# Reductions in local certification

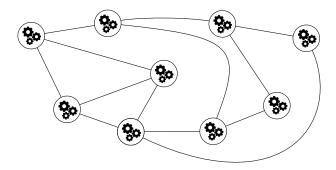
Louis Esperet, Sébastien Zeitoun

June 13, 2025



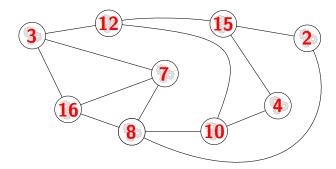
Context: distributed computing

 $\label{eq:model} Model: \ \ graph, \ \left\{ \begin{array}{ll} \ \ vertices = \ computation \ units \\ \ \ edges = \ communication \ channels \end{array} \right.$ 



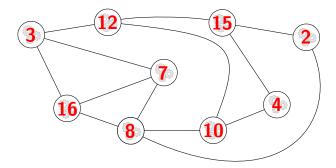
Context: distributed computing

 $\begin{array}{ll} \mbox{Model:} & \mbox{graph}, \end{array} \left\{ \begin{array}{ll} \mbox{vertices} = \mbox{computation units} & \longrightarrow \mbox{have unique identifiers} \ \mbox{in} \ \{1, \ldots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$ 



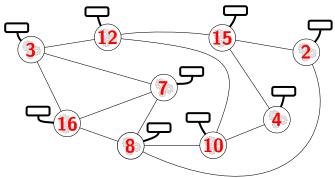
Context: distributed computing

 $\begin{array}{ll} \mbox{Model:} & \mbox{graph,} \end{array} \left\{ \begin{array}{ll} \mbox{vertices} = \mbox{computation units} & \longrightarrow \mbox{have unique identifiers} \ \mbox{in} \ \{1, \ldots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$ 



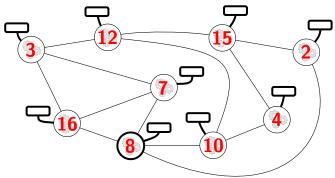
Context: distributed computing

 $\begin{array}{ll} \mbox{Model:} & \mbox{graph,} \end{array} \left\{ \begin{array}{ll} \mbox{vertices} = \mbox{computation units} & \longrightarrow \mbox{have unique identifiers} \ \mbox{in} \ \{1, \ldots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$ 



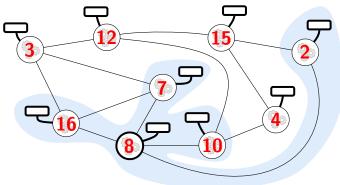
Context: distributed computing

 $\begin{array}{ll} \mbox{Model:} & \mbox{graph}, \end{array} \left\{ \begin{array}{ll} \mbox{vertices} = \mbox{computation units} & \longrightarrow \mbox{have unique identifiers} \ \mbox{in} \ \{1, \ldots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$ 



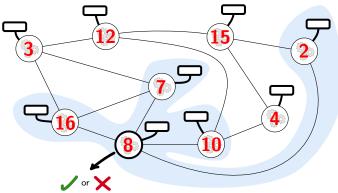
Context: distributed computing

 $\begin{array}{ll} \mbox{Model:} & \mbox{graph,} \end{array} \left\{ \begin{array}{ll} \mbox{vertices} = \mbox{computation units} & \longrightarrow \mbox{have unique identifiers} \ \mbox{in} \ \{1, \ldots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$ 



Context: distributed computing

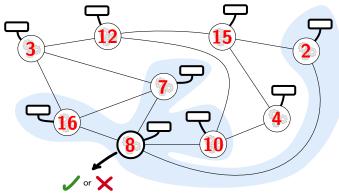
 $\begin{array}{ll} \mbox{Model:} & \mbox{graph,} \end{array} \left\{ \begin{array}{ll} \mbox{vertices} = \mbox{computation units} & \longrightarrow \mbox{have unique identifiers} \ \mbox{in} \ \{1, \ldots, n^c\} \\ \mbox{edges} = \mbox{communication channels} \end{array} \right.$ 



Context: distributed computing

Model: graph,  $\begin{cases} \text{vertices} = \text{computation units} \longrightarrow \text{have unique identifiers in } \{1, \dots, n^c\} \\ \text{edges} = \text{communication channels} \end{cases}$ 

