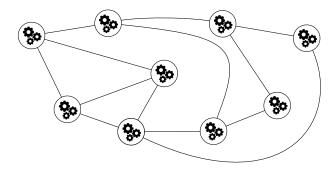
Local certification of forbidden subgraphs

Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun

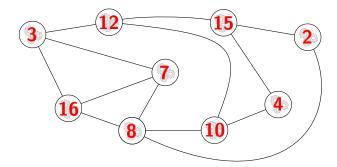
November 21, 2024

Context: distributed computing

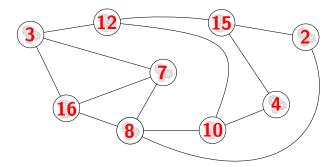
 $\label{eq:model} Model: \ \ graph, \ \left\{ \begin{array}{ll} \ \ vertices = \ computation \ units \\ \ \ edges = \ communication \ channels \end{array} \right.$



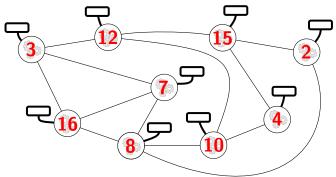
Context: distributed computing



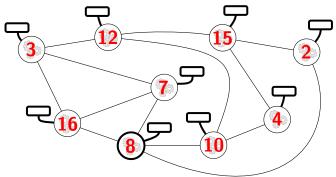
Context: distributed computing



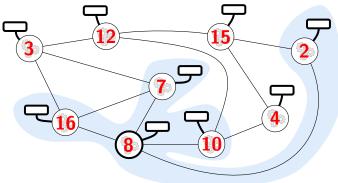
Context: distributed computing



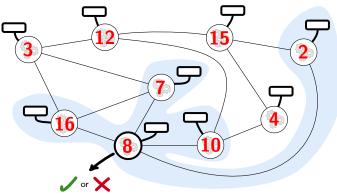
Context: distributed computing



Context: distributed computing

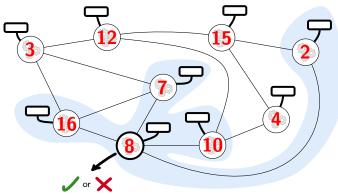


Context: distributed computing



Context: distributed computing

Goal: verify locally a graph property \mathcal{P} , thanks to certificates

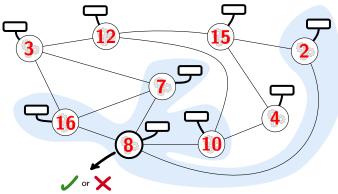


Graph (globally) accepted \iff all the vertices accept (consensus)

Context: distributed computing

Model: graph, $\begin{cases} \text{vertices} = \text{computation units} \longrightarrow \text{have unique identifiers in } \{1, \dots, n^c\} \\ \text{edges} = \text{communication channels} \end{cases}$

Goal: verify locally a graph property \mathcal{P} , thanks to certificates



Graph (globally) accepted \iff all the vertices accept (consensus)

G satisfies $\mathcal{P} \iff$ there exists an assignment of the certificates such that G is accepted

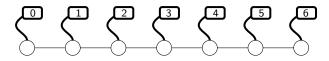
Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun

 $\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \rightarrow$ Path ? Cycle ?

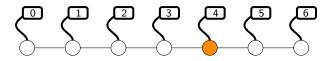
$$\cdots$$
 ____ Path ? Cycle ?

$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \rightarrow$$
 Path ? Cycle ?

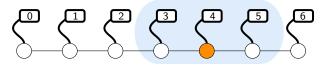
$$\cdots$$
 ____ Path ? Cycle ?



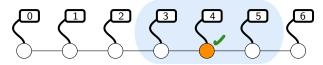
$$\cdots$$
 ____ Path ? Cycle ?



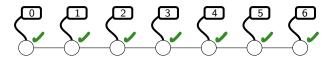
$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \rightarrow$$
 Path ? Cycle ?



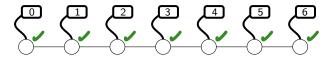
$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \rightarrow$$
 Path ? Cycle ?

