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ABSTRACT: The most important aspect of a systemeimergency response is time. So it is
necessary to organise fast storage of newly agidata into databases, fast search of data,
maintenance of time sequences, robustness of gtensy. All of these processes have to be real
time. Another important aspect for environmentsk ninonitoring for example, is to allow real-
time queries based on spatiotemporal attributesteBaaccesses to the most recent data are also
necessary. In addition, real-time data collectéd real time database from sensors require fast
and efficient management to avoid main memory atitm. The paper discusses real-time
spatiotemporal indexing schemes and real time nemegt of main memory. Some possible
solutions for real time spatiotemporal data indgxame presented to allow real time and fast
data structuring. The proposed index methods stigperies privileging recent data. One of
the presented indexing solutions is dedicateddbtmme spatiotemporal data issued from fixed
sensors. Another one is dedicated to real timdapatporal data collected from agile sensors.
Finally, an outline solution concerning managenwnteal time memory saturation according
to the significance of data is presented.

1 INTRODUCTION.

Sensor networks are now common and usually usednfany applications especially
concerning risk monitoring. The monitoring of naluphenomena is indeed a key element of
any situation which can provoke some disasters) agdlooding, volcanic eruptions, landslides
and so on. Sensor network often share the samealgibhitecture, as defined in Figure 1.
Different sensors measure various data. From herghey have to transmit these data to a
monitoring system for processing. The transmisgiolicies must take into account the nature
of the sensors, their autonomy and their processimbstorage capacities. A balance between
energy saving and data accuracy must be reached.
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Figure 1. Sensor Network architecture

When data reach the monitoring system, data fiosthyough a main-memory sub-system
(database,...) for short-term analysis. Main-memisryfaster than disk-based memory and
therefore allows faster processing of recent datas is particularly interesting when the
monitoring system is linked to a risk managemestesy. After the main-memory, data can be
stored into a secondary memory (disk-based men@mata warehouse...) for longer term-
analysis.

All of this means that the system architecture iagnge according to various elements. As
a matter of fact, the type of sensors used maygshtre network structure. Data location (in the
network, in a database...) has an impact on dasymg. The use of a database means that data
have to be correctly indexed...

First, an example of a risk monitoring system fovieonmental phenomena is presented to
better explain the need of real time querying anacturing with spatiotemporal criteria. Real
time spatiotemporal query requires specific datlexmg method. After a state of the art on
data structuring according to real time and spatiporal specifications, some possible
solutions for real time spatiotemporal data indg»ane presented.

2 ANATURAL PHENOMENON MONITORING SYSTEM

After a presentation of the general system architeca focus is made on an existing system: a
volcanic activity monitoring system. Data locatiand data updating in sensor networks, and
also data storage are then tackled. Systems banitetr various and new real time queries for

natural phenomenon monitoring. These issues aafyfiaverviewed.

2.1 General architecture

Different monitoring systems are used to colled anocess data issued by sensor networks.
Among these, the Earthworm system, developed byY8@S (USGS, 2006) appears as a good
example. It was designed to replace older systemsdismic activity notification. While the
first version of the specifications did not takéoimaccount the storage and use of older data, the
next ones tried to meet these new requirements.nidig project split up into two parts: the
real-time notification (Automatic Earthworm) andethlonger term processing of data
(Interactive Earthworm). Different databases wesedufor the second part.

The Automatic Earthworm is a message passing sySthendifferent components broadcast
announces labelled according to the kind of messageand the source of the message. That
way, the different listening systems can choosgick the relevant messages. It must be noted
that even thought the system has been definedsstngamessage; it can be implemented on a
single computer. In that case, a part of the mengsary be shared among different processing
modules.

The Interactive Earthworm uses a database forngtavider data. That is, data that have
exited the Automatic Earthworm system and datarntet be eligible for medium to long term
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analysis. Different systems can access those diedagh querying or using specific messages.
However, even though the specifications were setHe Earthworm architectures, different
variations have been developed for specific ativit

As a whole, the Earthworm system was primarily tédor notification purpose but has
been improved so as to add long term analysis ¢@sdhanks to a database. This system has
been used in many natural phenomenon monitoringesgs including volcanic activity
monitoring systems.

2.2 Instance of system: a volcanic activity monitorgygtem

Data collected by the monitoring network of Popépatl volcano (seen in Figure 2. Puebla,

Mexico) is heterogeneous, coming from various typlesensors. While the sensors are mainly
spatially fixed, it should be noted that some datacessing could generate aggregates, which
can be regarded agjile or even mobile data (epicentre locations). A seisssaidagile if it has

the capacity of change of spatial location betwiem data acquisition phase from a specific

sensor. A sensor that continually changes it locas labelled as mobile. A sensor that changes
sometimes its location is considered as agile.

Developments in sensor technologies have leadetask of agile or even mobile sensors to
obtain data on specific geographical sectors. Hewesven though sensors are able to move,
measurements are usually considered as more impagdocation changes.

