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Local certification
Context: distributed computing

Model: graph,
{

vertices = computation units
edges = communication channels
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Graph (globally) accepted ⇐⇒ all the vertices accept (consensus)

G satisfies P ⇐⇒ there exists an assignment of the certificates such that G
is accepted
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Example 1: how to certify that a graph is a path ?
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What is the minimum size of the certificates ?

Theorem
Any property can be certified with certificates of size O(n2).
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Theorem
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idea: write the full graph in the certificate of each vertex

Typical size of certificates :

Θ̃(n2) Θ(log n)

• Non-3-colorability

• Non-trivial
automorphism

• Paths

• Trees

• Planar graphs
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Induced subgraphs

H is an induced subgraph of G if it is possible to obtain H from G by
deleting vertices.

Else, G is H-free.
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Lower bounds



Certification of Pk-freeness: lower bound

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)
Ω(n) bits are necessary to certify that a graph is P7-free.

H,H ′ bipartite graphs with n vertices on each side

size = Θ(n2)
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j

H H′

Kn Kn

Kn Kn

∃P7 ⇐⇒ H and H′ have a
common non-edge

P7-free ⇐⇒ H ∩ H′ = ∅

In the certificates, Θ(n2) bits of information have to be transmitted through
O(n) vertices =⇒ certificates of size Ω(n)
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Certification of Pk-freeness: lower bound
Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Ω
( n

d
)

bits are necessary to certify that a graph is P4d+3-free, if vertices can see at
distance d .
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Upper bounds



Certification in graphs of minimum degree O(nδ)

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let δ < 1. Any property can be certified with certificates of size O(n2−δ log n) in
graphs of minimum degree nδ, if vertices can see at distance 2.

Idea of the proof:

• cut the information of the graph in nδ pieces of size O(n2−δ)

• give well-chosen O(log n) pieces to every vertex
• each vertex checks that it sees all

the pieces in its neighborhood,
and reconstructs the graph

• each vertex checks that it is the
same reconstructed graph for all its
neighbors

• each vertex checks that its
neighborhood is correctly written
in this graph

=⇒ every vertex knows G

nδ
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Upper bound for path-freeness certification

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Õ(n3/2) bits are sufficient to certify that a graph is P4d−1-free, if vertices can see
at distance d .

• if all vertices have degree >
√

n −→ ok by previous Theorem
• if all vertices have degree 6

√
n −→ ok because G has at most 6 n3/2 edges

V− := vertices of degree <
√

n V+ := vertices of degree >
√

n

• give G[V−] to every vertex
• cut G in

√
n pieces of size n3/2 and give O(log n) pieces to every vertex

}
size

Õ(n3/2)

u ∈ V− u ∈ V+

u knows G[V−] u knows G[V−]

and

u sees all the pieces of the G in its
neighborhood, so it can reconstruct Gneighborhood, so it can reconstruct G
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Upper bound for path-freeness certification
Main challenge : if u ∈ V+, is it possible for u to verify that it reconstructed the
correct graph G ?

−→ in general : no.

...G1 G2

2d

size Ω(n2) size Ω(n2)

u

u vw

d(u, v) 6 2d − 2 =⇒ u and v reconstruct the same graph
Partition V+ into components: set of vertices which reconstruct the same graph
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Upper bound for path-freeness certification

> 2d

u knows all
the edges
and non-edges
having an
endpoint here

u

???

V+

V−

C1 C2

C3

C4

u
Pu

If there is a P4d−1, which vertex detects it ?
Case 1: P4d−1 is included in V−.

Every vertex detects it !
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Conclusion: overview of our results for H-freeness and open questions

Graph H Bound

P4d+3 Ω(n)

P4d−1 Õ(n3/2)

|V (H)| 6 4d − 1 Õ(n3/2)

Pd14d/3e−1 Õ(n3/2)

P3d−1 Õ(n)

Open questions:
• what if d = 1 ? −→ Õ(n3/2) for P5

• can we get subquadratic upper-bounds for Pαd if α > 14
3 ?

• Conjecture: for every α > 0, there exists ε > 0 such that we can
certify Pαd-free graphs with certificates of size O(n2−ε).
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P3d−1 Õ(n)
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Conclusion: overview of our results for H-freeness and open questions

Graph H Bound

P4d+3 Ω(n)

P4d−1 Õ(n3/2)

|V (H)| 6 4d − 1 Õ(n3/2)

Pd14d/3e−1 Õ(n3/2)

P3d−1 Õ(n)

Open questions:
• what if d = 1 ? −→ Õ(n3/2) for P5

• can we get subquadratic upper-bounds for Pαd if α > 14
3 ?

• Conjecture: for every α > 0, there exists ε > 0 such that we can
certify Pαd-free graphs with certificates of size O(n2−ε).
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Thanks for your attention !


