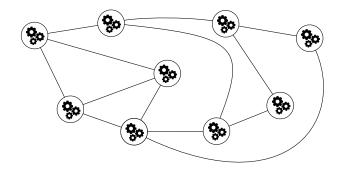
Local certification of forbidden subgraphs

Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun

September 5, 2024

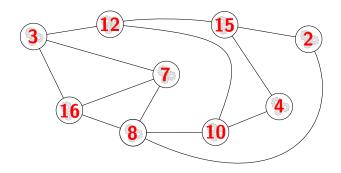
Context: distributed computing

 $\label{eq:model} \mbox{Model:} \quad \mbox{graph,} \; \left\{ \begin{array}{l} \mbox{vertices} = \mbox{computation units} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$



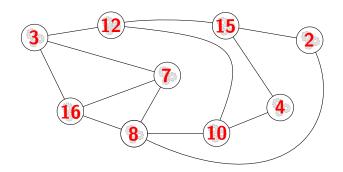
Context: distributed computing

 $\label{eq:model} \mbox{Model:} \quad \mbox{graph,} \; \left\{ \begin{array}{l} \mbox{vertices} = \mbox{computation units} \; \longrightarrow \; \mbox{have unique identifiers} \; \mbox{in} \; \{1, \dots, n^{\rm c}\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$



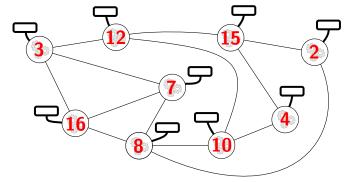
Context: distributed computing

 $\label{eq:model:model:graph} \mbox{Model: } \mbox{ graph, } \left\{ \begin{array}{l} \mbox{vertices} = \mbox{computation units} \longrightarrow \mbox{have unique identifiers in } \{1, \dots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$



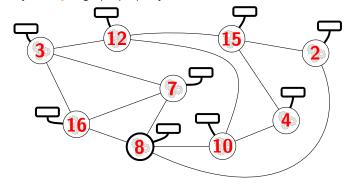
Context: distributed computing

 $\label{eq:model:model:graph} \mbox{Model: } \mbox{ graph, } \left\{ \begin{array}{l} \mbox{vertices} = \mbox{computation units} \longrightarrow \mbox{have unique identifiers in } \{1, \dots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$



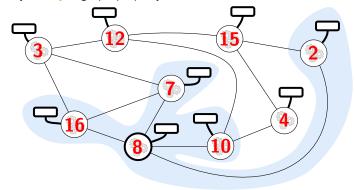
Context: distributed computing

 $\label{eq:model:model:graph} \mbox{Model: } \mbox{ graph, } \left\{ \begin{array}{l} \mbox{vertices} = \mbox{computation units} \longrightarrow \mbox{have unique identifiers in } \{1, \dots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$



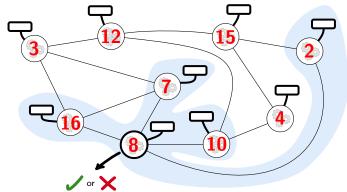
Context: distributed computing

 $\label{eq:model:model:graph} \mbox{Model: } \mbox{ graph, } \left\{ \begin{array}{l} \mbox{vertices} = \mbox{computation units} \longrightarrow \mbox{have unique identifiers in } \{1, \dots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$



Context: distributed computing

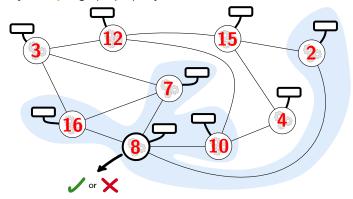
 $\label{eq:model:model:graph} \mbox{Model: } \mbox{ graph, } \left\{ \begin{array}{l} \mbox{vertices} = \mbox{computation units} \longrightarrow \mbox{have unique identifiers in } \{1, \dots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$



Context: distributed computing

 $\label{eq:model:model:graph} \mbox{Model: graph, } \left\{ \begin{array}{l} \mbox{vertices} = \mbox{computation units} \longrightarrow \mbox{have unique identifiers in } \{1, \dots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$

Goal: verify locally a graph property \mathcal{P} , thanks to certificates

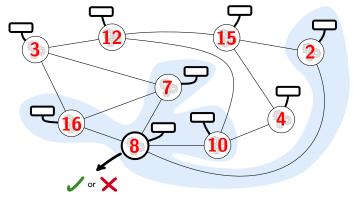


Graph (globally) accepted ←⇒ all the vertices accept (consensus)

Context: distributed computing

Model: graph, $\begin{cases} \text{ vertices} = \text{computation units} \longrightarrow \text{have unique identifiers in } \{1, \dots, n^c\} \\ \text{edges} = \text{communication channels} \end{cases}$

Goal: verify locally a graph property \mathcal{P} , thanks to certificates



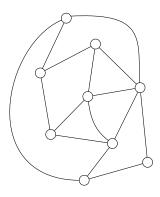
Graph (globally) accepted \iff all the vertices accept (consensus)

G satisfies $\mathcal{P} \Longleftrightarrow$ there exists an assignment of the certificates such that G is accepted

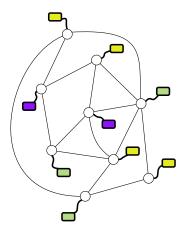
Certificate = color in a proper k-coloring.

Certificate = color in a proper k-coloring.

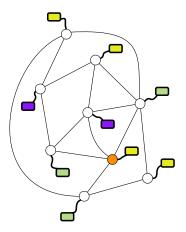
Certificate = color in a proper k-coloring.



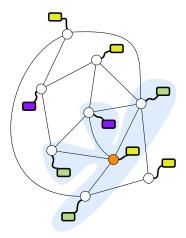
Certificate = color in a proper k-coloring.



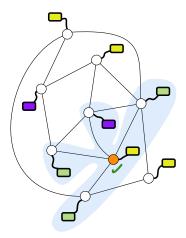
Certificate = color in a proper k-coloring.



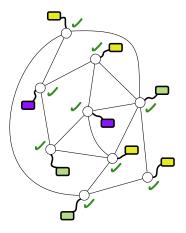
Certificate = color in a proper k-coloring.