As for now, collected data are indexed throughrthienestamps and sensor identifiers.
Following the Earthworm specifications, data arstfsent to an in-memory turnpike system for
current data notification, pre-processing and agmfien and toward a database for short to
medium-term analysis. For longer-term data analytsie database sends the measurements
toward a data warehouse. We shall focus on thédadsga with the idea that data can later on be
sent toward a data warehouse, possibly using a atiinlgpindexing system.
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Figure 2. Measuring stations around the Popocdtépietino

2.3 Data location and data updating in sensor networks

Due to the potentially high number of sensors drair tcalculation, storage, and transmission
limits, data location and updating schemes cannijméted. In networks constituted with a
majority of micro sensors, the continuous transioissf data is usually unrealistic, due to the
transmission cost. On this matter, different steidiend to agree on the fact that before
transmission, data aggregation at sensor leveldigsable, despite the scanty calculation
capabilities of the sensors (Intanagonwiwat, 20&Rgtnasamy, 2002). However, aggregating
data leads to temporal delays between data measaotemd data availability for the users.

For the same reasons of data cost, several stémttesed on data location. Three main
approaches can be defined (Eiman, 2003).
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The first one, thdocal approach aims at storing data at the local sensor levBlsT it
minimizes updating costs while increasing queryingt. Furthermore, so as to keep tracks of
past records, it is necessary to send data taagst@oint.

The second approach, theternal approachoften found in some Geographical Information
Systems, uses storage devices (databases, dathowses) that are outside of the sensor
network. So, updating cost is obviously higher duuerying cost is noticeably lower. Currently,
most decision support systems and phenomenon miogiteystems rely on such solutions,
combining the benefits of an in-memory storage esysfor the most recent data and a data
warehouse for older data. Moreover, this approaffer a relative safety against sensors
failures (Satnam, 2001). If a sensor fails suddedhlying a critical period, the data previously
collected by this sensor, transmitted to the céimédh database, are still available for the users.

Various approaches coexist between these two estremroposing solutions for data
replication between specific nodes of the netwbibwever, these schemes also have their own
constraints. Data-centric storage patterns are tsagatially determine specific nodes in the
network. Therefore, data can be accessed from tiegdieates. By distributing data between
different network nodes, it is possible to achieweompromise between updating / querying
costs. However, sensor mobility can lead data atilog problems, limiting the real-time
efficiency of such techniques.

We can conclude that natural phenomenon monitoiimgyhich the number of sensor is
limited and the environment can turn out to beipaldrly hostile, should focus on external
approaches, at least until better communicatiotiopods arise. External approaches limit the
risk of loss data due to sensor failure, a commorblpm for some natural phenomenon
monitoring systems. However, the problem of dateasfe is not completely solved yet.

2.4 Data storage

As stated earlier, the key idea is to store theimamn of information into main memory for the
most recent data, and to flush ancient data intarehive (disk, data warehouse).This does not
explain how, nor where data should be kept. Thteeage levels should be noted (Laurini
2005).

Data are kept, at least for some time at the sdasel. It would be too expensive to directly
send data to be indexed. Therefore most sensoregalg data before a transmission. This
means that most recent data, unfortunately undlaile the analysis system are kept at the
sensor level. Some recent systems tend to favasikiihd of systems, even for keeping older
data.

Current analysis systems rely on in-memory dateerdfore data must be sent toward a
central point, where it is kept in main-memory édity or in main-memory databases). Main-
memory is faster than dissk and is interestingsfwrt term analysis. For longer term analysis,
data are sent toward disks or secondary-memorg (@atehouses...).

Anyway, some common problems must be solved. H da¢ kept in a database, they must be
indexed correctly, taking into account the masdath issued from a sensor network and their
real-time specificities.

Even then, another problem arises. As a matteaaf fvhen the memory is filled, memory
saturation may bring the whole system down. Theeefeolutions must be found to free
database memory without loosing data. A specifial-time spatiotemporal database
management must be coupled with a specific arahimianagement (Data Warehouse), as seen
in Figure 3.
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archive (RTST meaning real time spatiotemporal).

2.5 Queries

One point must be noted however. As a matter df fawen though spatiotemporal data are
definitely useful in monitoring systems, most atinglementations are sensor-identifier-based

systems.

While current indexing patterns use timestamps senor identifiers, specialists' needs for
queries based also on spatial attributes are isicrggFigure 4). Querying patterns usually
focus on finding data from a specific sensor withirgiven temporal interval (ending at the
present time). When the number of sensors increasess often fetch data from specific
reference sensors so as to estimate the global atahe monitored system before querying
other more specific sensors to refine their esionatOther kinds of queries are possible but

less frequent.
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Figure 4. Sensor network UML data model

Sample common queries could be: “Fetch the dateisBom sensor number ‘lIB’ in the last
5 minutes.” “Fetch the data from the sensors HeRVveen the time T1 and T2."
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Due to the impact of GPS technologies and alikecisists now wish for systems that can
answer queries based on spatial componditter.efore, future systems shall meet real-time
and spatiotemporal requirements. For example, scientists would like to add spatiqteral
constraints to answer queries such as “Fetch tteigdsued from the sensor at point <X, Y>
issued in the last 5 minutes.”

The Popocatépetl monitoring system shows spedéficithat can be extended to other
monitoring systems. A significant number of updaes sent from a sensor network toward a
centralized in-memory database. Because of the eurab sensors and their measurement
frequencies, soft real-time constraints emerge. ddeaments from a sensor at timestamp Ti
must be committed, copied into the database, befameasurement with a timestamp Tj>Ti
reaches the database to be processed.

