial position.
This would however incur the addition of an Information Source identifier
to the temporal sub-structure. However, this could be useful for the notion
of hierarchy of information sources.

As most, if not all, of the updates take place to the rightmost part of the
temporal sub-tree, the fill factor of leaf nodes can be placed higher than
usual. Delete transactions should be somehow rare under normal
conditions, and a posteriori updates should be as rare. The exception being
when the transmitting systems experience lag time due to network
problems between the sensors and the database, or when the database has
to restart update transactions, which can occur because of real-time
constraints and node access concurrency control. Therefore split and
merge procedures can be changed so that the nodes can be filled almost at
their maximum capacity.

Within the temporal sub-tree, the data are indexed according to their
start-time. The periodicity of the sensors, and the assumption that they
shall not go down unnoticed makes us considering the start-time only. For
lower frequencies the end-time should be included as well in order to
define the data lifetime. So far, entries take the shape of <pointer-0; key-1;
pointer-1; key-2...; pointer-n>. Furthermore, a direct link between the root
and the last node accelerate the query processing of the newest data. A
simple test between the value to process and the first key of the last node
determines if the query is related to the most recent data or to older one. If

the value is greater than the key, the last node is directly returned,
searched or updated. This greatly helps in lowering the processing time by
preventing lengthy tree traversals.

3.4 Spatio-temporal linking

Requests on the Po-tree can be divided in three different parts: spatial
localization, Information Source linking and temporal localization.

Lookups start by searching the spatial tree. For point lookups, it directly
fetches the Information Source and its temporal sub-tree. From here on,
the lookup query searches the temporal sub-tree.

For range lookups, the query starts by determining the different
Information Sources within the spatial range. Then, for each of them, it
then starts a temporal lookup. The queries are answered by giving the
specific results of Information Sources one by one.

For insertions, the transaction starts by defining the spatial position of
the inserted data. If the position is already defined, the transaction can
directly proceed with its temporal part. If the position is not defined, the
transaction starts by inserting the spatial point in the sub-tree. After this
first step, it creates a new temporal sub-tree and links it to a new
Information Source.

Information Source linking references the change between the spatial
and the temporal sub-trees as each of them holds a part of the indexed
data.

Temporal queries start by comparing the timestamp or the end of the
interval with the first temporal key of the last node. This node is directly
accessible through the root of the tree. If the query deals with recent data,
the query can act directly on the last node. On other cases, the query then
proceeds with a B+-tree lookup.

Temporal intervals are dealt with by first finding the end of the interval
in the tree and by using the node-links to cover the entire interval length.

Queries use the B+-tree rules. For updates however, if a new leaf-node
is created to the right of the tree the link between the root and the last node
is accordingly updated.

This configuration implies the Po-tree is more specifically designed for
queries on the most recent data. Spatial range / Temporal interval requests
that does not ends at the present time does not fully take the advantages of
the specificities of the tree.

4 Tests

Different tests have been conducted between the Po-tree, R and R*-tree
structures (Hadjieleftheriou, 2003). Randomly generated data have been
generated and sequentially issued to a fixed number of random points
acting as Information Sources. Tests have been conducted changing the
total number of data to index (1000-200000), the number of information
sources (10-5000) used and the portion of the base to scan for interval
queries (the 5 – 30 last percents). The tests have been conducted on a 1.6
G Hz, 128 Mo RAM computer, running Linux. The programming phase
was done under Java SDK 1.2

0

200

400

600

800

1000

1200

1400

3 21 39 57 75 93 11
1

12
9

14
7

16
5

18
3

Number of Points (x1000)

Co
ns

tr
uc

tio
n

Ti
m

e
(m

s)

Po-Tree

Fig. 3. Po-tree Construction Time

The first notable fact about the Po-tree comes from its construction time
(see Figure 3). Tests with a fixed set of 30 sensor, compatible with our test
case, along with 200 000 updates (batch) show a linear building time.