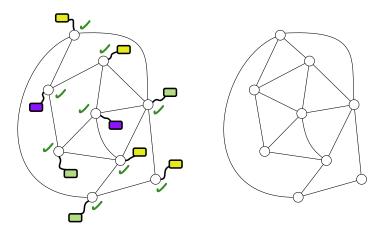
Certificate = color in a proper k-coloring.



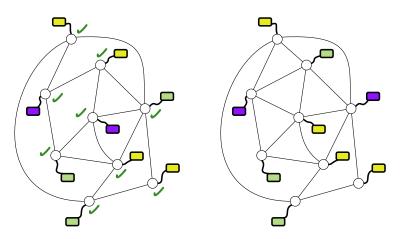
Certificate = color in a proper k-coloring.



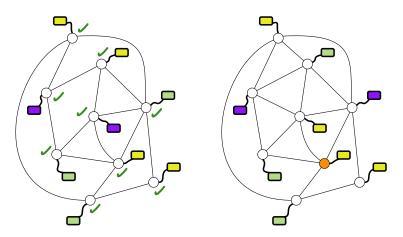
Certificate = color in a proper k-coloring.



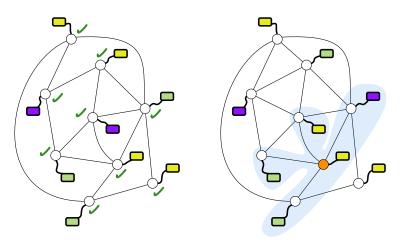
Certificate = color in a proper k-coloring.



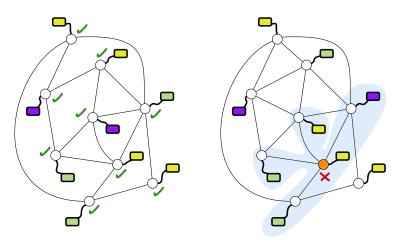
Certificate = color in a proper k-coloring.



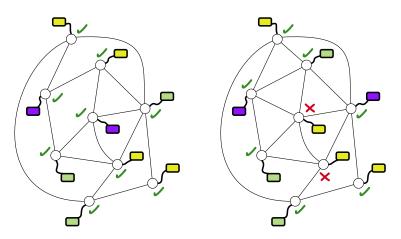
Certificate = color in a proper k-coloring.

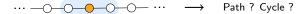


Certificate = color in a proper k-coloring.

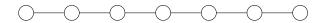


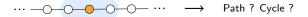
Certificate = color in a proper k-coloring.

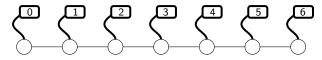


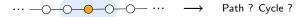


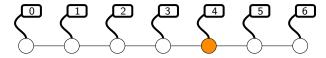


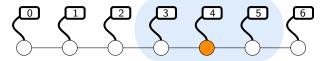


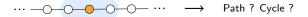


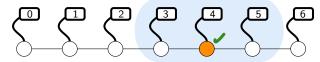


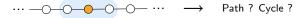


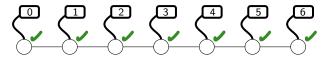


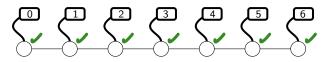


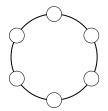




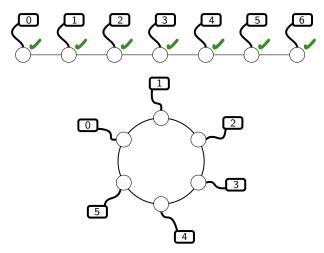


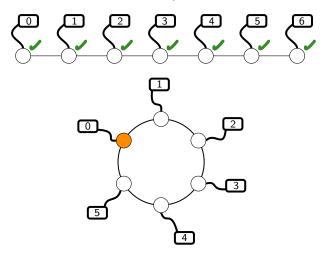


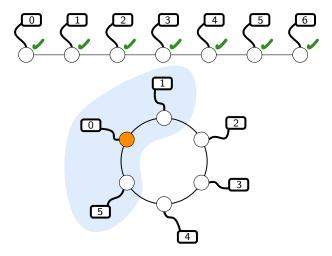


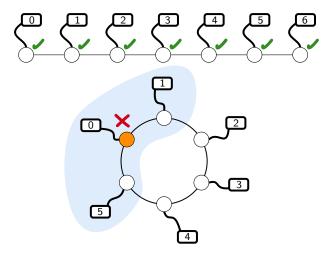


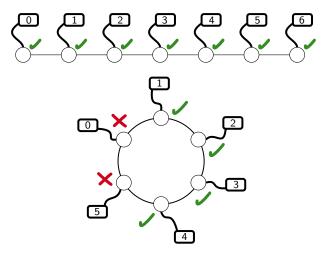
$$\cdots$$
 — \bigcirc — \bigcirc — \bigcirc — \cdots — Path ? Cycle ?



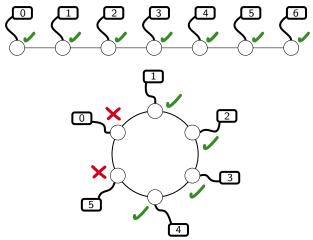




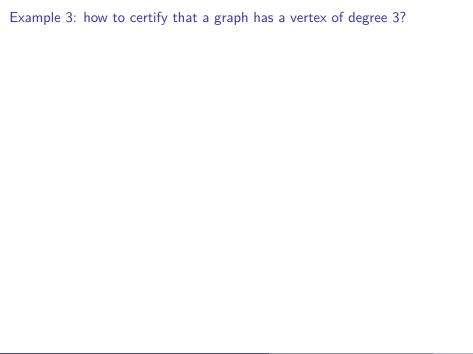




Certificate = distance to a fixed endpoint.



Size of the certificates: $\lceil \log n \rceil$



Idea: code a rooted spanning-tree in the certificate.

Idea: code a rooted spanning-tree in the certificate.

Root = some vertex of degree 3.

Idea: code a rooted spanning-tree in the certificate.