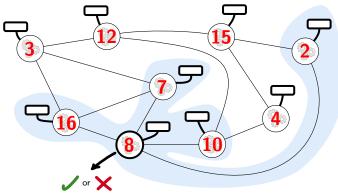
Goal: verify locally a graph property  $\mathcal{P}\text{, thanks to certificates}$ 



Graph (globally) accepted  $\iff$  all the vertices accept (consensus)

Context: distributed computing

Goal: verify locally a graph property  $\mathcal{P}\text{, thanks to certificates}$ 



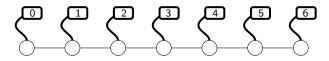
Graph (globally) accepted  $\iff$  all the vertices accept (consensus)

G satisfies  $\mathcal{P} \iff$  there exists an assignment of the certificates such that G is accepted

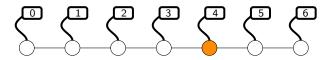
$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \rightarrow \text{Path ? Cycle ?}$$



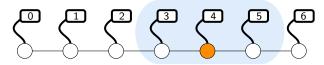
$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \longrightarrow Path ? Cycle ?$$



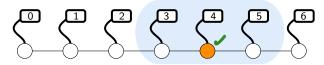
$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \longrightarrow Path ? Cycle ?$$



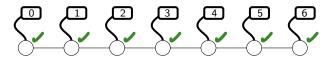
$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \longrightarrow Path ? Cycle ?$$



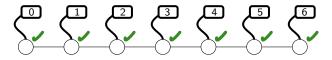
$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \longrightarrow Path ? Cycle ?$$

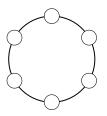


$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc \cdots \longrightarrow$$
 Path ? Cycle ?

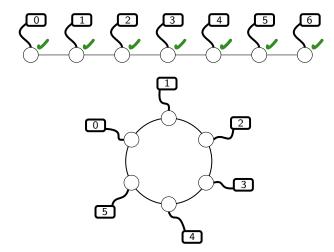


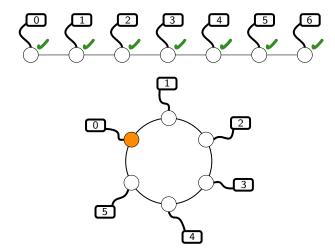
$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \rightarrow$$
 Path ? Cycle ?

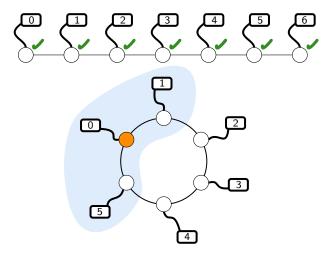


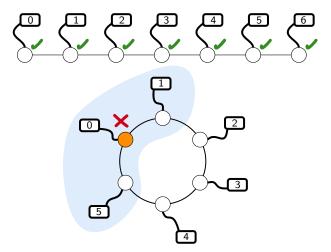


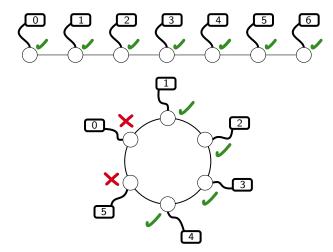
$$\cdots - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \cdots \rightarrow$$
 Path ? Cycle ?



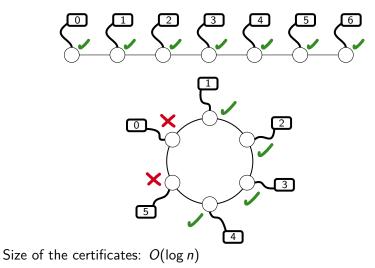








$$\cdots$$
 \_\_\_\_ Path ? Cycle ?



Usual parameter: *n* (number of vertices in the graph)

Usual parameter: *n* (number of vertices in the graph)

#### Theorem

Any property can be certified with certificates of size  $O(n^2)$ .

→ idea: write the full graph in the certificate of each vertex

Usual parameter: n (number of vertices in the graph)

### Theorem

Any property can be certified with certificates of size  $O(n^2)$ .