From this point, it is interesting to examine the effect of the number of
different positions for queries, as we use two complementing structures so
as to obtain our Po-tree (see Figure 4). The tests have dealt with a fixed
total set of data and a varying number of spatial positions, from 50 to
5000. The actual variation of the construction time (similar results have
been found for lookups) is steady, increasing by steps. Note that the Kd-
tree performances are linked to the order of insertion of data, as the shape
of this tree is not deterministic.

Po-tree

0

50

100

150

200

250
50 55 15 24 34 43

Number of Position

Ti
m

e
(m

s)

Building Time

Fig. 4. Influence of the number of sources

Complementary tests between the Po-tree and the R*-tree have shown
some interesting properties of the new structure. First of all, the
construction time of the Po-tree is by far lesser for the Po-tree. To index
(batch) 25 000 points from 30 information sources, the R*-tree takes some
45 seconds, while the Po-tree takes less than one.

This can be partly explained by the fact that the R*-tree has to deal with
Minimum Bounding Structures, while the Po-tree simply has to determine
which B+-tree to append. While the R*-tree must consider the whole set
of data for answering queries, the Po-tree segments the dataset in spatially
different sub-parts.

0

50

100

150

200

250

300

1 9 17 25 33 41 49 57 65

Number of Objects (x1000)

Ti
m

e
(m

s)

Po RI

R* RI

Fig. 5. Range-Interval Search Time

As for lookups, the R*-tree performs slightly better for small number of
objects, but this trend soon changes when there are more than 5000
objects (see Figure 5). This can be explained by the fact that the R*-tree
must work with the whole set of data while the Po-tree, with a first spatial
filtering later on only has to consider a part of the set. The more data are
processed, the bigger the differences are. This has been verified for spatial
Point / temporal Point, Point / Interval and Range / Interval queries.

The results obtained have shown that the Po-tree was compatible with
the constraints set by our application case: favoring the newest data,
processing of big quantities of data in a given time, fixed set of spatial
sources, possibility to use in a real-time system. Even though the mobility
is not yet easily managed, the Po-tree meets the initial specifications.

CONCLUSION

The Po-tree aims at indexing spatio-temporal data issued from a network
of spatially referenced sensors, with a focus given to the newest data. Our
goal was to accelerate answering time to real-time queries. Our application
case is linked to volcanic monitoring, yet it can be extended to include
other natural disaster prevention scenarios, or scenarios where a set of
fixed spatially referenced sensors sends huge quantities of data to a central
database. The structure of the Po-tree uses two parts. The main difference
with the existing solutions stems from this division. The Po-tree uses the
spatial dimension to divide the dataset into temporal sub-trees. The spatial
sub-tree references the positions of fixed sensors, Information Sources.
Each position, each sensor, is then linked to a temporal sub-tree pointing
to the actual data. The spatial sub-tree is based on the Kd-tree, compatible
with Index Concurrency Control protocols, yet sensible to the insertion
order while the temporal tree is a modified B+-tree, akin to an AP-tree.
Different tests have shown that this solution can be used with ease when
updates from a given set of sensor are frequent. The lookup strategy has
been designed to favor the newest data thanks to a direct link between the
root of the temporal sub-tree and last node. The notion of Information
Source allow fast interval queries as the data from a given source are
linked through the temporal sub-tree.

Further developments of the structure will include mobility and the use
of Quadtrees to replace the actual spatial sub-tree. Another point that shall
be studied will be the linkage of the database to the data warehouse. The
Po-tree has been designed with specific needs in mind, but it can be easily

adapted to cover a majority of natural disaster cases where fixed sensors
are the main source of information.

Acknowledgments should be made to the Universidad de las Americas,
Puebla, for their work on the Popocatepetl monitoring. They coordinate
and greatly help the different researches based on this volcano.

