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Local certification

Context: distributed computing

tices = computation units — have unique identifiers in {1,...,n}
Model: graph ver e 1o
ode grapn, edges = communication channels

Goal: verify locally a graph property P, thanks to certificates

Graph (globally) accepted <= all the vertices accept (consensus)

G satisfies P <= there exists an assignment of the certificates such that G
is accepted
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Example: how to certify that a graph is a path ?
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Example: how to certify that a graph is a path ?
- —O0—0O0—0—0O—0O— - —> Path? Cycle?

Certificate = distance to a fixed endpoint.
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Example: how to certify that a graph is a path ?
- —O0—0O0—0—0O0—0O— -+ —> Path? Cycle?

Certificate = distance to a fixed endpoint.
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Size of the certificates: O(log n)
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What should be the minimum size of the certificates ?
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What should be the minimum size of the certificates 7
Usual parameter: n (number of vertices in the graph)

Theorem

Any property can be certified with certificates of size O(n?).

kb idea: write the full graph in the certificate of each vertex

Typical size of certificates :

©(poly(n)) O(log n) 0(1)

= Non-3-colorability ' = Unit-disk graphs

1
1
:
1
= Non-trivial 1 = H-freeness
automorphism ' (for some graphs H)
1
1
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What should be the minimum size of the certificates ?

Usual parameter: n (number of vertices in the graph)

Theorem

Any property can be certified with certificates of size O(n?).

&b idea: write the full graph in the certificate of each vertex

Typical size of certificates :

©(poly(n)) O(log n) 0(1)
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What should be the minimum size of the certificates ?

Usual parameter: n (number of vertices in the graph)

Theorem
Any property can be certified with certificates of size O(n?). J

kb idea: write the full graph in the certificate of each vertex

Typical size of certificates :

©(poly(n)) O(log n) O(1)
é(n2) E C:)(n) = Paths = k-colorability
____________ T Trees = Pointed vertices

= Non-3-colorability ' = Unit-disk graphs

1

1

! are dominant at

' = Odd number of .
= Non-trivial 1 = H-freeness distance t

1

1

1

1

verti
automorphism (for some graphs H) ertices

= Planar graphs
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Local reductions: motivations

= Lower bounds: usually, harder to prove than upper bounds.

= Classical tool to prove lower bounds: communication complexity.

Ga

Gg

= A property difficult to certify: Q(n?) for non-3-colorability [Gds, Suomela]

gb complicated proof based on communication complexity, using many gadgets

= Qur contribution: use of hardness reductions in local certification.

= To prove a lower bound, instead of using communication complexity, we can
just transfer this lower bound using a reduction.

= Such a reduction has to be local: we identified the requirements that it should

satisfy.

Louis Esperet, Sébastien Zeitoun
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How to transfer a lower bound from P to P’ ?
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How to transfer a lower bound from P to P’ ?

Main idea: use a local reduction from P to P’ to show that:

An efficient certification for P’ can be transformed into
an efficient certification for P.
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We want: G— G and G 3-colorable <= G’ 4-colorable
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Example: reduction from non-3-colorability to non-4-colorability

We want: G— G and G 3-colorable <= G’ 4-colorable

First attempt: add a universal vertex.

G G’
Problem:
u can not get
the certificate — >
of this vertex
(u and v are
not neighbors)
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Example: reduction from non-3-colorability to non-4-colorability

We want: G— G and G 3-colorable <= G’ 4-colorable

First attempt: add a universal vertex.

Solution:
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Example: reduction from non-3-colorability to non-4-colorability

We want: G— G and G 3-colorable <= G’ 4-colorable

First attempt: add a universal vertex.
Solution:

I U receives the certificate of n vertices /!

.
G G
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Example: reduction from non-3-colorability to non-4-colorability

We want: G— G and G 3-colorable <= G’ 4-colorable

First attempt: add a universal vertex.

Solution:

I U receives the certificate of n vertices /!

2
n

Certification of size Q (Io”g

Louis Esperet, Sébastien Zeitoun

u
G G
—>
) for non-3-colorability = | Q (Iogn) for non-4-colorability

Reductions in local certification




Example: reduction from non-3-colorability to non-4-colorability

We want: G— G and G 3-colorable <= G’ 4-colorable

Second attempt:
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Example: reduction from non-3-colorability to non-4-colorability

We want: G— G and G 3-colorable <= G’ 4-colorable

Second attempt: K, K,
Antimatching:

- - . .
. . . .
g . . .

g . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
1 . [} .
. . . .
. . . .
. " . .
. . . .
. U . .
. U . .
. . . .
. . . g
. . . .

. . - .
Veus® Veus®
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Example: reduction from non-3-colorability to non-4-colorability

We want: G— G and G 3-colorable <= G’ 4-colorable

Second attempt:

@ u gets the certificate of O(1) vertices @

G u
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Example: reduction from non-3-colorability to non-4-colorability

We want: G— G and G 3-colorable <= G’ 4-colorable

Second attempt:

@ u gets the certificate of O(1

G u

Certification of size Q (Iogn) for non-3-colorability = |Q ( n? ) for non-4-colorability

log n
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Applications of our reduction framework
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Applications of our reduction framework
Theorem (Esperet, Z.)
The following properties require certificates of polynomial size:
o Non-k-colorability (k > 4)
o Domatic number at most k (k > 2)
e No cubic subgraph
o No partition into k acyclic subgraphs (k > 3)
o Non-existence of an edge-coloring without monochromatic triangle
o Non-hamiltonicity

o Chromatic index equal to A +1 (A = max. degree)
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Theorem (Esperet, Z.)
The following properties require certificates of polynomial size:
o Non-k-colorability (k > 4)  Q(n?)
o Domatic number at most k (k >2) Q(n)
o No cubic subgraph  Q(n)
o No partition into k acyclic subgraphs (k >3)  Q(n)
o Non-existence of an edge-coloring without monochromatic triangle Q(n)
o Non-hamiltonicity ~ €(1/n)

o Chromatic index equal to A +1 (A = max. degree) (1)

Final remarks:
= Most of these lower bounds are € (n)
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= Most of these lower bounds hold for bounded-degree graphs
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Applications of our reduction framework
Theorem (Esperet, Z.)
The following properties require certificates of polynomial size:
o Non-k-colorability (k > 4)  Q(n?)
o Domatic number at most k (k >2) Q(n)
o No cubic subgraph  Q(n)
o No partition into k acyclic subgraphs (k >3) Q(n)
o Non-existence of an edge-coloring without monochromatic triangle Q(n)
o Non-hamiltonicity ~ €(1/n)

o Chromatic index equal to A +1 (A = max. degree) (1)

Final remarks:
= Most of these lower bounds are (n) — Question: improvement to Q (n?) ?
= Most of these lower bounds hold for bounded-degree graphs
= All these properties are coNP-hard. But:
— there are coNP-hard problems which can be certified with O(log n) bits

— our reduction framework also applies to properties that are not coNP-hard
(e.g. H-freeness for a fixed graph H)
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Thanks for your attention !