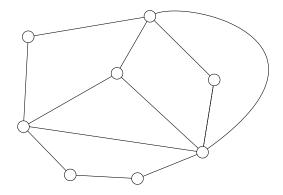
Root = some vertex of degree 3.

Verification: • all vertices check the correctness of the spanning-tree

Idea: code a rooted spanning-tree in the certificate.

Root = some vertex of degree 3.

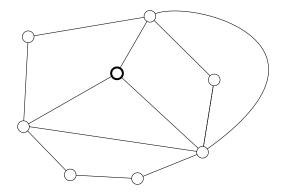
Verification: • all vertices check the correctness of the spanning-tree



Idea: code a rooted spanning-tree in the certificate.

Root = some vertex of degree 3.

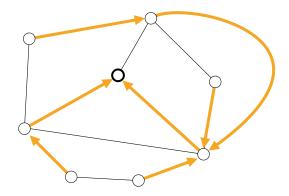
Verification: • all vertices check the correctness of the spanning-tree



Idea: code a rooted spanning-tree in the certificate.

Root = some vertex of degree 3.

Verification: • all vertices check the correctness of the spanning-tree

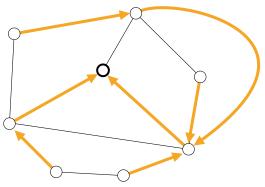


Idea: code a rooted spanning-tree in the certificate.

Root = some vertex of degree 3.

Verification: • all vertices check the correctness of the spanning-tree

the root checks it has degree 3



In the certificate of every vertex, write:

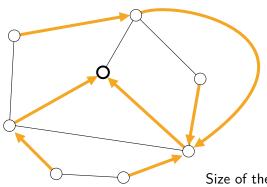
- the identifier of the root
- the identifier of its parent
- its distance to the root

Idea: code a rooted spanning-tree in the certificate.

Root = some vertex of degree 3.

Verification: • all vertices check the correctness of the spanning-tree

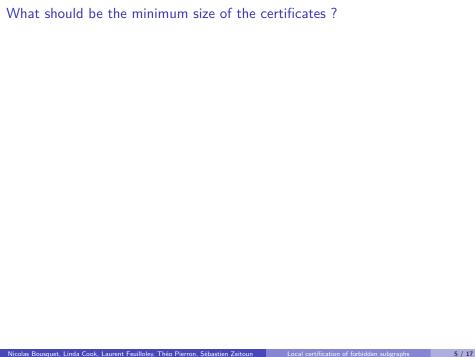
the root checks it has degree 3



In the certificate of every vertex, write:

- the identifier of the root
- the identifier of its parent
- its distance to the root

Size of the certificates : $O(\log n)$



Usual parameter: n (number of vertices in the graph)

Usual parameter: n (number of vertices in the graph)

Optimal size: $O(n^2)$ for any property

idea: write the full graph in the certificate of each vertex

Usual parameter: n (number of vertices in the graph)

Optimal size: $O(n^2)$ for any property

idea: write the full graph in the certificate of each vertex

Typical size of certificates:

$ ilde{\Theta}(n^2)$	$\Theta(\log n)$

Usual parameter: n (number of vertices in the graph)

Optimal size: $O(n^2)$ for any property

idea: write the full graph in the certificate of each vertex

Typical size of certificates:

$\tilde{\Theta}(n^2)$	$\Theta(\log n)$
■ Non-3-colorability	
 Non-trivial automorphism 	

Usual parameter: n (number of vertices in the graph)

Optimal size: $O(n^2)$ for any property

idea: write the full graph in the certificate of each vertex

Typical size of certificates:

$\tilde{\Theta}(n^2)$	$\Theta(\log n)$
Non-3-colorabilityNon-trivial automorphism	PathsTreesPlanar graphs

H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

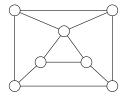
H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

$$P_5 = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

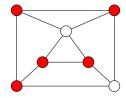
H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

$$P_5 = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$



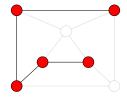
H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

$$P_5 = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$



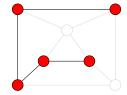
H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

$$P_5 = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$



H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

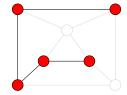
$$P_5 = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$



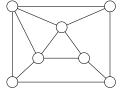
 $P_5 = \text{induced subgraph}$

H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

$$P_5 = \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc$$

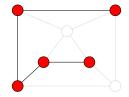


 $P_5 = \text{induced subgraph}$

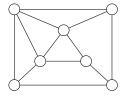


H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

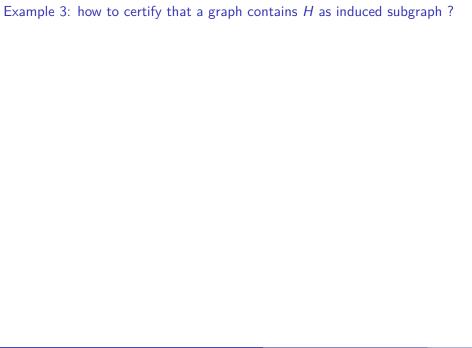
$$P_5 = \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc$$



 $P_5 = \text{induced subgraph}$



P₅-free



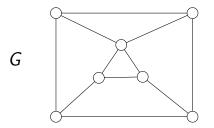
$$H=P_5$$

• Fix a name for each vertex of H.

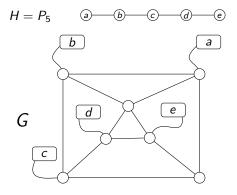
$$H = P_5$$
 a b c d e

• Fix a name for each vertex of *H*.

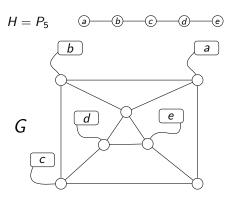
$$H = P_5$$
 a b c d e



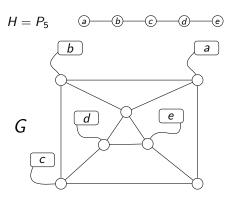
- Fix a name for each vertex of H.
- Tell every vertex of G to which vertex of H it corresponds (if any).