BIBLIOGRAPHY

Adam N., Atluri V., Yu S. & al, 2002, Efficient Storage and
Management of Environmental Information, in Proceedings of the 19th
IEEE Symposium on Mass Storage Systems, (USA, Maryland)

Bentley J.L., 1975, Multidimensional binary search trees in database
application, IEEE Transaction on software engineering, 5(4), 333-340.

Bliujute R., Jensen C.S., Saltenis S. & al., 2000, Light-Weight Indexing
of Bitemporal Data, in Proceedings of the 12th International Conference
on Scientific and Statistical Database Management (Germany, Berlin), pp.
125-138.

CENAPRED, 2003, Monitoreo y Vigilancia del Volcan Popocatepetl,
http://tornado.cenapred.unam.mx/mvolcan.html

Erwif M., Güting R.H., Schenider M. & al, 1999, Spatio-Temporal Data
Types: An Approach to Modeling and Querying Moving Objects in
Databases, GeoInformatica, 3(3), 269-296

Guttman A., 1984, R-trees: a dynamic index structure for spatial
searching. In Proceedings 1984 ACM SIGMOD International Conference
on Management of Data, (USA, Boston) pp. 47-57

Hadjieleftheriou M., 2003, Spatial Index Library,
http://www.cs.ucr.edu/~marioh/spatialindex/

Haritsa J.R., Seshadri S., 2001, Real- time index concurrency control. In
Real Time Database System – Architecture and Techniques, edited by
K.Y. Lam and T.W. Kuo (Boston : KluwerAcademic Publishers) ISBN: 0-
7923-7218-2, pp. 60-74

Lam K.Y., Kuo T.W., 2001, Real time database systems: an overview
of systems characteristics and issues. IIn Real Time Database System –

Architecture and Techniques, edited by K.Y. Lam and T.W. Kuo (Boston :
KluwerAcademic Publishers) ISBN: 0-7923-7218-2 , pp. 4-16

Lam K.Y., Kuo T.W., Tsang N.W.H., & al, 2000, The reduced ceiling
Protocol for concurrency control in real-time database with mixed
transactions, The computer journal, 43(1), 65-80

Mokbel M., Ghanem T.M. & Aref W.G., 2003, Spatio-temporal Access
Methods, IEEE Data Engineering Bulletin, 26(2), pp. 40-49

Nascimento,M. & Silva J., 1998, Towards Historical R-trees. In
Proceedings of 1998 ACM Symposium on Applied Computing, (USA,
Atlanta) pp. 235—240

Ooi B.C., Tan K.L., 1997, temporal databases. In Indexing Techniques
for Advanced Database Systems, edited by E. BertinoB.C. Ooi, R. Sack-
Davies & al (Boston, Kluwer Academic Publishers), ISBN 0-7923-9985-
4, 113-150

Paspalis N., 2003, Implementation of Range searching Data-Structures
and Algorithms, http://www.cs.ucsb.edu/~nearchos/cs235/cs235.html

Theodoridis Y., Vazirgiannis M. & Sellis T., 1996, Spatio-temporal
indexing for large multimedia application, In Proceedings of the 3rd

IEEE conference on multimedia computing and systems, (Japan,
Hiroshima)

Tzouramanis T., Vassilakopoulos M. & Manolopoulos Y, 2000,
Multiversion Linear Quadtrees for Spatio-temporal Data, Proceedings 4th
East-European Conference on Advanced Databases and Information
Systems, (Czec Republic, Prague) pp.279-292

Xu X., Han J. & Lu W.,1990, RT-Tree: an improved R-tree indexing
structure for temporal spatial databases, in Proceedings of the 4th
International Symposium on Spatial Data Handling, (Switzerland, Zurich)
pp. 1040-1049

Wang X., Zhou X., Lu S., 2000, Spatiotemporal Data Modeling and
Management: A Survey, In Proceedings of the 36th International
Conference on Technology of Object-Oriented languages and Systems,
(China, Xi'an), PP. 202-221