For the same reason, under normal volcanic activipglate queries must be considered as
more important than other lookup queries. While dliger processes using the collected data
run as background tasks, the updates must beaautevith higher priority.

The focus on the most recent data over the older sfzould also be noted. In other words,
volcanologists are more interested by the curriie ©f the volcano than by its former states
(provided these ones are not typical of a signifigetivity phase).

Last specificity to be noted: the need to refese¢nsor through spatial positions as well as
through their identifiers. This shall lead to agfirmanagement of sensor agility and an addition
of new querying patterns while preserving oldersone

An access method for monitoring systems should mezgtirements. Therefore, we focus on
real-time indexing methods for spatiotemporal data real-time main-memory databases to
allow fast accesses to real-time data. After amie® concerning spatiotemporal indexes, two
new methods for real time databases are detail@llf; a solution for real time memory
saturation is also presented.

3 OVERVIEW OF REAL TIME SPATIOTEMPORAL DATA INDEXINGMETHODS

A state of the art on various existing methodssiseatial to better understand the pros and the
cons and the main concepts of the situation.

3.1 Soft real-time

Regarding the real-time approach, the main ideta isnswer queries within time constraints
(Noel, 2004). It is possible to separate three «ioidconstraints (Lam, 2001). The soft one, used
in case of volcanic monitoring for instance, implibat transactions should be fulfilled within
time limits, yet it is understandable that som@deection can not comply within the limits. The
firm constraints, more restrictive, allow some #saction not to be fulfilled within the time
limits, yet in this case the whole system can gh#{ impaired. The hard constraints, finally
impose that under no circumstances a transactioundimiss a deadline. Otherwise, the system
could come to a halt. Priorities are generally usedefine which transaction is more important
than another; which is not equivalent to defineclitone should occur before another. Different
techniques can be used so as to assign priorE@diest Deadline First, Rate Monotonic and
other variants (Lam, 2001).

Real-time computing is not similar to Fast-compgtiRast-computing does not prevent a low
priority transaction to block high priority trangi@mns (priority inversion) because they have
already locked the access to some resources, Nhaieeover, for databases, the current
paradigm is to keep the index and even the whode lirma main memory so as to reduce the
number of slow disk accesses. Index Consistencyr@ofiCC) methods can then be used to
make sure no priority inversion occurs while acitegthe index (Haritsa, 2001).

Computers processing power increase regularly. hat well known fact. Another well
known fact is that memory cost drops regularly &fi.wHowever, what few people notice that
memory access cost does not decrease in with m@msesmprovements. Real-Time meant
diskless data access for more than 20 years. Howsireee the late 90's researchers have
reached the conclusion that this was not enoughin M@emory data accesses are now
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considered as a bottleneck. Some researchers hawidgd models for a better management of
memory buffers. While classical indexing structusesh as the B+tree were ill-considered in
the early 90's, assessments of performance havenstibat the processing capacity

improvements could give them a new life in the Raaé community. At least if some changes

were made to their initial structure. As such, @@B+tree (Rao, 2000), a cache-conscious B-
tree limits the number of pointers in the structwptimizes the node length so as to fit the
memory line length... It has proven a real improgamover older Real-time structures that
were meant to outlast the B-trees. Some researahersow working on extensions of the ideas
set up for the CSB+tree so as to provide othenimgesystems.

3.2 Spatial indexing

The classical spatial approaches in indexing ofeerd to linearise data so as to use known
"fast" structures. Such is the case for quadtrkddrees (Samet 1984; Ooi, 1997) or other
methods for spatial objects, or more accuratelti@ppoints. Kd-trees are related to binary
trees. A reference point is taken, along with @nesfice dimension. Every other point that falls
below the reference point for this dimension shwiinch to the left, all points with higher
values branch to the right. At the next level, asmeference point is taken in each branch and
the next dimension is used as a reference. Itlagively fast, can be updated on-line but the
final shape of the tree depends on the insertialeroof data, which can lead to unbalanced
trees.

Another widely accepted approach is to use rectandbounding structures to match the
location of objects. The bounding rectangles cam the regrouped within bigger rectangles so
as to create a balanced tree. The R-tree, aniblitsgsR*-tree (Ooi, 1997) are examples of this.
While the R-trees allow to work with complex obgg¢approximated as rectangles and not
points), their higher building and querying timekaahe use of lighter structures appealing to
index points.

When it comes to Real-time concerns, few spati@icas remain. A special version of the R-
tree, named CR-tree (Kim, 2001) uses compressidgimtbthe node size in memory, so as to
make it fit in a buffer line. Some works now try toix this approach with the patterns
developed for the CSB+tree so as to further rethieenemory access cost to spatial data.

3.3 Temporal indexing

Regarding temporal approach, it is important tcertbat different notions of time can be used
for databases (Ooi, 1997). The Transaction Timanellusers to perform "rollbacks" so as to
find past-values. It does not allow to modify pmsly entered values, or to enter future values.
One can only append new data issued at the presmment. The Valid Time represents the
time when a fact is considered true. It allows sisermodify past data, and to enter future data.
However, it does not allow rollbacks. The Bi-Temglofime is a mix between the two others,
allowing rollbacks, post-modifications and futurgdates.