➡ idea: write the full graph in the certificate of each vertex

Typical size of certificates :

| $\Theta(poly(n))$ | $\Theta(\log n)$ | <i>O</i> (1) |
|-------------------|------------------|--------------|
|                   |                  |              |
|                   |                  |              |
|                   |                  |              |
|                   |                  |              |

.

Usual parameter: *n* (number of vertices in the graph)

### Theorem

Any property can be certified with certificates of size  $O(n^2)$ .

• idea: write the full graph in the certificate of each vertex

Typical size of certificates :

| Θ(pol | y(n)                                                                                    | $\Theta(\log n)$ | O(1) |
|-------|-----------------------------------------------------------------------------------------|------------------|------|
|       | $\tilde{\Theta}(n)$ • Unit-disk graphs • <i>H</i> -freeness (for some graphs <i>H</i> ) |                  |      |

Usual parameter: *n* (number of vertices in the graph)

### Theorem

Any property can be certified with certificates of size  $O(n^2)$ .

idea: write the full graph in the certificate of each vertex

Typical size of certificates :

| $\Theta(poly(n))$                                                                                      |                                                                                                          | $\Theta(\log n)$                                                                                | <i>O</i> (1) |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------|
| <ul> <li>Õ(n<sup>2</sup>)</li> <li>Non-3-colorability</li> <li>Non-trivial<br/>automorphism</li> </ul> | <ul> <li>Θ̃(n)</li> <li>■ Unit-disk graphs</li> <li>■ H-freeness</li> <li>(for some graphs H)</li> </ul> | <ul> <li>Paths</li> <li>Trees</li> <li>Odd number of vertices</li> <li>Planar graphs</li> </ul> |              |

Usual parameter: *n* (number of vertices in the graph)

### Theorem

Any property can be certified with certificates of size  $O(n^2)$ .

idea: write the full graph in the certificate of each vertex

Typical size of certificates :

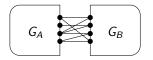
| $\Theta(poly(n))$                      |                                                                           | $\Theta(\log n)$                               | <i>O</i> (1)                                                            |
|----------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|
| $	ilde{\Theta}(n^2)$                   | $	ilde{\Theta}(n)$                                                        | <ul> <li>Paths</li> </ul>                      | <ul> <li>k-colorability</li> </ul>                                      |
| <ul> <li>Non-3-colorability</li> </ul> | ↓ ■ Unit-disk graphs                                                      | <ul> <li>Trees</li> </ul>                      | <ul> <li>Pointed vertices<br/>are dominant at<br/>distance t</li> </ul> |
|                                        | <ul> <li><i>H</i>-freeness</li> <li>(for some graphs <i>H</i>)</li> </ul> | <ul> <li>Odd number of<br/>vertices</li> </ul> |                                                                         |
|                                        | <br> <br>                                                                 | <ul> <li>Planar graphs</li> </ul>              |                                                                         |

# Local reductions: motivations

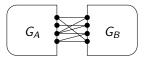
# Local reductions: motivations

• Lower bounds: usually, harder to prove than upper bounds.

- Lower bounds: usually, harder to prove than upper bounds.
- Classical tool to prove lower bounds: communication complexity.

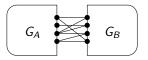


- Lower bounds: usually, harder to prove than upper bounds.
- Classical tool to prove lower bounds: communication complexity.



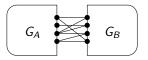
• A property difficult to certify:  $\tilde{\Omega}(n^2)$  for non-3-colorability [Göös, Suomela]

- Lower bounds: usually, harder to prove than upper bounds.
- Classical tool to prove lower bounds: communication complexity.



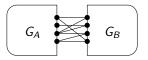
A property difficult to certify: Ω̃(n<sup>2</sup>) for non-3-colorability [Göös, Suomela]
 complicated proof based on communication complexity, using many gadgets

- Lower bounds: usually, harder to prove than upper bounds.
- Classical tool to prove lower bounds: communication complexity.



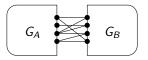
- A property difficult to certify: Ω̃(n<sup>2</sup>) for non-3-colorability [Göös, Suomela]
   complicated proof based on communication complexity, using many gadgets
- Our contribution: use of hardness reductions in local certification.