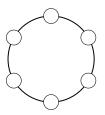


$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \rightarrow$$
 Path ? Cycle ?

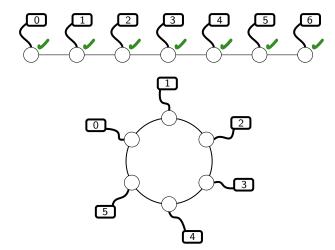


$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \rightarrow$$
 Path ? Cycle ?

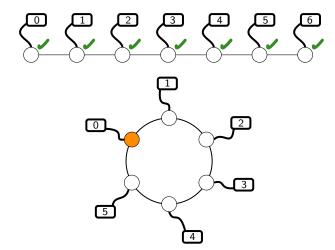




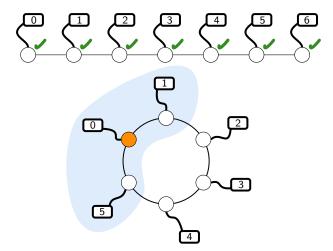
$$\cdots$$
 ____ Path ? Cycle ?



$$\cdots$$
 ____ Path ? Cycle ?



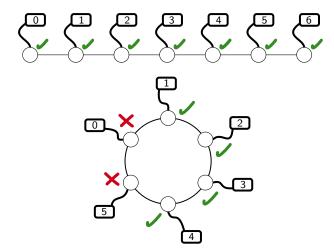
$$\cdots$$
 \longrightarrow Path ? Cycle ?



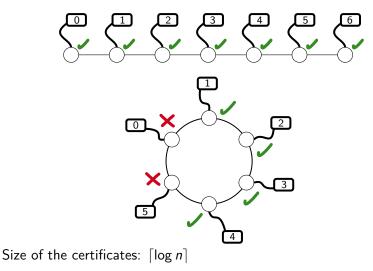
$$\cdots$$
 \longrightarrow Path ? Cycle ?



$$\cdots$$
 ____ Path ? Cycle ?



$$\cdots$$
 ____ Path ? Cycle ?



Usual parameter: *n* (number of vertices in the graph)

Usual parameter: *n* (number of vertices in the graph)

Theorem

Any property can be certified with certificates of size $O(n^2)$.

→ idea: write the full graph in the certificate of each vertex

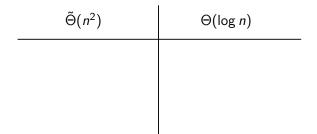
Usual parameter: *n* (number of vertices in the graph)

Theorem

Any property can be certified with certificates of size $O(n^2)$.

→ idea: write the full graph in the certificate of each vertex

Typical size of certificates :



Usual parameter: *n* (number of vertices in the graph)

Theorem

Any property can be certified with certificates of size $O(n^2)$.

➡ idea: write the full graph in the certificate of each vertex

Typical size of certificates :

$ ilde{\Theta}(n^2)$	$\Theta(\log n)$
 Non-3-colorability 	
 Non-trivial automorphism 	

Usual parameter: *n* (number of vertices in the graph)

Theorem

Any property can be certified with certificates of size $O(n^2)$.

➡ idea: write the full graph in the certificate of each vertex

Typical size of certificates :

$\tilde{\Theta}(n^2)$	$\Theta(\log n)$
 Non-3-colorability 	 Paths
 Non-trivial automorphism 	TreesPlanar graphs

Induced subgraphs

Induced subgraphs

H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

Else, *G* is *H*-free.

Induced subgraphs

H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

Else, G is H-free.

Certify that G has H as an induced subgraph \rightarrow easy

H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

Else, G is H-free.

Certify that G has H as an induced subgraph \rightarrow easy

Question : what size of certificates is needed to certify H-freeness ?

H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

Else, G is H-free.

Certify that G has H as an induced subgraph \rightarrow easy

Question : what size of certificates is needed to certify H-freeness ?

We will show :

- linear lower bounds
- subquadratic upper bounds

H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

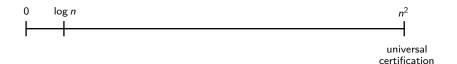
Else, G is H-free.

