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Local certification
Context: distributed computing

Model: graph,
{

vertices = computation units
edges = communication channels
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Graph (globally) accepted ⇐⇒ all the vertices accept (consensus)

G satisfies P ⇐⇒ there exists an assignment of the certificates such that G
is accepted
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Example 1: how to certify that a graph is k-colorable ?
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Example 2: how to certify that a graph is a path ?
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Example 2: how to certify that a graph is a path ?
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Example 3: how to certify that a graph has a vertex of degree 3?

Idea: code a rooted spanning-tree in the certificate.

Root = some vertex of degree 3.

Verification: • all vertices check the correctness of the spanning-tree
• the root checks it has degree 3

In the certificate of
every vertex, write:
• the identifier of the

root
• the identifier of its

parent
• its distance to

the root

Size of the certificates : O(log n)
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What should be the minimum size of the certificates ?
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What should be the minimum size of the certificates ?

Usual parameter: n (number of vertices in the graph)

Optimal size: O(n2) for any property
idea: write the full graph in the certificate of each vertex

Typical size of certificates :

Θ̃(n2) Θ(log n)

• Non-3-colorability

• Non-trivial
automorphism

• Paths

• Trees

• Planar graphs
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Induced subgraphs

H is an induced subgraph of G if it is possible to obtain H from G by
deleting vertices.
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Induced subgraphs

H is an induced subgraph of G if it is possible to obtain H from G by
deleting vertices.

Else, G is H-free.

P5 =

P5 = induced subgraph P5-free
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Example 3: how to certify that a graph contains H as induced subgraph ?
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Example 3: how to certify that a graph contains H as induced subgraph ?
• Fix a name for each vertex of H.

H = P5 a b c d e
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Example 3: how to certify that a graph contains H as induced subgraph ?
• Fix a name for each vertex of H.
• Tell every vertex of G to which vertex of H it corresponds (if any).
• For every vertex of H, certify that there is exactly one vertex of G which

corresponds to it. −→ use a spanning-tree !

H = P5 a b c d e

G

b a

c

d e
Size of the certificates :

O(log n)

Question : what about the certification of the complementary
property (H-freeness)?
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Certification of Pk-freeness

Proposition
O(log n) bits are sufficient to certify that a graph is P3-free.

Connected P3-free graphs = cliques

Certificate = identifier of u0 and deg(u0), for a fixed u0 −→ size O(log n)

Verification : every v checks that
• c(v) = c(v ′) for every neighbor v ′

• if v = u0, its degree is correctly written in the certificate
• if v 6= u0, v is a neighbor of u0 and deg(v) = deg(u0)

u0

Theorem (Fraignaud, Mazoit, Montealegre, Rapaport, Todinca)
O(log n) bits are sufficient to certify that a graph is P4-free.
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Lower bounds



Certification of Pk-freeness: lower bound

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)
Ω(n) bits are necessary to certify that a graph is P7-free.

H,H ′ bipartite graphs with n vertices on each side

size = Θ(n2)

i

i

j

j

H H′

Kn Kn

Kn Kn

∃P7 ⇐⇒ H and H′ have a
common non-edge

P7-free ⇐⇒ H ∩ H′ = ∅

In the certificates, Θ(n2) bits of information have to be transmitted through
O(n) vertices =⇒ certificates of size Ω(n)
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What if vertices can see at distance d > 1?
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What if vertices can see at distance d > 1?

View of a vertex = all the information available at distance 6 d :
• vertices (and their identifiers)
• edges
• certificates
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Certification of Pk-freeness: lower bound

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Ω
( n

d
)

bits are necessary to certify that a graph is P4d+3-free, if vertices can see at
distance d .

………

………

H H ′

i i

i

j

j j

j

i

2d

In the certificates, Θ(n2) bits of information have to be transmitted through
O(nd) vertices =⇒ certificates of size Ω

( n
d
)

What about upper bounds ?
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Upper bounds



Certification in graphs of minimum degree O(nδ)

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let δ < 1. Any property can be certified with certificates of size O(n2−δ log n) in
graphs of minimum degree nδ, if vertices can see at distance 2.