- Lower bounds: usually, harder to prove than upper bounds.
- Classical tool to prove lower bounds: communication complexity.



- A property difficult to certify: Ω̃(n<sup>2</sup>) for non-3-colorability [Göös, Suomela]
   complicated proof based on communication complexity, using many gadgets
- Our contribution: use of hardness reductions in local certification.
- To prove a lower bound, instead of using communication complexity, we can just transfer this lower bound using a reduction.

- Lower bounds: usually, harder to prove than upper bounds.
- Classical tool to prove lower bounds: communication complexity.



- A property difficult to certify: Ω̃(n<sup>2</sup>) for non-3-colorability [Göös, Suomela]
   complicated proof based on communication complexity, using many gadgets
- Our contribution: use of hardness reductions in local certification.
- To prove a lower bound, instead of using communication complexity, we can just **transfer this lower bound using a reduction**.
- Such a reduction has to be local: we identified the requirements that it should satisfy.

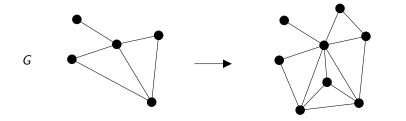
<u>Main idea</u>: use a local reduction from  $\mathcal{P}$  to  $\mathcal{P}'$  to show that:

An efficient certification for  $\mathcal{P}'$  can be transformed into an efficient certification for  $\mathcal{P}$ .

<u>Main idea</u>: use a local reduction from  $\mathcal{P}$  to  $\mathcal{P}'$  to show that:

An efficient certification for  $\mathcal{P}'$  can be transformed into an efficient certification for  $\mathcal{P}$ .

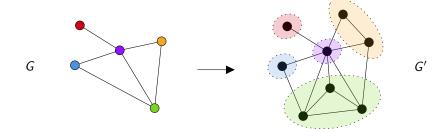
G satisfies  $\mathcal{P} \iff G'$  satisfies  $\mathcal{P}'$ 



G'

<u>Main idea</u>: use a local reduction from  $\mathcal{P}$  to  $\mathcal{P}'$  to show that:

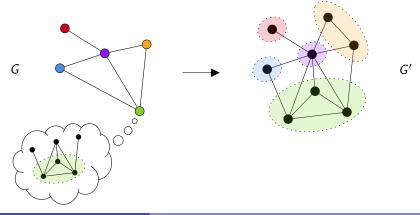
An efficient certification for  $\mathcal{P}'$  can be transformed into an efficient certification for  $\mathcal{P}$ .



<u>Main idea</u>: use a local reduction from  $\mathcal{P}$  to  $\mathcal{P}'$  to show that:

An efficient certification for  $\mathcal{P}'$  can be transformed into an efficient certification for  $\mathcal{P}$ .

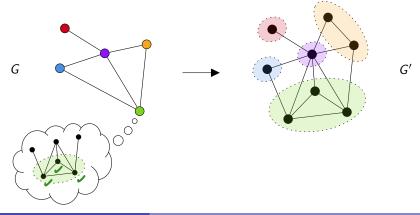
G satisfies  $\mathcal{P} \iff G'$  satisfies  $\mathcal{P}'$ 



Louis Esperet, Sébastien Zeitoun

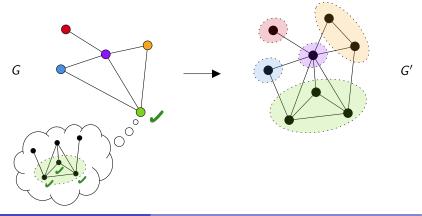
<u>Main idea</u>: use a local reduction from  $\mathcal{P}$  to  $\mathcal{P}'$  to show that:

An efficient certification for  $\mathcal{P}'$  can be transformed into an efficient certification for  $\mathcal{P}$ .



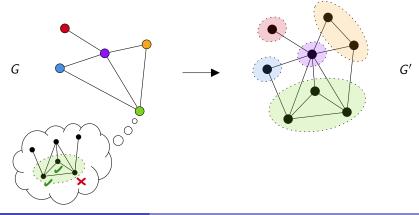
<u>Main idea</u>: use a local reduction from  $\mathcal{P}$  to  $\mathcal{P}'$  to show that:

An efficient certification for  $\mathcal{P}'$  can be transformed into an efficient certification for  $\mathcal{P}$ .