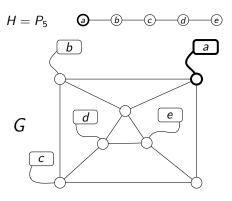
- Fix a name for each vertex of H.
- Tell every vertex of *G* to which vertex of *H* it corresponds (if any).
- For every vertex of H, certify that there is exactly one vertex of G which corresponds to it.



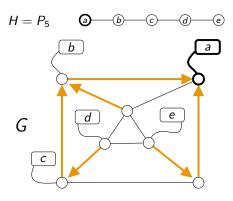
- Fix a name for each vertex of H.
- Tell every vertex of *G* to which vertex of *H* it corresponds (if any).
- For every vertex of H, certify that there is exactly one vertex of G which corresponds to it. → use a spanning-tree!



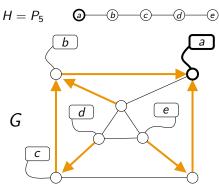
- Fix a name for each vertex of H.
- Tell every vertex of *G* to which vertex of *H* it corresponds (if any).
- For every vertex of H, certify that there is exactly one vertex of G which corresponds to it. → use a spanning-tree!



- Fix a name for each vertex of H.
- Tell every vertex of *G* to which vertex of *H* it corresponds (if any).
- For every vertex of H, certify that there is exactly one vertex of G which corresponds to it. → use a spanning-tree!

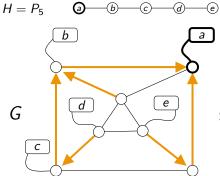


- Fix a name for each vertex of H.
- Tell every vertex of G to which vertex of H it corresponds (if any).
- For every vertex of H, certify that there is exactly one vertex of G which corresponds to it. → use a spanning-tree!



Size of the certificates : $O(\log n)$

- Fix a name for each vertex of H.
- Tell every vertex of *G* to which vertex of *H* it corresponds (if any).
- For every vertex of H, certify that there is exactly one vertex of G which corresponds to it. → use a spanning-tree!



Size of the certificates : $O(\log n)$

Question: what about the certification of the complementary property (*H*-freeness)?

Proposition

 $O(\log n)$ bits are sufficient to certify that a graph is P_3 -free.

Proposition

 $O(\log n)$ bits are sufficient to certify that a graph is P_3 -free.

Connected P_3 -free graphs = cliques

Proposition

 $O(\log n)$ bits are sufficient to certify that a graph is P_3 -free.

Connected P_3 -free graphs = cliques

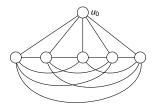
Certificate = identifier of u_0 and $deg(u_0)$, for a fixed $u_0 \longrightarrow size O(log n)$

Proposition

 $O(\log n)$ bits are sufficient to certify that a graph is P_3 -free.

Connected P_3 -free graphs = cliques

Certificate = identifier of u_0 and $deg(u_0)$, for a fixed $u_0 \longrightarrow size O(\log n)$

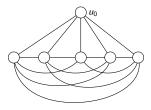


Proposition

 $O(\log n)$ bits are sufficient to certify that a graph is P_3 -free.

Connected P_3 -free graphs = cliques

Certificate = identifier of u_0 and $deg(u_0)$, for a fixed $u_0 \longrightarrow size O(\log n)$



Verification : every v checks that

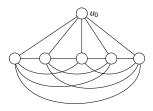
- c(v) = c(v') for every neighbor v'
- if $v = u_0$, its degree is correctly written in the certificate
- ullet if $v
 eq u_0$, v is a neighbor of u_0 and $\deg(v)=\deg(u_0)$

Proposition

 $O(\log n)$ bits are sufficient to certify that a graph is P_3 -free.

Connected P_3 -free graphs = cliques

Certificate = identifier of u_0 and $deg(u_0)$, for a fixed $u_0 \longrightarrow size O(\log n)$



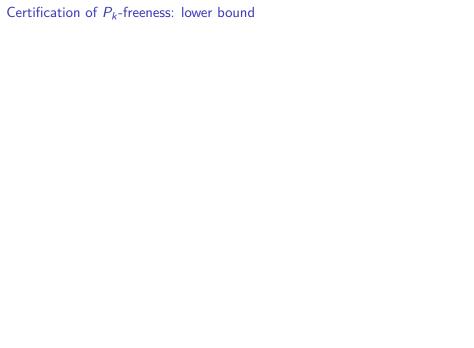
Verification : every v checks that

- c(v) = c(v') for every neighbor v'
- if $v = u_0$, its degree is correctly written in the certificate
- ullet if $v
 eq u_0$, v is a neighbor of u_0 and $\deg(v)=\deg(u_0)$

Theorem (Fraignaud, Mazoit, Montealegre, Rapaport, Todinca)

 $O(\log n)$ bits are sufficient to certify that a graph is P_4 -free.

Lower bounds



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

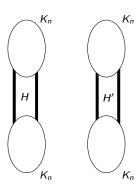
Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

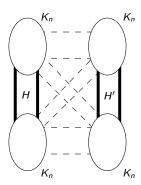
$$\hookrightarrow$$
 size = $\Theta(n^2)$



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

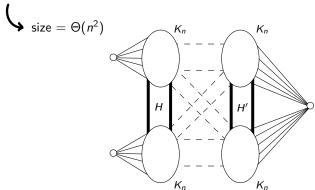
 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

$$\Rightarrow size = \Theta(n^2)$$



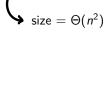
Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

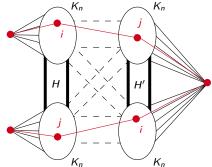
 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

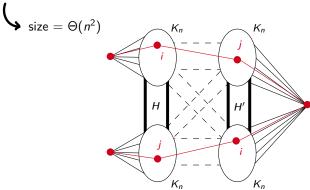




Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

H, H' bipartite graphs with n vertices on each side

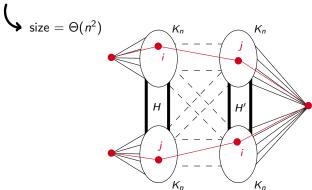


 $\exists P_7 \iff H \text{ and } H' \text{ have a common non-edge}$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