Idea of the proof:

• cut the information of the graph in nδ pieces of size O(n2−δ)

• give randomly O(log n) pieces to every vertex
• each vertex checks that it sees all

the pieces in its neighborhood,
and reconstructs the graph

• each vertex checks that it is the
same reconstructed graph for all its
neighbors

• each vertex checks that its
neighborhood is correctly written
in this graph

=⇒ every vertex knows G

nδ
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• cut the information of the graph in nδ pieces of size O(n2−δ)

• give randomly O(log n) pieces to every vertex
• each vertex checks that it sees all

the pieces in its neighborhood,
and reconstructs the graph

• each vertex checks that it is the
same reconstructed graph for all its
neighbors

• each vertex checks that its
neighborhood is correctly written
in this graph

=⇒ every vertex knows G

nδ
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Upper bound for path-freeness certification

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Õ(n3/2) bits are sufficient to certify that a graph is P4d−1-free, if vertices can see
at distance d .

• if all vertices have degree >
√

n −→ ok by previous Theorem
• if all vertices have degree 6

√
n −→ ok because G has at most 6 n3/2 edges

V− := vertices of degree <
√

n V+ := vertices of degree >
√

n

• give G[V−] to every vertex
• cut G in

√
n pieces of size n3/2 and give O(log n) pieces to every vertex

}
size

Õ(n3/2)

u ∈ V− u ∈ V+

u knows G[V−] u knows G[V−]

and

u sees all the pieces of the G in its
neighborhood, so it can reconstruct G
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Upper bound for path-freeness certification

Main challenge : if u ∈ V+, is it possible for u to verify that it reconstructed the
correct graph G ?

In general : no.

...G1 G2

2d

size Ω(n2) size Ω(n2)

u

u ∈ G1 ∩ V+ −→ u reconstructs G

u can’t check that G2 is correct unless the middle vertices carry n2 bits
=⇒ it would need certificates of size Ω(n2)
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Upper bound for path-freeness certification

But : if two vertices are close, we can check that they reconstruct the same graph.

If u, v ∈ V+ are at distance 6 2d − 2, there exists w ∈ V at distance at most
d − 1 from both.

w can check that u and v reconstruct the same graph.

u vw

d = 3

Partition V+ in components = sets of vertices which reconstruct the same graph.

Two different components are far from each other.
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Upper bound for path-freeness certification

u knows all
the edges
and non-edges
having an
endpoint here

u

???

V+

V−

C1 C2

C3

C4

u
Pu

If there is a P4d−1, which vertex detects it ?
Case 1: no ECC contains at least two vertices of P4d−1.

Every vertex detects it !

Case 2: exactly one ECC contains at least two vertices of P4d−1.

Every vertex in C4 detects it !

Case 3: at least two ECCs contain at least two vertices of P4d−1.Case 3: at least two ECCs contain at least two vertices of P4d−1.
exactly two

In the certificate of every
vertex, add the length
of Pu.

size O(n log n)
in total.

Every vertex in C2 detects it !
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Conclusion: overview of our results for H-freeness and open questions

Graph H Bound

P4d+3 Ω(n)

P4d−1 Õ(n3/2)

|V (H)| 6 4d − 1 Õ(n3/2)

Pd14d/3e−1 Õ(n3/2)

P3d−1 Õ(n)

Open questions:
• what if d = 1 ? −→ Õ(n3/2) for P5

• can we get subquadratic upper-bounds for Pαd if α > 14
3 ?

• can we get a superlinear lower-bound for P101000d ?
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P4d−1 Õ(n3/2)

|V (H)| 6 4d − 1 Õ(n3/2)
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• can we get subquadratic upper-bounds for Pαd if α > 14
3 ?

• can we get a superlinear lower-bound for P101000d ?

Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun Local certification of forbidden subgraphs 17 / 17



Conclusion: overview of our results for H-freeness and open questions

Graph H Bound

P4d+3 Ω(n)

P4d−1 Õ(n3/2)
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Open questions:
• what if d = 1 ?
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P4d−1 Õ(n3/2)

|V (H)| 6 4d − 1 Õ(n3/2)
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Thanks for your attention !


