
TD 2 - Algorithmes gloutons, programmation dynamique

Exercice 1 – Ensemble indépendant maximum
On rappelle qu’un ensemble indépendant dans un graphe G = (V,E) est un sous-ensemble I de

sommets deux à deux non reliés par des arêtes.
Pour déterminer un ensemble indépendant le plus grand possible, on considère l’algorithme glouton

suivant. On initialise I = ∅, et pour chaque v ∈ V , on l’ajoute à I s’il n’a aucun voisin dans I. (L’ordre
dans lequel on considère les sommets est arbitraire.)

1. Montrer que l’ensemble I obtenu est un ensemble indépendant maximal (par inclusion).

2. Est-ce toujours un ensemble indépendant maximum?

Exercice 2 – Coloration gloutonne
On considère l’algorithme glouton de coloration suivant : on choisit un ordre v1, . . . , vn des sommets

de G, puis on colore dans l’ordre croissant en donnant à vi la plus petite couleur disponible (c’est-à-dire
qui n’apparâıt sur aucun voisin de vi).

a

T1

a

b

T2

a

d

c

b

T3

v2

v1

v3 v4

v5 v6 v7

v8

T4

Figure 1 – Les graphes T1, . . . , T4.

1. Colorer les graphes T1, T2, T3 de la Figure 1 dans l’ordre alphabétique des sommets (directement
sur la figure). La coloration gloutonne est-elle toujours optimale ? Autrement dit, minimise-t-elle
toujours le nombre de couleurs utilisées ?

2. Soit v1, . . . , vn l’ordre des sommets choisi par l’algorithme. Montrer par récurrence que la plus
grande couleur utilisée par l’algorithme glouton est au plus ∆ + 1, où ∆ est le degré maximum
du graphe (i.e. le maximum sur tous les sommets v du nombre de sommets adjacents à v).

3. Soit T4 le dernier graphe de la Figure 1. Trouver un ordre sur les sommets de T4 de façon à ce
que le sommet v1 reçoive la couleur 4.

4. En vous inspirant de la construction de T4, proposer une construction d’un arbre Ti et d’un ordre
sur Ti tel qu’il existe un sommet de Ti soit coloré i avec l’algorithme glouton.
Quel est le degré maximum de votre graphe Ti ?

Exercice 3 – Couverture par segments
Soient X = {x1, . . . , xn} un ensemble de n points de R ordonnés de manière croissante.

1. Proposer un algorithme glouton qui détermine un nombre minimum d’intervalles de longueur 1
qui contient tous les points.

2. Prouver l’optimalité de l’algorithme et sa complexité.

1



Exercice 4 – Suite récurrente
Étant donnés deux entiers 0 ⩽ k ⩽ n, on définit la suite

uk,n =

{
1 si k ∈ {0, n}
uk,n−1 + uk−1,n−1 sinon.

1. Écrire un algorithme permettant de calculer uk,n en temps O(n2).

2. Adapter votre algorithme pour qu’il n’utilise que O(n) cases mémoires à tout moment.

Exercice 5 – Chemins dans une grille
On s’intéresse au problème suivant. Étant donné un tableau bidimensionnel d’entiers de taille n×n,

on veut déterminer quel est le poids maximum d’un chemin allant de la case (0, 0) à la case (n−1, n−1)
en ne se déplaçant que vers la droite ou vers le bas. Par exemple, sur la grille suivante, un des chemins
solution (de poids 40) est en gras :

2 8 10 5
7 3 1 7
5 7 9 3
8 2 6 4

On définit Ci,j le poids maximum d’un tel chemin entre la case (0, 0) et (i, j).

1. Donner une relation de récurrence vérifiée par Ci,j , ainsi que les cas de base.

2. En déduire un algorithme de programmation dynamique permettant de résoudre le problème.

3. Quelles sont ses complexités spatiales et temporelles ?

Exercice 6 – Distance d’édition
Quand un correcteur orthographique trouve une erreur dans un texte, il cherche dans son diction-

naire le mot le plus proche. Pour mesurer la distance entre deux mots, on cherche à les aligner. Par
exemple, voici deux alignements :

S - N O W Y
S U N N - Y

- S N O W - Y
S U N - - N Y

Le symbole - indique que l’on n’avance pas dans le mot. Le coût d’un alignement est défini comme
le nombre de colonnes avec une différence. La distance d’édition entre deux mots est le coût minimum
d’un alignement. Elle correspond au nombre minimum d’insertions, suppression ou modification de
caractère pour passer d’un mot à l’autre. Par exemple, l’alignement de gauche correspond à insérer un
U, modifier un O en N et supprimer un W. On a donc fait 3 éditions. Dans l’exemple de droite, on en
a fait 5.