H, H' bipartite graphs with n vertices on each side



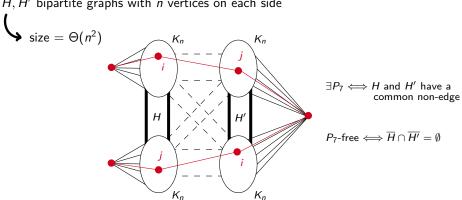
 $\exists P_7 \iff H \text{ and } H' \text{ have a common non-edge}$

$$P_7$$
-free $\iff \overline{H} \cap \overline{H'} = \emptyset$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

H, H' bipartite graphs with n vertices on each side

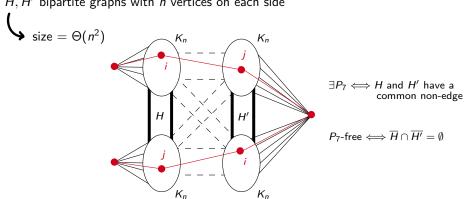


In the certificates, $\Theta(n^2)$ bits of information have to be transmitted through O(n) vertices

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

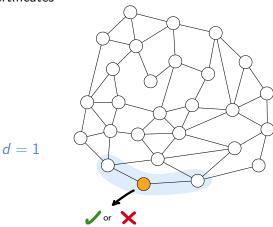
H, H' bipartite graphs with n vertices on each side



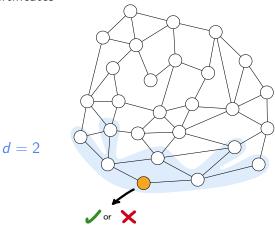
In the certificates, $\Theta(n^2)$ bits of information have to be transmitted through O(n) vertices \implies certificates of size $\Omega(n)$

- vertices (and their identifiers)
- edges
- certificates

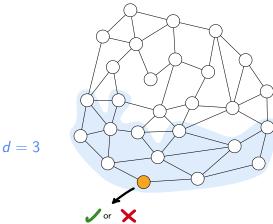
- vertices (and their identifiers)
- edges
- certificates



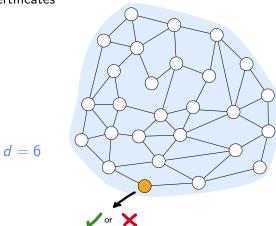
- vertices (and their identifiers)
- edges
- certificates



- vertices (and their identifiers)
- edges
- certificates



- vertices (and their identifiers)
- edges
- certificates

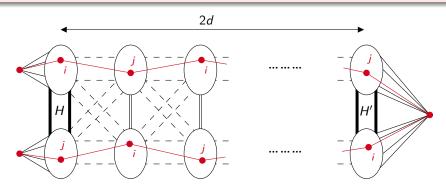


Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.

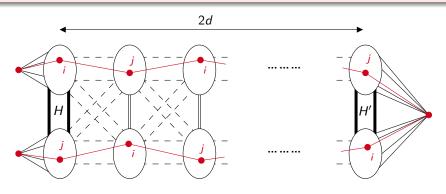
Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

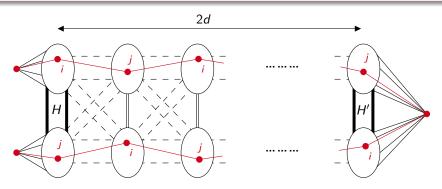
 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.



In the certificates, $\Theta(n^2)$ bits of information have to be transmitted through O(nd) vertices \Longrightarrow certificates of size $\Omega\left(\frac{n}{d}\right)$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.



In the certificates, $\Theta(n^2)$ bits of information have to be transmitted through O(nd) vertices \Longrightarrow certificates of size $\Omega\left(\frac{n}{d}\right)$

What about upper bounds?

Upper bounds

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

Idea of the proof:

• cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

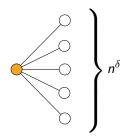
Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

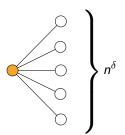
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

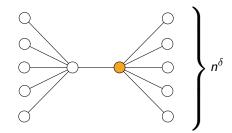
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

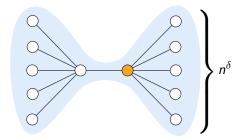
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

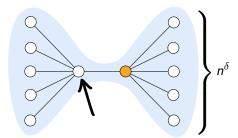
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

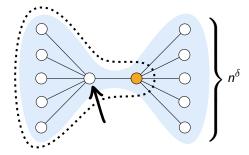
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

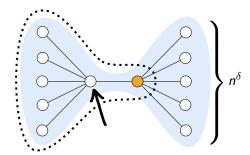
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

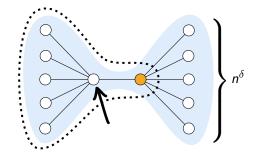
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph
- each vertex checks that it is the same reconstructed graph for all its neighbors



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

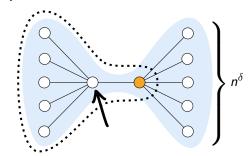
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph
- each vertex checks that it is the same reconstructed graph for all its neighbors
- each vertex checks that its neighborhood is correctly written in this graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give randomly $O(\log n)$ pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph
- each vertex checks that it is the same reconstructed graph for all its neighbors
- each vertex checks that its neighborhood is correctly written in this graph
- \implies every vertex knows G



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

- \blacksquare if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
- if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

- \bullet if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
- if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

$$V^- := \text{vertices of degree} < \sqrt{n}$$

$$V^+:=$$
 vertices of degree $\geqslant \sqrt{n}$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- \blacksquare if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
- if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

$$V^- := \text{vertices of degree} < \sqrt{n}$$

$$V^+:=$$
 vertices of degree $\geqslant \sqrt{n}$

• give $G[V^-]$ to every vertex

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

- \blacksquare if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
- if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

$$V^- := \text{vertices of degree} < \sqrt{n}$$

$$V^+:=$$
 vertices of degree $\geqslant \sqrt{n}$

- give $G[V^-]$ to every vertex
- cut G in \sqrt{n} pieces of size $n^{3/2}$ and give $O(\log n)$ pieces to every vertex

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

- if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
- if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

$$V^- := \text{vertices of degree} < \sqrt{n}$$

$$V^-:=$$
 vertices of degree $<\sqrt{n}$ $V^+:=$ vertices of degree $\geqslant\sqrt{n}$