There are mainly two ways of considering tempoyalithe latter is to consider that time is
monotonous (time goes in one direction) and toBiees as index structures. An interesting
variation of this is to consider that data flowsst@antly ; therefore it becomes possible to link
the root of the tree more closely the last lea§ Waf containing the most recent data. Such an
idea has been developed in AP-trees (Gunahdi, 1993)

The other way of considering temporality is to ddestime just as a spatial dimension and
to use R-trees, with on one dimension the timessaamu on the other dimension the validity
duration.

3.4 Spatiotemporal indexing

Spatiotemporal approaches have to face the vapiepossible types of data: points, ranges,
intervals (Wang, 2000). This leads to a distinctimween three families of indexing trees:
those that work with objects in continuous movemémbse for discrete changes and finally
those for continuous changes of movements. Anotlaey of differentiating the families of
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index has been brought by (Mockbel, 2003). Theyehfocused on approaches aiming at
indexing past locations, present ones and futues.on

Many trees have been developed to answer speefidsl Some trees tend to consider the
temporal aspect as yet another spatial dimensidighashas led to 3DR-trees (Theodoridis,
1996). However, these trees do not take into addbgnmonotonicity of time and usually need
to have a previous knowledge of data to index. Aeofamily of trees makes a difference
between spatial and temporal dimensions. In HR-i&escimento, 1998), typical of this case,
shapshots of spatial R-trees are linked in a timdexed balanced tree. The main problem of this
kind of trees is the size of the tree. While nothed do not change between two snapshots are
shared among the R-trees, only minor changes fordaplicate some of the data. Furthermore,
they tend not to be optimal for interval queries.

While most of these approaches focus on the dagavd®le, some specific indices focus on
particular aspect of system monitoring. As an eXamgtructures such as the SETI (Chakkar,
2003) or SEB-tree (Song, 2003) divide the globahcspin sub-zones for a zone-based
spatiotemporal indexing. Other structures sucthasFiNR-tree (Frentsos, 2003) or MON-tree
(Almeida, 2005) are dedicated to indexing data fanmexisting road or access network. With
such structures, the focus is no longer the datas$klves but more conceptual entities that can
be used for more efficient querying or monitoring.

Recently, researches have lead to different strestibbased on mobility. Objects in the
physical world can often move. Monitoring the mowsts of these objects has proved an
interesting issue, particularly for systems trytogpredict the future location of objects. TPR-
trees (Saltenis, 2000) use velocity vectors toredt the future location of an object or its
future expansion. While these structures can bieiaft in forecasting locations, they are
usually not perfect for keeping tracks of past dateerefore an analysis based on specific past
data can be impaired by a structure otherwisedstiry for forecasting.

One aspect to note is the difference between ntphdind agility. As a matter of fact,
mobility is linked to the constant movement of alge A car, bus or plane is an accurate
example of what a mobility-based indexing structusmially has to deal with. On the other
hand, agility is linked to a more restrictive notiddata sources can move, but usually stay in
the same location for long times. A portable measignt station, set up at a location for one
week then set up elsewhere qualifies for the dafmiof agility. Most current monitoring
systems rely on some kind of sensor agility. Seregility management is usually more
important to these systems than mobility managentergn though newer sensors tend to be
lighter and therefore more 'mobility-oriented’, megstems as still widely based on fixed or
agile sensors.

3.5 Real time indexing and memory saturation management

The faster development of processor technologies memory technologies during the 90's
has lead to great changes in main-memory and irealdatabases. As a matter of fact, it has
appeared that memory access should be considered asjor bottleneck to system
performances. This has lead to the developmentroftares based on B+trees, such as the
CSB+tree (Rao, 2000) or structures akin to the G&&+HBohannon, 2001) (Raatikka, 2004).
These structures focus on limiting the cost of mgnaacess by a better use of memory buffers.
In the spatial and spatiotemporal domains, newxesldave also been developed. The CR-tree
(Kim, 2001) and other indexes (Sitzmann, 2002) (\N2©04), based on modified R-trees limit
heap of memory to store and to access data throogipression algorithm or other processor
intensive computations.

Even though these structures prove to be integeaisets for real-time indexing, they do not
comply with all the specificities of sensor datadsasThe CR-trees are based on R-trees.
Therefore, they tend to store data without regartheir origin. Once again, resolving a sensor
specific query involves taking into account the \ehdataset, thus slowing down the whole
process. The specificities of real-time, sensategl data indexing are not within the parameters
of the actual indexing solutions.
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As a conclusion of this part, the need is realréal time spatiotemporal data indexing for
fixed sensor database, agile sensor database,tasdaliso necessary to consider real time
memory management. There is no existing method emrsgvto the following specifications:

- storing spatiotemporal data collected in real-tfroen sensor network,

- real-time and spatiotemporal indexing to allow ridale spatiotemporal queries and to

facilitate rapid access to recent data

- allowing real time spatiotemporal queries takingpimccount sensor location (fixed

sensor, agile sensor)

- real-time main memory management using data sagmifie (application based) to elect

data to store on long period.