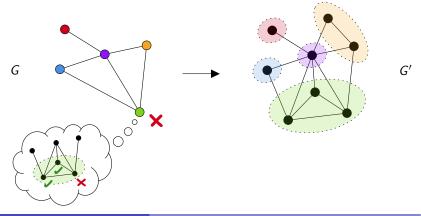
<u>Main idea</u>: use a local reduction from  $\mathcal{P}$  to  $\mathcal{P}'$  to show that:

An efficient certification for  $\mathcal{P}'$  can be transformed into an efficient certification for  $\mathcal{P}$ .



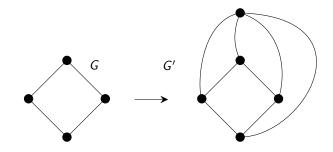
<u>Main idea</u>: use a local reduction from  $\mathcal{P}$  to  $\mathcal{P}'$  to show that:

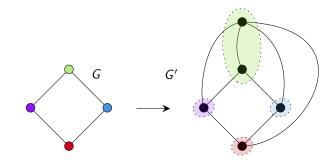
An efficient certification for  $\mathcal{P}'$  can be transformed into an efficient certification for  $\mathcal{P}$ .



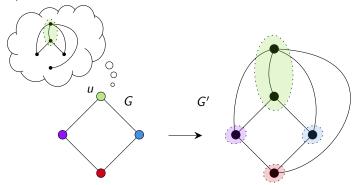
| We want: | $G \longrightarrow G'$ | and | $G$ 3-colorable $\iff G'$ 4-colorable |
|----------|------------------------|-----|---------------------------------------|
|----------|------------------------|-----|---------------------------------------|

| We want: | $G \longrightarrow G'$ | and | $G$ 3-colorable $\iff G'$ 4-colorable |
|----------|------------------------|-----|---------------------------------------|
|----------|------------------------|-----|---------------------------------------|

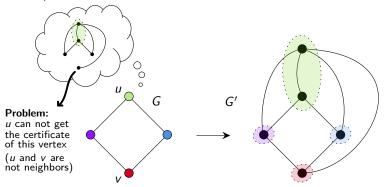




| We want: | $G \longrightarrow G'$ | and | $G$ 3-colorable $\iff G'$ 4-colorable |
|----------|------------------------|-----|---------------------------------------|
|----------|------------------------|-----|---------------------------------------|



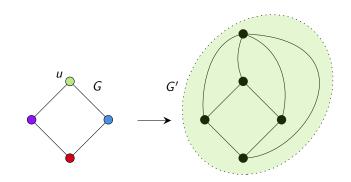
| We want: $G \longrightarrow$ | G' and | $G$ 3-colorable $\iff$ | G' 4-colorable |
|------------------------------|--------|------------------------|----------------|
|------------------------------|--------|------------------------|----------------|



| We want: | $G \longrightarrow G'$ | and | $G$ 3-colorable $\iff G'$ 4-colorable |
|----------|------------------------|-----|---------------------------------------|
|----------|------------------------|-----|---------------------------------------|

First attempt: add a universal vertex.

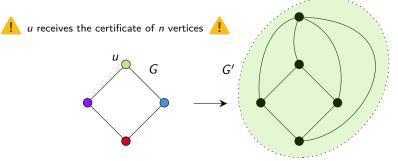
Solution:



We want:  $G \longrightarrow G'$  and G 3-colorable  $\iff G'$  4-colorable

First attempt: add a universal vertex.

#### Solution:



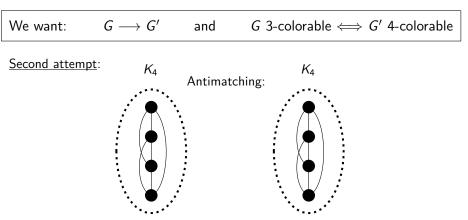
| We want: | $G \longrightarrow G'$ | and | $G$ 3-colorable $\iff G'$ 4-colorable |
|----------|------------------------|-----|---------------------------------------|
|----------|------------------------|-----|---------------------------------------|

First attempt: add a universal vertex.