- give *G*[*V*[−]] to every vertex
- cut G in \sqrt{n} pieces of size $n^{3/2}$ and give $O(\log n)$ pieces to every vertex $\begin{cases} \text{size} \\ \tilde{O}(n^{3/2}) \end{cases}$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

- - lacktriangle if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

$$V^- := \text{vertices of degree} < \sqrt{n}$$

$$V^-:=$$
 vertices of degree $<\sqrt{n}$ $V^+:=$ vertices of degree $\geqslant\sqrt{n}$

- give *G*[*V*[−]] to every vertex
- cut G in \sqrt{n} pieces of size $n^{3/2}$ and give $O(\log n)$ pieces to every vertex $\begin{cases} \text{size} \\ \tilde{O}(n^{3/2}) \end{cases}$

$$u \in V^-$$

$$\downarrow$$
 $u \text{ knows } G[V^-]$

$$u \in V^+$$

$$\downarrow$$
 $u \text{ knows } G[V^-]$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- - lacktriangle if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

$$V^- := \text{vertices of degree} < \sqrt{n}$$
 $V^+ := \text{vertices of degree} \geqslant \sqrt{n}$

$$V^+:=$$
 vertices of degree $\geqslant \sqrt{n}$

- give *G*[*V*[−]] to every vertex
- cut G in \sqrt{n} pieces of size $n^{3/2}$ and give $O(\log n)$ pieces to every vertex $\begin{cases} \text{size} \\ \tilde{O}(n^{3/2}) \end{cases}$

$$u \in V^-$$

$$\downarrow$$
 $u \text{ knows } G[V^-]$

$$u \in V^+$$

$$\downarrow$$
 $u \text{ knows } G[V^-]$

u sees all the pieces of the G in its neighborhood, so it can reconstruct G

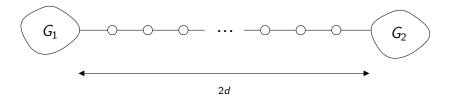
<u>Main challenge</u>: if $u \in V^+$, is it possible for u to verify that it reconstructed the correct graph G?

Main challenge: if $u \in V^+$, is it possible for u to verify that it reconstructed the correct graph G?

In general: no.

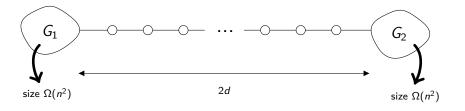
<u>Main challenge</u>: if $u \in V^+$, is it possible for u to verify that it reconstructed the correct graph G?

In general: no.



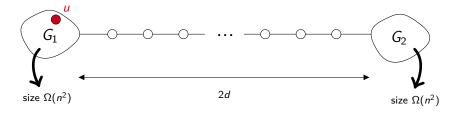
<u>Main challenge</u>: if $u \in V^+$, is it possible for u to verify that it reconstructed the correct graph G?

In general: no.



<u>Main challenge</u>: if $u \in V^+$, is it possible for u to verify that it reconstructed the correct graph G?

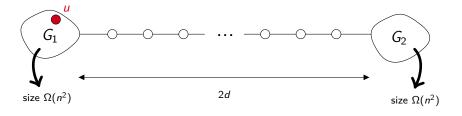
In general: no.



 $u \in G_1 \cap V^+ \longrightarrow u$ reconstructs G

<u>Main challenge</u>: if $u \in V^+$, is it possible for u to verify that it reconstructed the correct graph G?

In general: no.



$$u \in G_1 \cap V^+ \longrightarrow u$$
 reconstructs G

u can't check that G_2 is correct unless the middle vertices carry n^2 bits \implies it would need certificates of size $\Omega(n^2)$

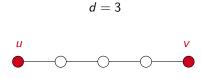
But : if two vertices are close, we can check that they reconstruct the same graph.

But : if two vertices are close, we can check that they reconstruct the same graph.

$$d = 3$$

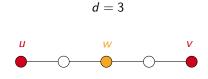
But : if two vertices are close, we can check that they reconstruct the same graph.

If $u, v \in V^+$ are at distance $\leq 2d - 2$,



But : if two vertices are close, we can check that they reconstruct the same graph.

If $u, v \in V^+$ are at distance $\leq 2d-2$, there exists $w \in V$ at distance at most d-1 from both.



But : if two vertices are close, we can check that they reconstruct the same graph.

If $u, v \in V^+$ are at distance $\leq 2d-2$, there exists $w \in V$ at distance at most d-1 from both.

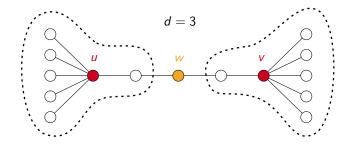
 $\it w$ can check that $\it u$ and $\it v$ reconstruct the same graph.

d = 3

But : if two vertices are close, we can check that they reconstruct the same graph.

If $u, v \in V^+$ are at distance $\leq 2d - 2$, there exists $w \in V$ at distance at most d - 1 from both.

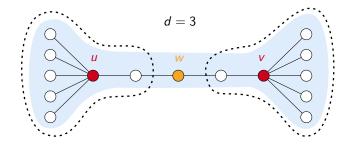
w can check that u and v reconstruct the same graph.



But : if two vertices are close, we can check that they reconstruct the same graph.

If $u, v \in V^+$ are at distance $\leq 2d - 2$, there exists $w \in V$ at distance at most d - 1 from both.

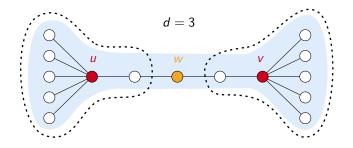
w can check that u and v reconstruct the same graph.



But : if two vertices are close, we can check that they reconstruct the same graph.

If $u, v \in V^+$ are at distance $\leq 2d - 2$, there exists $w \in V$ at distance at most d - 1 from both.

w can check that u and v reconstruct the same graph.

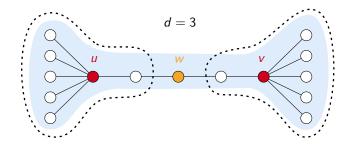


Partition V^+ in components = sets of vertices which reconstruct the same graph.