In the next paragraph, two new methods of indexorgeal time spatiotemporal databases
are detailed giving a solution to the first thregedfications detailed above. Paragraph 5 will
detail a solution integrating the management ofhnnaémory saturation.

4 REAL TIME SPATIOTEMPORAL DATA INDEXING

One method, the PoTree is designed for structuriags of spatiotemporal data collected from
fixed sensors. The second method, the PasTredalisatied to index spatiotemporal data issued
from agile sensors.

4.1 An indexing structure for a “fixed real-time sensdatabase

The following sections describe the PoTree, anximdemethod (Noel 2004a). This centralized
main-memory database spatiotemporal index can stmktime data issued from a fixed
sensors network. It also allows real-time queryifgle focusing on the most recent data.

4.1.1 Overview of a solution

Some ideas can be used from the issues detail¢eimprevious chapters. First of all, the
difference between temporal and spatial data canske to segment the index tree. Then, a
variation of B+-tree, the AP tree, has suggestéitect link between the root of the temporal
data and the latest node. All of these ideas haem lassociated to provide a solution of a real
time indexing structure for fixed sensor datab#sePoTree.

The PoTree is based on the difference between tangod spatial data, with a focus given
to the latter. This way the notion of informatiarusces is linked to a specific spatial location. It
has been devised so as to deal with system likeaw@ activity monitoring, which involves a
number of different sensors with measurement fregjes going as high as 100 Hz. The spatial
aspect is indexed through a Kd-tree, while the tmalpaspect uses modified B+-trees (see
Figure 5). This combination of structures and ntben anything else the modifications of the
B+-tree are the major innovations of the structév® for now, mobility is not managed by the
structure. However the specificities of both ofsiadrees allow on-line and batch updates: it is
possible to update the structure either on read-thmby using batch files.

The monitoring stations being immobile, this stamet does not allow mobile sources of
information. This way, every spatial location, akinspatial object (sensor) is directly linked to
a specific temporal tree. Requests shall firstrdaitee the spatial nodes concerned and later on
determine the temporal nodes.
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Figure 5. A possible tree structure for a real tspatiotemporal index for fixed sensor database

4.1.2 Details and discussion

Kd-trees are simple spatial structures, but theyrat perfect structures. One of their main
problem being the fact that they rely on the oafenserted data. If data are entered in different
orders, the final trees may have different shape®ther issue is the fact that they are not
perfectly suited for mobility, which is not part olur needs in this section. However, ICC
methods, originally designed for B-trees can eds#élyadapted to cover Kd-trees. Different tests
have also proven that these trees behaved reagamelbcompared to R-trees for small number
of data (Paspalis, 2003). As each B+-tree is linteedne object it is possible to develop a
secondary structure so as to access directly thpael data of specific objects, without the
need to first determine their location. This can useful for the notion of hierarchy of
information sources.

Furthermore, it has been noticed that the mostitedata are considered of higher interest
than the older one. It has also been noticed tis#ris are generally held at rightmost of the
structure, where are found the newest nodes. Tdrerehe temporal tree has been modified to
add a direct link between the root and the latesten While maintaining this link requires
minimum work for the system, a simple test prevémetisig forced to traverse the whole tree so
as to append or to find the requested data. Thestdink is useful to save processing time.

As most, if not all, of the updates take placen® ightmost part of the temporal tree, the fill
factor of leaf nodes can be placed higher thanlufedetes should be somehow rare under
normal conditions, and updates that do not conttexmewest data should be even rarer, unless
the systems experiences lag time due to networklgms between the sensors and the
database. Therefore the split and merge procedaree changed so that the nodes can be
filled almost at their maximum capacity.

. Spatial Node

.......... » Spatial query
E Temporal Node —» Treelink
db Data ~.ppTémporal lookup
‘ Temporal Linking

Figure 6. A Point / Interval Query
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Figure 6 shows an example of point / interval quémnyorder to process queries, it is first
needed to determine which information source itelating to. Therefore, queries first browse
the spatial sub-tree to determine the relevant nOdee this node has been determined, we can
access to its temporal sub-tree. For interval gsetthe next step is to look for the end of the
interval. Optimally, it shall be on the last nodktbe sub-structure. From this point, it is
possible to use the links between the leaf nodést¢h all the data of the requested interval.

This configuration implies that this tree is mopegifically designed for queries on the most
recent data. Spatial range / temporal intervaligadhat do not end at the present time, do not
take any advantage of the specificities of the.tree

4.1.3 Experimental results

Various tests have been conducted between the €odmd R*-tree structures (thanks to
Hadjieleftheriou's implementation, HadjieleftheridQ04). As a matter of fact, every indexing
solution is designed to focus on some featuresesapplications. While some structures have
been designed to store data related to mobile se(meolution of positions and alike, cf. TPR-
tree (Saltenis, 2000)), or to store locations améstamps of special events, so far the focus has
not been on data issued from sensors. As a conseg|tliee PoTree has been compared to the
most widespread indexing structure in the spatiptaal database world: the R*-tree.

Randomly generated data have been generated anensedly issued to a fixed number of
random points acting as information sources. Thate been conducted changing the total
number of data to index (1000-200000), the numibenformation sources (10-100) used and
the portion of the base to scan for interval querighe tests have been conducted on a 1.6 G
Hz, 128 Mo RAM computer, running Linux. The programg language used was Java.