Certify that G has H as an induced subgraph \rightarrow easy

Question : what size of certificates is needed to certify H-freeness ?

We will show :

- linear lower bounds
- subquadratic upper bounds



H is an induced subgraph of G if it is possible to obtain H from G by deleting vertices.

Else, G is H-free.

Certify that G has H as an induced subgraph \rightarrow easy

Question : what size of certificates is needed to certify H-freeness ?

We will show :

- linear lower bounds
- subquadratic upper bounds

Lower bounds

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

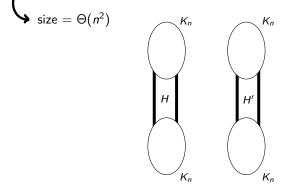
 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

H, H' bipartite graphs with n vertices on each side

size = $\Theta(n^2)$

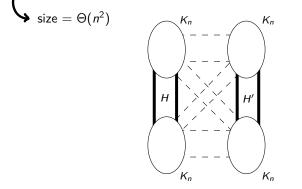
Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.



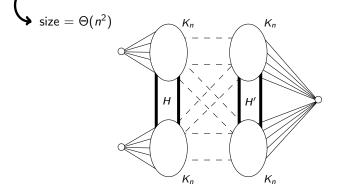
Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.



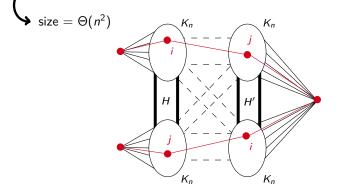
Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.



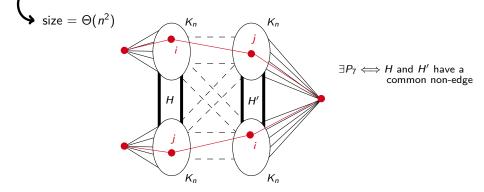
Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.



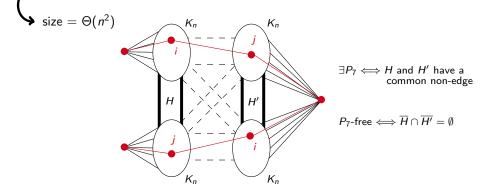
Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

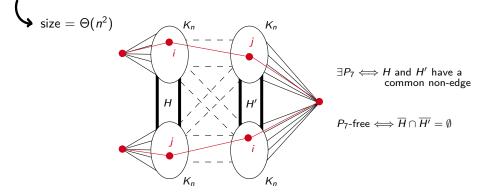
 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

H, H' bipartite graphs with n vertices on each side



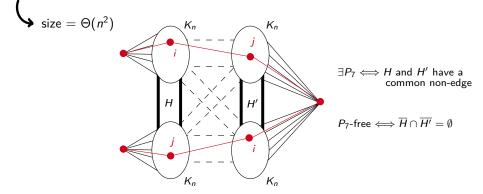
In the certificates, $\Theta(n^2)$ bits of information have to be transmitted through O(n) vertices

Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega(n)$ bits are necessary to certify that a graph is P_7 -free.

H, H' bipartite graphs with n vertices on each side



In the certificates, $\Theta(n^2)$ bits of information have to be transmitted through O(n) vertices \implies certificates of size $\Omega(n)$

Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.

View of a vertex = all the information available at distance $\leq d$:

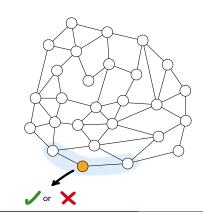
- vertices (and their identifiers)
- edges
- certificates

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.

View of a vertex = all the information available at distance $\leq d$:

- vertices (and their identifiers)
- edges
- certificates

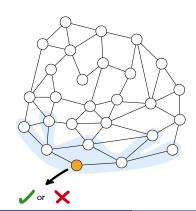


Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.

View of a vertex = all the information available at distance $\leq d$:

- vertices (and their identifiers)
- edges
- certificates

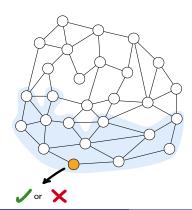


Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.