But : if two vertices are close, we can check that they reconstruct the same graph.

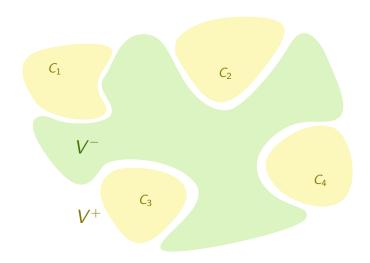
If $u, v \in V^+$ are at distance $\leq 2d-2$, there exists $w \in V$ at distance at most d-1 from both.

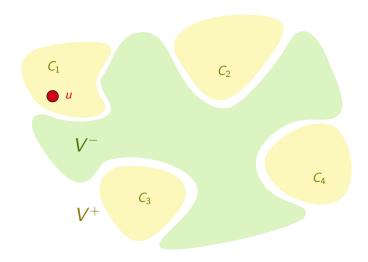
w can check that u and v reconstruct the same graph.

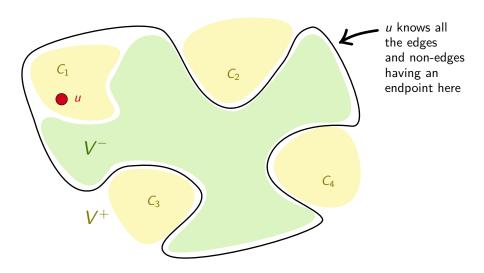


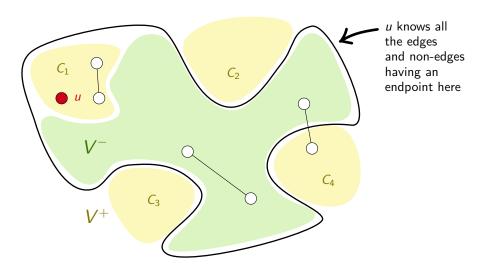
Partition V^+ in components = sets of vertices which reconstruct the same graph.

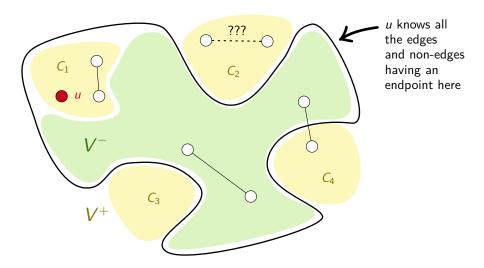
Two different components are far from each other.



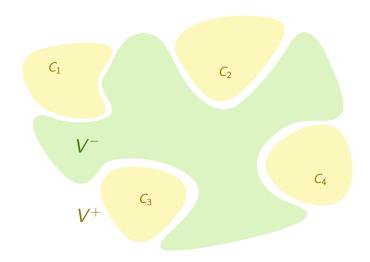






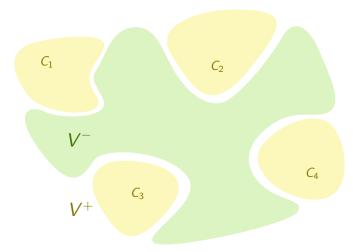


If there is a P_{4d-1} , which vertex detects it ?



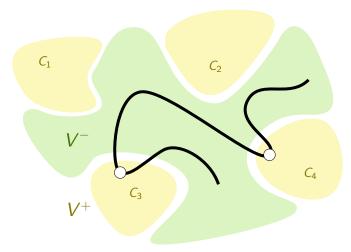
If there is a P_{4d-1} , which vertex detects it ?

<u>Case 1</u>: no ECC contains at least two vertices of P_{4d-1} .



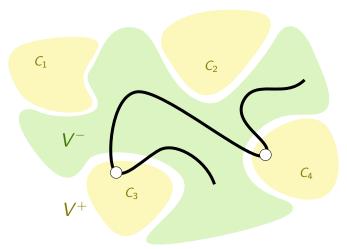
If there is a P_{4d-1} , which vertex detects it ?

<u>Case 1</u>: no ECC contains at least two vertices of P_{4d-1} .



If there is a P_{4d-1} , which vertex detects it ?

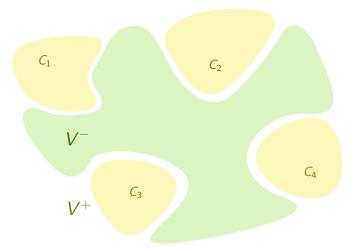
<u>Case 1</u>: no ECC contains at least two vertices of P_{4d-1} .



Every vertex detects it!

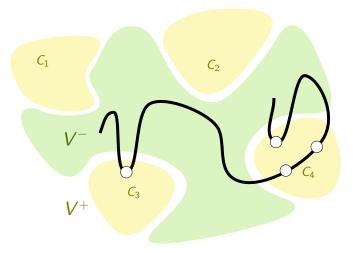
If there is a P_{4d-1} , which vertex detects it ?

<u>Case 2</u>: exactly one ECC contains at least two vertices of P_{4d-1} .



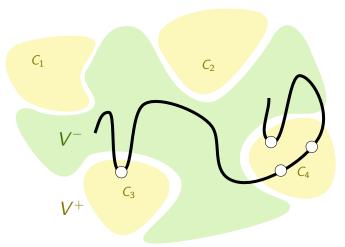
If there is a P_{4d-1} , which vertex detects it ?

<u>Case 2</u>: exactly one ECC contains at least two vertices of P_{4d-1} .



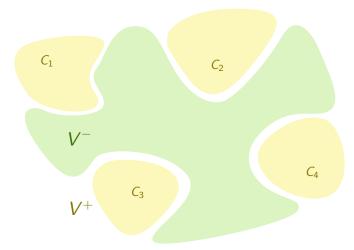
If there is a P_{4d-1} , which vertex detects it ?

<u>Case 2</u>: exactly one ECC contains at least two vertices of P_{4d-1} .



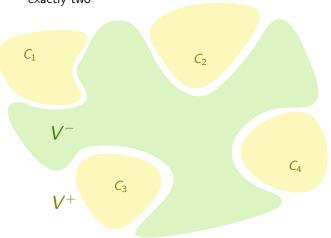
Every vertex in C_4 detects it!