Due to the differentiation of spatial and temparaimponent, and due to the fact that data
were coming from a finite set of spatial pointe ®oTree built time has been greatly reduced
compared to the R*-tree (Figure 7). Please note ftiraa better readability concerning time,
scale on figure 7 uses seconds instead of millrsgs@Figure 8).

$ %

Figure 7: Comparing R*-tree and PoTree construdiioe

While 25 000 points stemming from 100 differentdtions were indexed in less than one
second with the PoTree, it took nearly 45 seconitls & R*-tree. Other tests have shown that
the construction time of the PoTree evolved lineaith the number of stations, the number of
different spatial locations (Figure 8).

11/20



1600

.F-.
1400 o
1200 ff’.‘.ﬂ
1000 ) -
™ __..p} = |ndexing time
5 800 J.i-l"'- B Time Threshold
© 600
E o~
= 400 f-,.r
200
0lH\HHHHH\HHH\HHHHH\HHHHHHHH\H\HHHHHHHHH

On Cs By Ty 6 Ay Oy O, el ¥
C T T e e e s Yo, Yo, %9, o,

Number of locations

Figure 8.Influence of the number of station locations onelcenstruction time

Various queries (Noel 2004b) have shown interegtiiogerties as well. Interval queries took
an advantage of the linking of the temporal nodet® PoTree. For point-interval queries, the
PoTree can be up to 8 times faster the R*-tree.l&Mor interval queries the difference has
shown much lighter, it still remains in favour adRee solution, as shown in Figure 9. On this
figure, the last 10% of the collected data werelfet. The spatial range covered the whole of
possible locations. It is visible than for a lownmoer of data the R*-tree fares better, yet when
the amount of data rises past 6000, it is the RoiErenore efficient.
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Figure 9. Range-Interval queries

Results obtained have shown that the PoTree is a@ftiiohp with the constraints set by
application cases concerning environmental risk itodng: favouring the newest data,
processing of masses of data in a given time, featdf spatial sources, possibility of real-time
system use. Even though the mobility is not yetlyeasanaged, the PoTree meets the initial
specifications defined in 5.1.

The PoTree indexing method is more efficient thattrdes for spatial windows / time
interval queries (see figure 13 below). The tesh deere data issued by 68 sensors, covering the
whole studied area. The queried was based on $hadia percent of all sensors. This can be
explained by the use of sensor specific sub-t@émit data access cost.

4.2 Spatiotemporal real time indexing structure withnsmrs agility (location changes)
managing

The PoTree offers interesting results for datagdsoy fixed sensor networks, but it lacks finer
agility management. The next sections describeP#&Tlree, another main-memory database
indexing structure. It also manages real-time dathreal-time querying. However it also offers
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sensor agility management and multi-dimensionaésedo the data. Queries can be based on
spatiotemporal aspects or on sensor identifiers.

4.2.1 Overview of a solution

While the structure previously presented uses ttmactures to index spatiotemporal data, it
does not allow sensor location changes. If a lopatvas to change, a new temporal sub-tree
would have to be created. This could be troublesifraespecific location becomes irrelevant,
or in order to index some specific data. For exanpkismic epicentres are usually determined
by specialized processes but can be consideredtagalbe indexed. Those epicentres can be
considered as data collected from evolving senSmsa new tree is needed. The PasTree has to
deal with location changes, yet remain focused oarifizing the newest data and update
transactions.

Sensors can move from time to time. The spatiattsedh should be able to track these
modifications. Different approaches exist, yet wrlk aim at introducing a multi version
approach. A given node records the presence ofgeasiors (with an end-time) and of actual
sensors. So as to offer other querying optionsdime@s could be used instead of Kd-trees, as
seen in figure 10 and 11.

The temporal sub-trees should also keep trackbenfdcation changes. Each of these sub-
trees is related to a specific sensor. Keepingktrafctheir location allows following the
movement of sensors through a time interval withquerying the spatial sub-tree. The
temporal sub-trees of the PoTree can be suitaljiystedi to differentiate two kinds of entries:
measurement data and location changes.

A tertiary structure, based on B+ tree keeps recdrthe sensor IDs. As a matter of fact,
some queries do not need spatiotemporal prope8aentists are used to use sensor identifiers,
and do not always rely on spatiotemporal properfiegrefore this structure is directly linked to
the temporal, sensor related sub-trees withougusi@ spatial sub-tree.

Multiversion spatlal subtree Sensor Identifier sebt

A)&Q/
ceoe ceoe

Sensor related subtree Sensor related subtree

Figure 10. A possible multi-tree structure for alttme spatiotemporal index for agile sensor dasab

4.2.2 Details and discussion

The PasTree suffers from data duplication, yetsio allows for more request types than the
PoTree. As a matter of fact, queries can be basdbeosensor ID as well as on spatiotemporal
properties. It allows users to follow a specifiiser through its location changes or to have a
look at different sensors passing through a regiorng a lapse of time. It stills focuses on
update transactions and on the newest data.
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4.2.3 Experimental results

The PasTree was implemented in Java (Sun VM) o8 a&hz Athlon XP based system with
512 Mo of memory. Different tests have been caraetlon the PasTree. Randomly generated
data, as well as real-world data (from the K-Netyewused.