#### Solution:

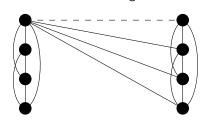


| We want: | $G \longrightarrow G'$ | and | $G$ 3-colorable $\iff G'$ 4-colorable |
|----------|------------------------|-----|---------------------------------------|
|----------|------------------------|-----|---------------------------------------|





Second attempt:

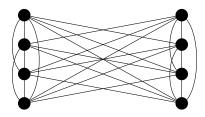


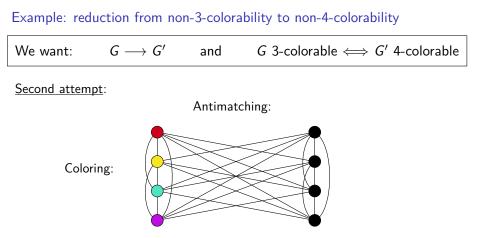
Antimatching:

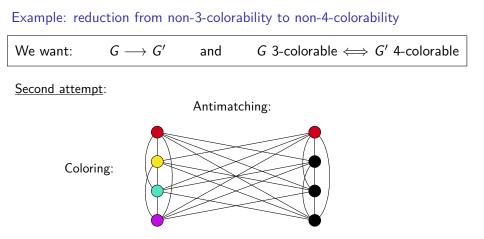
| We want: | $G \longrightarrow G'$ | and | $G$ 3-colorable $\iff G'$ 4-colorable |
|----------|------------------------|-----|---------------------------------------|
|          |                        |     |                                       |

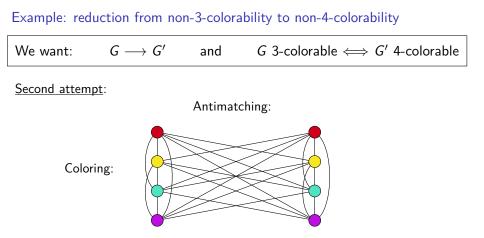
Second attempt:

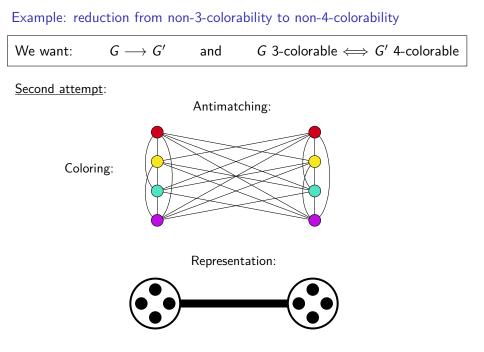
Antimatching:

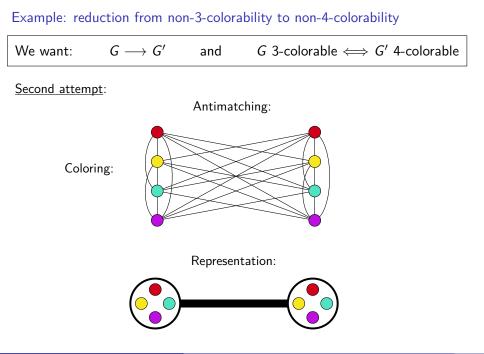




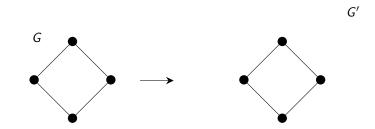




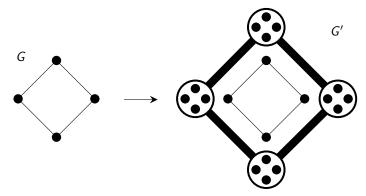




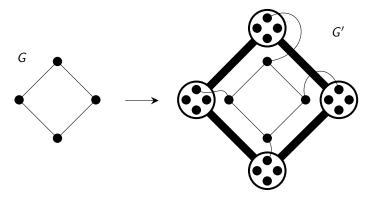
| We want: | $G \longrightarrow G'$ | and | $G$ 3-colorable $\iff G'$ 4-colorable |
|----------|------------------------|-----|---------------------------------------|
|----------|------------------------|-----|---------------------------------------|