If there is a P_{4d-1} , which vertex detects it ?

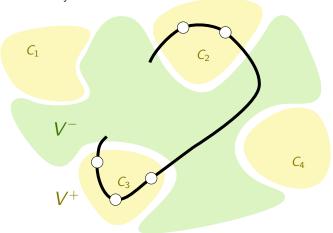


If there is a P_{4d-1} , which vertex detects it ?

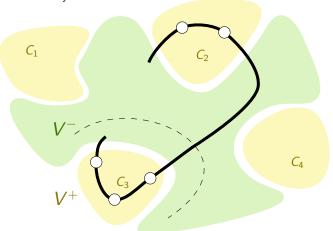
 $\underline{\text{Case 3}}$: at least two ECCs contain at least two vertices of P_{4d-1} . exactly two



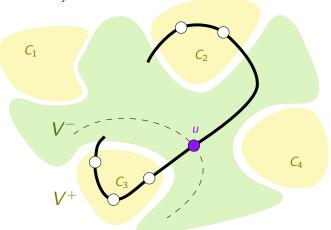
If there is a P_{4d-1} , which vertex detects it ?



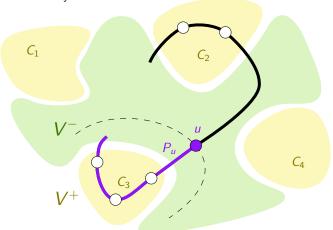
If there is a P_{4d-1} , which vertex detects it ?



If there is a P_{4d-1} , which vertex detects it ?

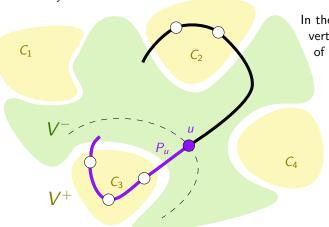


If there is a P_{4d-1} , which vertex detects it ?



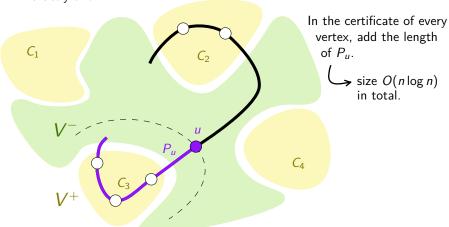
If there is a P_{4d-1} , which vertex detects it ?

<u>Case 3</u>: at least two ECCs contain at least two vertices of P_{4d-1} . exactly two



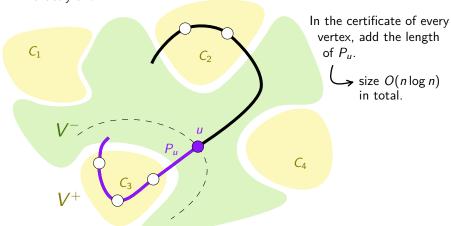
In the certificate of every vertex, add the length of P_{μ} .

If there is a P_{4d-1} , which vertex detects it ?

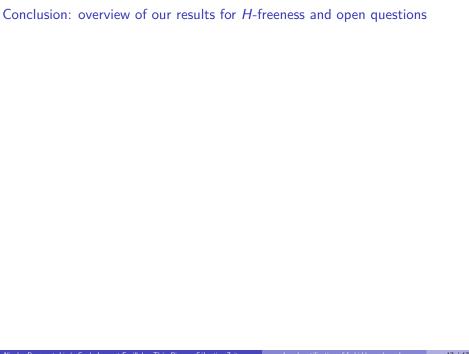


If there is a P_{4d-1} , which vertex detects it ?

<u>Case 3</u>: at least two ECCs contain at least two vertices of P_{4d-1} . exactly two



Every vertex in C_2 detects it!



Graph <i>H</i>	Bound

$\Omega(n)$

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$\tilde{O}(n^{3/2})$

Graph <i>H</i>	Bound
P_{4d+3} P_{4d-1}	$\Omega(n)$ $\tilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$ ilde{O}(n^{3/2})$

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$ ilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$ ilde{O}(n^{3/2})$
$P_{\lceil 14d/3 \rceil - 1}$	$ ilde{O}(n^{3/2})$

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$ ilde{O}(\mathit{n}^{3/2})$
$ V(H) \leqslant 4d-1$	$ ilde{O}(n^{3/2})$
$P_{\lceil 14d/3 \rceil - 1}$	$ ilde{O}(n^{3/2})$
P_{3d-1}	$ ilde{O}(n)$

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$ ilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$ ilde{O}(n^{3/2})$
$P_{\lceil 14d/3 \rceil - 1}$	$ ilde{O}(n^{3/2})$
P_{3d-1}	$ ilde{O}(n)$

Open questions:

• what if d = 1?

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$ ilde{O}(\mathit{n}^{3/2})$
$ V(H) \leqslant 4d-1$	$ ilde{O}(n^{3/2})$
$P_{\lceil 14d/3 ceil -1}$	$ ilde{O}(n^{3/2})$
P_{3d-1}	$ ilde{O}(n)$

Open questions:

lacksquare what if d=1 ? $\longrightarrow \tilde{O}(n^{3/2})$ for P_5

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$ ilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$ ilde{O}(n^{3/2})$
$P_{\lceil 14d/3 \rceil - 1}$	$ ilde{O}(n^{3/2})$
P_{3d-1}	$ ilde{O}(n)$

Open questions:

- what if d=1 ? $\longrightarrow \tilde{O}(n^{3/2})$ for P_5
- can we get subquadratic upper-bounds for $P_{\alpha d}$ if $\alpha > \frac{14}{3}$?

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$ ilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$ ilde{O}(n^{3/2})$
$P_{\lceil 14d/3 \rceil - 1}$	$ ilde{O}(n^{3/2})$
P_{3d-1}	$ ilde{O}(n)$

Open questions:

- what if d=1 ? $\longrightarrow \tilde{O}(n^{3/2})$ for P_5
- ullet can we get subquadratic upper-bounds for $P_{\alpha d}$ if $\alpha > \frac{14}{3}$?
- can we get a superlinear lower-bound for $P_{10^{1000}d}$?

Thanks for your attention !