View of a vertex = all the information available at distance $\leq d$:

- vertices (and their identifiers)
- edges
- certificates

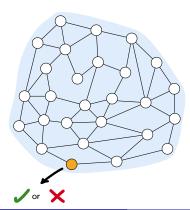


Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\Omega\left(\frac{n}{d}\right)$ bits are necessary to certify that a graph is P_{4d+3} -free, if vertices can see at distance d.

View of a vertex = all the information available at distance $\leq d$:

- vertices (and their identifiers)
- edges
- certificates



Upper bounds

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

Idea of the proof:

• cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

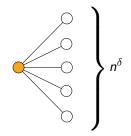
Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

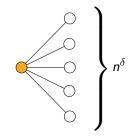
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

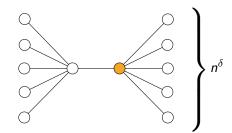
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

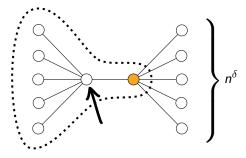
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

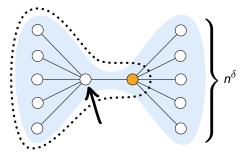
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

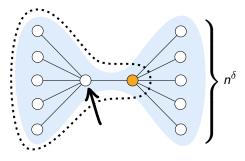
- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph
- each vertex checks that it is the same reconstructed graph for all its neighbors



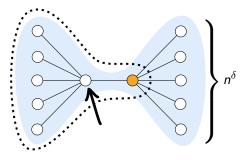
Certification in graphs of minimum degree $O(n^{\delta})$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

Idea of the proof:

- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph
- each vertex checks that it is the same reconstructed graph for all its neighbors
- each vertex checks that its neighborhood is correctly written in this graph



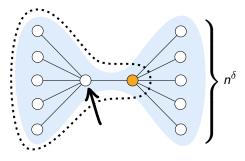
Certification in graphs of minimum degree $O(n^{\delta})$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

Let $\delta < 1$. Any property can be certified with certificates of size $O(n^{2-\delta} \log n)$ in graphs of minimum degree n^{δ} , if vertices can see at distance 2.

Idea of the proof:

- cut the information of the graph in n^{δ} pieces of size $O(n^{2-\delta})$
- give well-chosen O(log n) pieces to every vertex
- each vertex checks that it sees all the pieces in its neighborhood, and reconstructs the graph
- each vertex checks that it is the same reconstructed graph for all its neighbors
- each vertex checks that its neighborhood is correctly written in this graph
- \implies every vertex knows G



Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

• if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

 $V^- :=$ vertices of degree $<\sqrt{n}$ $V^+ :=$ vertices of degree $\ge \sqrt{n}$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

 $V^- :=$ vertices of degree $<\sqrt{n}$ $V^+ :=$ vertices of degree $\geqslant \sqrt{n}$

give G[V⁻] to every vertex

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

 $V^- :=$ vertices of degree $<\sqrt{n}$ $V^+ :=$ vertices of degree $\ge \sqrt{n}$

- give $G[V^-]$ to every vertex
- cut G in \sqrt{n} pieces of size $n^{3/2}$ and give $O(\log n)$ pieces to every vertex

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

 $V^- :=$ vertices of degree $<\sqrt{n}$ $V^+ :=$ vertices of degree $\geqslant \sqrt{n}$

- give $G[V^-]$ to every vertex
- cut G in \sqrt{n} pieces of size $n^{3/2}$ and give $O(\log n)$ pieces to every vertex $\begin{cases} size \\ \tilde{O}(n^{3/2}) \end{cases}$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- ▶ if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

 $V^- :=$ vertices of degree $<\sqrt{n}$ $V^+ :=$ vertices of degree $\ge \sqrt{n}$

- give *G*[*V*[−]] to every vertex
- cut G in \sqrt{n} pieces of size $n^{3/2}$ and give $O(\log n)$ pieces to every vertex $\begin{cases} size \\ \tilde{O}(n^{3/2}) \end{cases}$

 $u \in V^{-} \qquad \qquad u \in V^{+} \\ \downarrow \qquad \qquad \downarrow \\ u knows G[V^{-}] \qquad \qquad u knows G[V^{-}]$