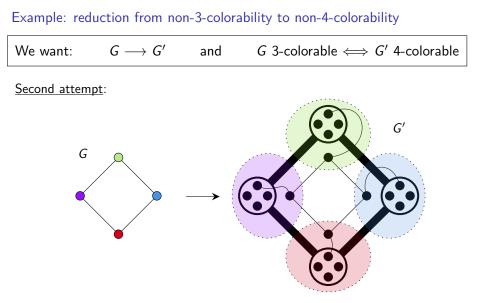




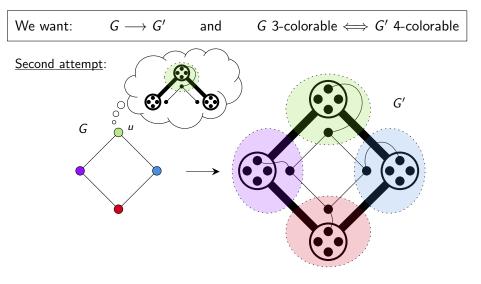


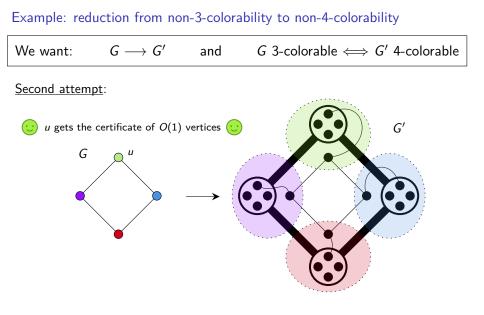






#### Example: reduction from non-3-colorability to non-4-colorability







#### Theorem (Esperet, Z.)

The following properties require certificates of polynomial size:

- Non-k-colorability  $(k \ge 4)$
- Domatic number at most  $k \ (k \ge 2)$
- No cubic subgraph
- No partition into k acyclic subgraphs ( $k \ge 3$ )
- Non-existence of an edge-coloring without monochromatic triangle
- Non-hamiltonicity
- Chromatic index equal to  $\Delta+1~~(\Delta={\sf max.~degree})$

#### Theorem (Esperet, Z.)

The following properties require certificates of polynomial size:

- Non-k-colorability  $(k \ge 4)$   $\tilde{\Omega}(n^2)$
- Domatic number at most  $k \ (k \ge 2)$   $\tilde{\Omega}(n)$
- No cubic subgraph  $\tilde{\Omega}(n)$
- No partition into k acyclic subgraphs  $(k \ge 3)$   $\tilde{\Omega}(n)$
- Non-existence of an edge-coloring without monochromatic triangle  $\tilde{\Omega}(n)$
- Non-hamiltonicity  $\tilde{\Omega}(\sqrt{n})$
- Chromatic index equal to  $\Delta + 1$  ( $\Delta = \max$  degree)  $\widetilde{\Omega}(n)$

Final remarks:

• Most of these lower bounds are  $\tilde{\Omega}(n)$ 

#### Theorem (Esperet, Z.)

The following properties require certificates of polynomial size:

- Non-k-colorability  $(k \ge 4)$   $\tilde{\Omega}(n^2)$
- Domatic number at most  $k \ (k \ge 2)$   $\tilde{\Omega}(n)$
- No cubic subgraph  $\tilde{\Omega}(n)$
- No partition into k acyclic subgraphs  $(k \ge 3)$   $\tilde{\Omega}(n)$
- Non-existence of an edge-coloring without monochromatic triangle  $\tilde{\Omega}(n)$
- Non-hamiltonicity  $\tilde{\Omega}(\sqrt{n})$
- Chromatic index equal to  $\Delta + 1$  ( $\Delta = \max$  degree)  $\widetilde{\Omega}(n)$

Final remarks:

• Most of these lower bounds are  $\tilde{\Omega}(n) \longrightarrow \mathbf{Question}$ : improvement to  $\tilde{\Omega}(n^2)$  ?