The PasTree has been tested against the R*Tree. &yan, this choice is linked to the lack
of purely sensor-based indexing structures focusingdata and not the spatiotemporal
properties of the sensor. It was also tested agdies?oTree with static sensors. As the PasTree
does not specifically aims at managing mobilityhas not been tested against mobility-centred
access methods, such as the TPR-tree.
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Figure 12. PoTree / PasTree building time relapeithé number of data to index (68 sensors)

Figure 12 shows the impact of the number of dattherPasTree building time. This test has
been carried out with real data issued by 68 sengosemi-linear raise in building time can be
noted. As a matter of fact, during the updatessfgatial and identifier sub-trees did not change.

Only the sensor sub-trees had to be really upd&eeh then, the structure made use of the
direct link to the last node. This sub-tree needsg further processing when the last node has to
split. The spatial sub-tree is only updated if iagibecomes a factor. Otherwise, it is only used
to reach the relevant sensor sub-tree (which tagesog NI), with NI the number of locations
used).
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Other tests have been carried out to understandhtpact of agility on the building cost.
Randomly generated data simulating data issued00ysensors with different agility levels
have shown that the PasTree can process data isg&& fixed sensors and 300 agile sensors
(agility of 0.5). The PoTree could have dealt witkOO fixed sensors in similar conditions.
However, it could not have dealt with agility.

Comparisons with the PoTree have shown that thmisctsire was 3 to 4 times faster in
building the index. However, the limitations on #meswerable queries limit the potential of the
PoTree. The various data access patterns provigddebPasTree are proposed at the cost of
construction time.

Even then, the PasTree is still far more efficiérain the R*tree. As a matter of fact, it uses
the notion of information source, gathering data specific sub-tree to limit updating costs.

Figure 13. Spatial window/Time interval query salyitime related to the number of data within theeba
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The PasTree is, as the PoTree, more efficient Rttnees for spatial windows / time interval
queries (figure 13). The test data were data isdqye®8 real sensors, covering the whole
studied area. The queried was based on the lapeteent of all sensors. This can be explained
by the use of sensor specific sub-trees to lini dacess cost.

From these different results it appears that treY Re is a suitable database indexing method
for data issued from a set of real-time sensor&ff#rs spatiotemporal as well as sensor-
identifier-based data access patterns. Furtherniibogn manage sensor agility. It uses more
resources than the PoTree in processing queriesetdw, it also adds new features, linked to
sensor agility and users needs to alleviate thecfassing the PasTree.

5 OUTLINE OF A METHOD OF INDEXING FOR MANAGEMENT OF MMORY
SATURATION: StH

The StH method that we outlined is an indexing méttor spatiotemporal real time database in
main memory. This index is able to manage real tineasurements collected by a network of
agile sensors.

5.1 Specifications

The StH is like the PasTree. It is dedicated towansproblems related to the real time
spatiotemporal indexing of data resulting from &wmoek of agile sensors. The StH method is
focused on the initial role of sensors namely ctilhg data resulting from one sensor in only one
indexing substructure. It aims at allowing the hason of queries based on identifiers of sensors
as well as on spatiotemporal attributes.

The StH is more particularly dedicated to the dadab into main memories, connected to a
data warehouse to store the least important datarder to prevent memory saturation of the
database, the StH index takes into account the foeédmptying" the database by selecting data
to be transferred downwards the data warehouserdiegoto the importance of data. The
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importance of data is determined according to séwgiteria. The most recent data are regarded
as priority, but it is advisable to consider othateria. Variation of value between two data can
impact the importance of the measurements. Smidticn involves that the new measurement is
less important.

Moreover, concerning environmental risk monitoriityappeared that some process could
include data corresponding to observations on quéati areas in addition to the data resulting
from sensors. Thus, in the case of the volcanicitmamg for example, the passage of one lava
flow can be regarded as an observation relatizezione, and not at a located point.

The StH index uses the global structure of the Rashdding development of particular
methods of management of memory saturation.

5.2 Description of the structure of the StH index

The total structure organisation of the PasTreexrzhsed on a set of substructures is used again
(Figure 14) to define the StH index. The differebetween the StH and the PasTree concerns the
central substructure. The central substructurehef $tH is related to sources of information
(sensors), contains all the data relative to omes@eand is able to ensure a management of
memory saturation. One of the two access struchfrdge PasTree is re-used just as it is: the tree
based on sensor identifiers. The other accesdisteythe spatial tree, is modified.

Epatial Multi-Version E-Tree Sensor Identificrs Tree

Multiversion }

e e
MER 1 MER 2 MER 3 ‘ OID H QIp H OID ‘
— T~ — T

‘ MER 3.1 H WMER 32 H MER 2.3 ‘ ‘ oID H oI H oID ‘
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Tstart / Tend y
Tstart / Tend |
Tstart / Tend Y
oID | \
L}
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- - \ / . . *
F'y Zenzor Ezcalator: indexing data
Zenzor Escal Data Heat from a specific sensor Zenzor Escal
OID / OID /
. 'y .
location location

\

Vo
T

As said before, the tree for sensor identifiersilitedrom the PasTree index. This tree allows
database queries based on sensors identifiers.