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $\tilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- ▶ if all vertices have degree $\geqslant \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

 $V^- :=$ vertices of degree $<\sqrt{n}$ $V^+ :=$ vertices of degree $\ge \sqrt{n}$

- give $G[V^-]$ to every vertex
- cut G in \sqrt{n} pieces of size $n^{3/2}$ and give $O(\log n)$ pieces to every vertex $\begin{cases} size \\ \tilde{O}(n^{3/2}) \end{cases}$

 $u \in V^{-}$ \downarrow $u \text{ knows } G[V^{-}]$ $u \text{ knows } G[V^{-}]$ $u \text{ knows } G[V^{-}]$ u sees all the pieces of the G in its neighborhood, so it can reconstruct G

Theorem (Bousquet, Cook, Feuilloley, Pierron, Z.)

 $ilde{O}(n^{3/2})$ bits are sufficient to certify that a graph is P_{4d-1} -free, if vertices can see at distance d.

- if all vertices have degree $\geq \sqrt{n} \longrightarrow$ ok by previous Theorem
 - if all vertices have degree $\leqslant \sqrt{n} \longrightarrow$ ok because G has at most $\leqslant n^{3/2}$ edges

 $V^- :=$ vertices of degree $< \sqrt{n}$ $V^+ :=$ vertices of degree $\ge \sqrt{n}$

• give $G[V^-]$ to every vertex

l

• cut G in \sqrt{n} pieces of size $n^{3/2}$ and give $O(\log n)$ pieces to every vertex $\begin{cases} size \\ \tilde{O}(n^{3/2}) \end{cases}$

$$u \in V^{-}$$

$$\downarrow$$

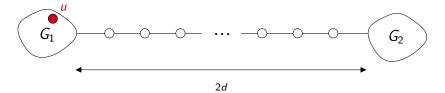
$$u \text{ knows } G[V^{-}]$$

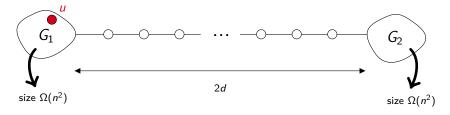
$$u \text{ knows } G[V^{-}]$$

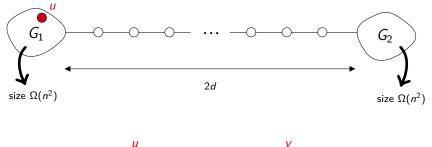
$$u \text{ knows } G[V^{-}]$$

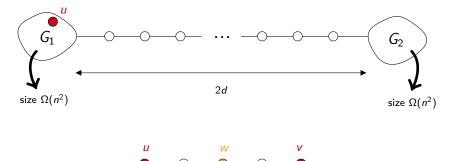
$$u \text{ sees all the pieces of the G in its neighborhood, so it can reconstruct G}$$

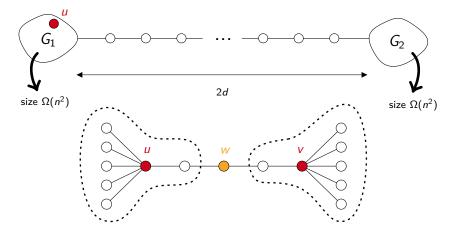
<u>Main challenge</u> : if $u \in V^+$, is it possible for u to verify that it reconstructed the correct graph G ?

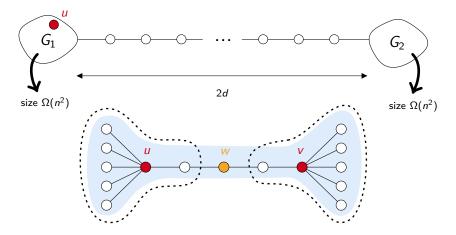




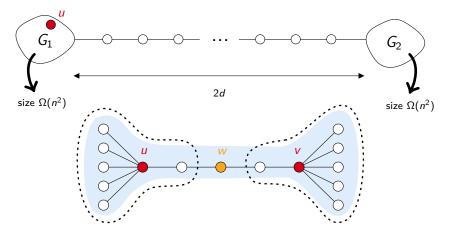






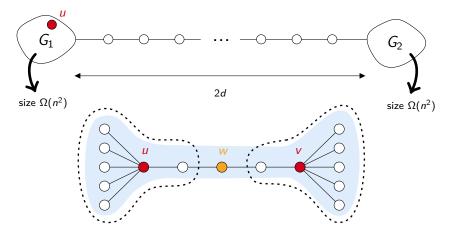


<u>Main challenge</u> : if $u \in V^+$, is it possible for u to verify that it reconstructed the correct graph G? \longrightarrow in general : no.