#### Theorem (Esperet, Z.)

The following properties require certificates of polynomial size:

- Non-k-colorability  $(k \ge 4)$   $\tilde{\Omega}(n^2)$
- Domatic number at most k  $(k \ge 2)$   $\tilde{\Omega}(n)$
- No cubic subgraph  $\tilde{\Omega}(n)$
- No partition into k acyclic subgraphs  $(k \ge 3)$   $\tilde{\Omega}(n)$
- Non-existence of an edge-coloring without monochromatic triangle  $\tilde{\Omega}(n)$
- Non-hamiltonicity  $\tilde{\Omega}(\sqrt{n})$
- Chromatic index equal to  $\Delta + 1$  ( $\Delta = \max$ . degree)  $\widetilde{\Omega}(n)$

- Most of these lower bounds are  $\tilde{\Omega}(n) \longrightarrow \mathbf{Question}$ : improvement to  $\tilde{\Omega}(n^2)$  ?
- Most of these lower bounds hold for bounded-degree graphs

#### Theorem (Esperet, Z.)

The following properties require certificates of polynomial size:

- Non-k-colorability  $(k \ge 4)$   $\tilde{\Omega}(n^2)$
- Domatic number at most  $k \ (k \ge 2)$   $\tilde{\Omega}(n)$
- No cubic subgraph  $\tilde{\Omega}(n)$
- No partition into k acyclic subgraphs  $(k \ge 3)$   $\tilde{\Omega}(n)$
- Non-existence of an edge-coloring without monochromatic triangle  $\tilde{\Omega}(n)$
- Non-hamiltonicity  $\tilde{\Omega}(\sqrt{n})$
- Chromatic index equal to  $\Delta + 1$  ( $\Delta = \max$  degree)  $\widetilde{\Omega}(n)$

- Most of these lower bounds are  $\tilde{\Omega}(n) \longrightarrow \mathbf{Question}$ : improvement to  $\tilde{\Omega}(n^2)$  ?
- Most of these lower bounds hold for bounded-degree graphs
- All these properties are  $\mathrm{coNP}\text{-hard}.$

#### Theorem (Esperet, Z.)

The following properties require certificates of polynomial size:

- Non-k-colorability  $(k \ge 4)$   $\tilde{\Omega}(n^2)$
- Domatic number at most k  $(k \ge 2)$   $\tilde{\Omega}(n)$
- No cubic subgraph  $\tilde{\Omega}(n)$
- No partition into k acyclic subgraphs  $(k \ge 3)$   $\tilde{\Omega}(n)$
- Non-existence of an edge-coloring without monochromatic triangle  $\tilde{\Omega}(n)$
- Non-hamiltonicity  $\tilde{\Omega}(\sqrt{n})$
- Chromatic index equal to  $\Delta + 1$  ( $\Delta = \max$ . degree)  $\widetilde{\Omega}(n)$

- Most of these lower bounds are  $\tilde{\Omega}(n) \longrightarrow \mathbf{Question}$ : improvement to  $\tilde{\Omega}(n^2)$  ?
- Most of these lower bounds hold for bounded-degree graphs
- $\hfill$  All these properties are  $\mathrm{coNP}\textsc{-hard}.$  But:
  - there are  $\operatorname{coNP}$ -hard problems which can be certified with  $O(\log n)$  bits

## Theorem (Esperet, Z.)

The following properties require certificates of polynomial size:

- Non-k-colorability  $(k \ge 4)$   $\tilde{\Omega}(n^2)$
- Domatic number at most k  $(k \ge 2)$   $\tilde{\Omega}(n)$
- No cubic subgraph  $\tilde{\Omega}(n)$
- No partition into k acyclic subgraphs  $(k \ge 3)$   $\tilde{\Omega}(n)$
- Non-existence of an edge-coloring without monochromatic triangle  $\tilde{\Omega}(n)$
- Non-hamiltonicity  $\tilde{\Omega}(\sqrt{n})$
- Chromatic index equal to  $\Delta + 1$  ( $\Delta = \max$ . degree)  $\widetilde{\Omega}(n)$

- Most of these lower bounds are  $\tilde{\Omega}(n) \longrightarrow \mathbf{Question}$ : improvement to  $\tilde{\Omega}(n^2)$  ?
- Most of these lower bounds hold for bounded-degree graphs
- All these properties are  $\mathrm{coNP}\text{-hard}.$  But:
  - there are  $\operatorname{coNP}$ -hard problems which can be certified with  $O(\log n)$  bits
  - our reduction framework also applies to properties that are not  ${\rm coNP}{-}{\rm hard}$  (e.g. H-freeness for a fixed graph H)

# Thanks for your attention !