In the StH index, the spatial tree, based on aiveudiion quadtree in the PasTree, is now based
on a multi-version R-tree. This structure allowsrégord data resulting from specific located
points (sensors) as well as data resulting fronemiasions on areas (difficult to support by a
guadtree). It also allows for intersection or nsaneighbours spatial queries.

Figure 14. Structure of the StH index
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The major change comes from the substructure b@segnsors. It is no more a tree but it is
now a dynamic staircase. This sensor staircasevegliie an escalator (figure 15). The structure
is filled by the left and initializes proceduredaifmping by the right. The staircase is composed of
steps (cf. Figure 15). Each step is a pile of scdle each scale, pointers towards the data are
stored. The choice of the scale of storage is uhited by the significance of data (according to
the application). A function calculates the heatlafa which characterizes the significance of the
data. When a number of data by step is reacheghrttoedure of dumping is carried out. During
the dumping procedure (Figure 16), the lowest sofleach step (corresponding to the coldest
data) "is flushed" towards a data warehouse andvedhfrom the StH structure. A new step is
then created (on the left of the structure) toemlithe new data. The structure is dumped
gradually, preserving the most significant dataaftmnger time.

—
Data Heat Step

Hot

Scale

Cold

Time

Figure 15. Structure of the StH escalator of sensor
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Concerning the global structure of the StH indexesal attributes allow the resolution of the
most current queries (Figure 17, root). In additiorthe identifier of the sensor associated with
one staircase, the number of data contained istHieease, the memory size and the last known
position of the sensor, a pointer on a table coimtgithe temporal markers of each step is stored.
This table is used to determine the step to questioas to answer a query. The root of the StH
preserves also a pointer on a table containinghttaalings of different steps. Bound to the
staircase is also a special step, which contailysame scale. In this scale are preserved the data
explicitly qualified “hot data” by the user. Thedata are copied from the staircase and are
preserved explicitly in this structure. Only an koip declaration of the user can empty this
special step, created in order to force the coasiervof certain data.

A pointer on a table of differential time is assted to each step (Figure 17). The difference in
time since the origin of creation of the step iegarved there. It is consequently possible to use
shorter temporal records in order to limit the sikzéhe structure. A notation of the differentials
two bytes instead of four is used. Concerning thp, s pointer on a table of bitmaps is stored. A
bitmap is associated to each step. They are usedén to determine in which scale is a particular
data as well as a number of records of a particukaisure in the scale. Another bitmap is also
preserved indicating the changes of locations@fktnsor. If a change of location takes place, the
bit corresponding to the data is placed at theevARUE. The step also contains a pointer towards
a table of pointers on scales. Finally, it contaidmnd towards a list of locations corresponding t
the movements carried out during the period covbyeithe step. The scales (Figure 17, scale) are
finally made up only of measurement records.

Finding a particular data is resolved by countimg number of data between the beginning of
the scale and the data to be reached. This invalsesssing the differential time record so as to
determine the record number to reach. From herghenbitmaps table can be accessed. A first
access is used to determine which bitmap is stiteaspecific record number. This determines
which specific scale holds the data. Another actegshis specific bitmap determines the data
number within the scale. Movement and location iggegsire based on the same methods with the
movement bitmap and list.

It is necessary to note the importance to usetatdeifunction to determine heat of data. If the
function is too much complex, the cost will be togh. Badly defined, the function will not offer
a homogeneous distribution of data during the ghataormal system activities. This will lead to
bad performances of functions of “emptying”. ltgaite obvious that at the time of particular
activities, function must classify a greater numtifdnotter data.

Actually, the structure of the StH is currently endexperimentation and validation. The
experimental phase already emphasized the roleediihction of heat attribution, which must be
adapted to each case of specific application.

6 CONCLUSION

Time is crucial for emergency response and risk itndng. Risk monitoring is based on
collections of sensor data. In this paper, a dsounsconcerning real time spatiotemporal
indexing and real time main memory management émsaer databases is presented. As an
example, a global architecture of environmentak ngonitoring system is detailed. The
difficulties concerned real time data managementatabase and also spatiotemporal data
management. After a state of the art on data stingt according to real time and
spatiotemporal specifications, some possible smistifor real time spatiotemporal data
indexing are presented to allow real time, fasadatucturing and queries. One of the presented
indexing solutions is dedicated to real time spatigoral data issued from fixed sensors.
Another one is dedicated to real time spatioternipdaga collected from agile sensors. This
latter solution offers multidimensional accessexoading to purely spatiotemporal criteria or
sensor identifiers. In addition, the last indexsmution allows managing saturation of main
memory according to the significance of data widepend on applications.

The indexing solutions detailed are new and efficés they permit to:

- store spatiotemporal data collected in real-tinnenfsensor network,
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- index spatiotemporal data in real time allowingl riéime spatiotemporal queries and
facilitating rapid access to recent data (most>ateng methods do not privilege last
entered data)

- allow real time spatiotemporal queries taking iafmcount sensor location and move
(fixed sensor, agile sensor)

- manage in real time main memory saturation usirtg dgnificance (application based)
to elect data to store on long period.
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