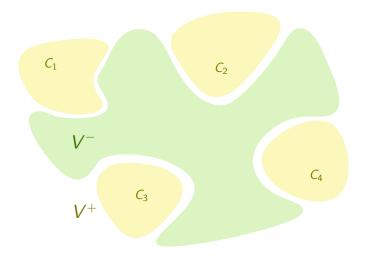


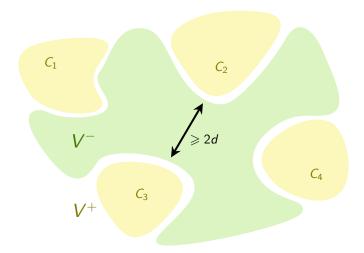
 $d(u, v) \leq 2d - 2 \Longrightarrow u$ and v reconstruct the same graph

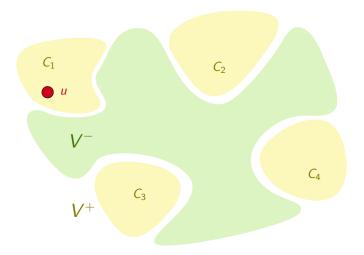
<u>Main challenge</u> : if $u \in V^+$, is it possible for u to verify that it reconstructed the correct graph G? \longrightarrow in general : no.

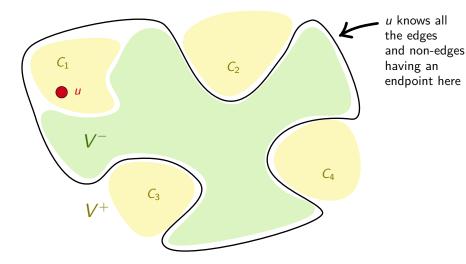


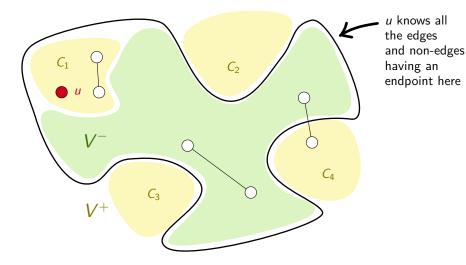
 $d(u, v) \leq 2d - 2 \implies u$ and v reconstruct the same graph Partition V^+ into components: set of vertices which reconstruct the same graph



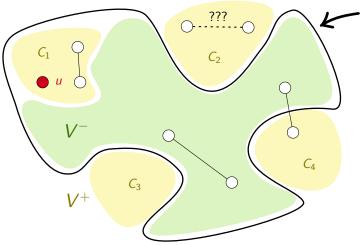






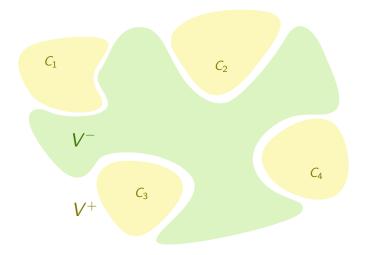


Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun

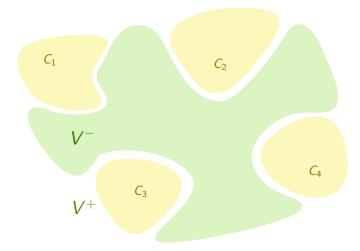


u knows all the edges and non-edges having an endpoint here

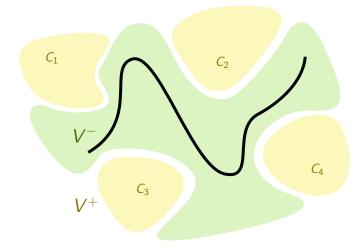
If there is a P_{4d-1} , which vertex detects it ?



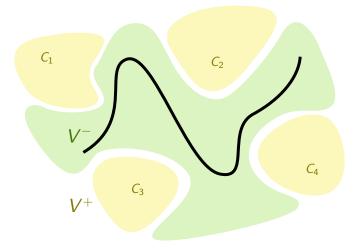
If there is a P_{4d-1} , which vertex detects it ? Case 1: P_{4d-1} is included in V^- .



If there is a P_{4d-1} , which vertex detects it ? Case 1: P_{4d-1} is included in V^- .



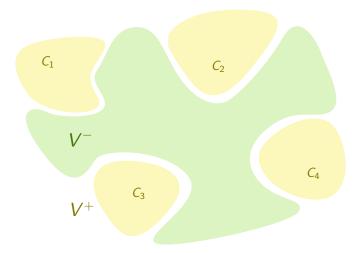
If there is a P_{4d-1} , which vertex detects it ? Case 1: P_{4d-1} is included in V^- .



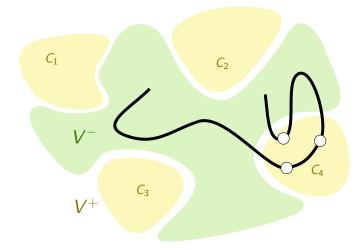
Every vertex detects it !

Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun

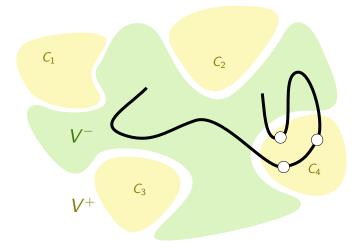
If there is a P_{4d-1} , which vertex detects it ? <u>Case 2</u>: exactly one component intersects P_{4d-1} .



If there is a P_{4d-1} , which vertex detects it ? <u>Case 2</u>: exactly one component intersects P_{4d-1} .



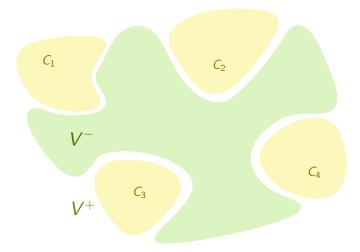
If there is a P_{4d-1} , which vertex detects it ? <u>Case 2</u>: exactly one component intersects P_{4d-1} .



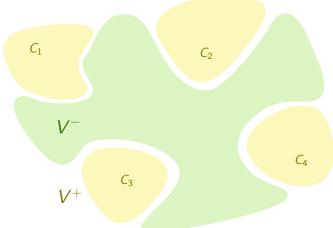
Every vertex in C_4 detects it !

Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun

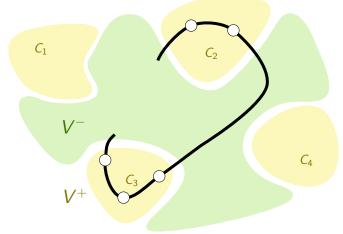
If there is a P_{4d-1} , which vertex detects it ? <u>Case 3</u>: at least two components intersect P_{4d-1} .



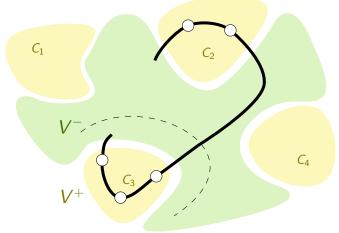
If there is a P_{4d-1} , which vertex detects it ?



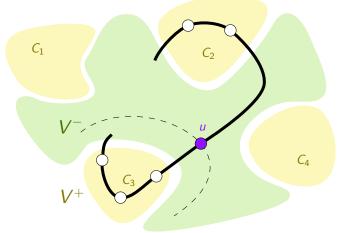
If there is a P_{4d-1} , which vertex detects it ?



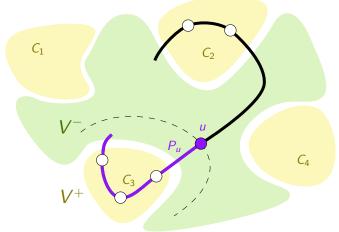
If there is a P_{4d-1} , which vertex detects it ?



If there is a P_{4d-1} , which vertex detects it ?



If there is a P_{4d-1} , which vertex detects it ?



If there is a P_{4d-1} , which vertex detects it ?

 C_1

<u>Case 3</u>: at least two components intersect P_{4d-1} . exactly two

 C_2

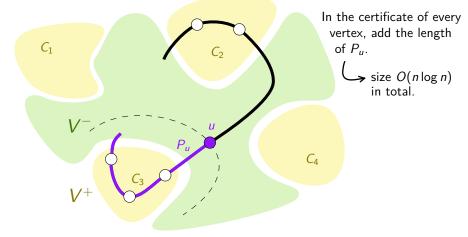
 P_u

In the certificate of every vertex, add the length of P_u .

 V^+

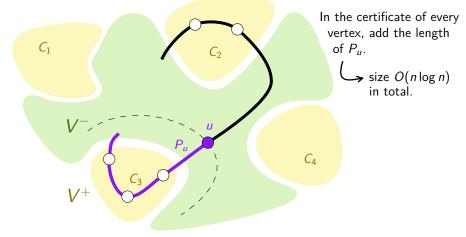
 C_4

If there is a P_{4d-1} , which vertex detects it ?



If there is a P_{4d-1} , which vertex detects it ?

<u>Case 3</u>: at least two components intersect P_{4d-1} . exactly two



Every vertex in C_2 detects it !

Graph H	Bound
	I

Bound
$\Omega(n)$

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$\tilde{O}(n^{3/2})$

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$\tilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$\tilde{O}(n^{3/2})$

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$\tilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$\tilde{O}(n^{3/2})$
$P_{\lceil 14d/3 ceil-1}$	$\tilde{O}(n^{3/2})$

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$\tilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$\tilde{O}(n^{3/2})$
$P_{\lceil 14d/3 ceil-1}$	$\tilde{O}(n^{3/2})$
P_{3d-1}	$\tilde{O}(n)$

_

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$\tilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$\tilde{O}(n^{3/2})$
$P_{\lceil 14d/3 ceil-1}$	$\tilde{O}(n^{3/2})$
P_{3d-1}	$\tilde{O}(n)$

Open questions:

■ what if *d* = 1 ?

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$\tilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$\tilde{O}(n^{3/2})$
$P_{\lceil 14d/3 ceil-1}$	$\tilde{O}(n^{3/2})$
P_{3d-1}	$\tilde{O}(n)$

Open questions:

• what if d=1 ? $\longrightarrow \tilde{O}(n^{3/2})$ for P_5

Graph <i>H</i>	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$\tilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$\tilde{O}(n^{3/2})$
$P_{\lceil 14d/3 ceil-1}$	$\tilde{O}(n^{3/2})$
P_{3d-1}	$\tilde{O}(n)$

Open questions:

- what if d=1 ? $\longrightarrow \tilde{O}(n^{3/2})$ for P_5
- can we get subquadratic upper-bounds for $P_{\alpha d}$ if $\alpha > \frac{14}{3}$?

Graph H	Bound
P_{4d+3}	$\Omega(n)$
P_{4d-1}	$\tilde{O}(n^{3/2})$
$ V(H) \leqslant 4d-1$	$\tilde{O}(n^{3/2})$
$P_{\lceil 14d/3 ceil-1}$	$\tilde{O}(n^{3/2})$
P_{3d-1}	$\tilde{O}(n)$

Open questions:

- what if d = 1 ? $\longrightarrow \tilde{O}(n^{3/2})$ for P_5
- can we get subquadratic upper-bounds for $P_{\alpha d}$ if $\alpha > \frac{14}{3}$?
- <u>Conjecture</u>: for every $\alpha > 0$, there exists $\varepsilon > 0$ such that we can certify $P_{\alpha d}$ -free graphs with certificates of size $O(n^{2-\varepsilon})$.

Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, Sébastien Zeitoun

Thanks for your attention !