Étant donnés deux mots x, y de taille n et m, on cherche un algorithme de programmation dyna-
mique permettant de calculer la distance entre eux.

1. Identifier les bons sous-problèmes et expliciter la relation de récurrence permettant de résoudre
le problème.

2. Exécuter votre algorithme sur les mots SNOWY et SUNNY.

3. Quelle est la complexité de votre algorithme ?

4. Comment retrouver un alignement permettant d’atteindre la distance d’édition ?

Exercice 7 – Plus long sous-mot commun
Un sous-mot d’un mot X est un ensemble de lettres de X consécutives. Par exemple, les mots

A = abbaba et B = bbbaab contiennent tous les deux le sous-mot bba. Par contre, aab est un sous-mot
de B mais n’est pas un sous-mot de A. Le but est de trouver le plus long sous-mot commun qui apparâıt
à la fois dans le mot A = a1 · · · an et dans le mot B = b1 · · · bm.

On note M [i, j] la longueur du plus long sous mot commun qui se termine en ai dans A et bj
dans B. Par convention, on note M [i, 0] = 0 et M [0, i] = 0.

1. Donner la valeur de M [i, j] si ai et bj sont différents.

2. Donner une équation de récurrence satisfaite par M [i, j] si ai = bj .

3. Comment déterminer la longueur du plus long sous-mot commun entre A et B étant donné
l’ensemble des valeurs M [i, j] ?

2



Exercice 8 – Péages
Un automobiliste se trouve sur une autoroute à n sorties. À chaque sortie se trouve un péage. Pour

chaque paire (i, j), l’automobiliste a accès au prix ci,j à payer si on entre sur l’autoroute au i-ème
péage et qu’on en sort au j-ème, sans sortir entre temps. Par exemple, la Figure 1 représente les prix
de l’autoroute A7 entre Auberives et Valence nord.

Figure 2 – Prix des péages sur une portion de l’A7. Un automobiliste entrant à Auberives et sortant
à Tain (sans quitter l’autoroute à Chanas) payera 3.2€.

L’automobiliste doit traverser l’autoroute d’un bout à l’autre. Pour optimiser ses dépenses, il s’au-
torise à sortir puis re-rentrer immédiatement à une ou plusieurs sorties sur son trajet.

1. Quel est le coût optimal d’un trajet entre Auberives et Valence nord ?

2. On définit Mi comme le coût optimal d’un trajet entre le début de l’autoroute et la sortie i.
Donner une relation de récurrence sur Mi.

3. En déduire un algorithme de programmation dynamique permettant de résoudre le problème.
Quelle est sa complexité ?

4. Comment peut-on retrouver l’itinéraire de coût minimal ?

5. De manière alternative, ce problème peut-être modélisé par un graphe et résolu grâce à un des
algorithmes vus en cours. De quel algorithme s’agit-il, et comment effectuer cette modélisation ?

Exercice 9 – Problème du sac à dos
Pendant un cambriolage, un voleur trouve plus de butin que ce à quoi il s’attendait, et doit décider

quoi emporter. Son sac peut supporter une charge de P kilogrammes. Le voleur peut choisir son butin
parmi n objets, de poids p1, . . . , pn et de valeurs v1, . . . , vn.

Le but de cet exercice est de déterminer (avant l’arrivée de la police) quel est le butin le plus cher
qu’il pourra transporter dans son sac.

1. On considère l’exemple suivant :

Objet Poids (kg) Valeur (€)
1 6 30
2 3 14
3 4 16
4 2 9

Résoudre cette instance quand P = 10kg.

2. On considère l’algorithme glouton suivant : tant qu’il y a de la place dans le sac pour au moins
un objet, on ajoute l’objet le plus cher qui rentre dans le sac. Donner une instance pour laquelle
cet algorithme ne renvoie pas une solution optimale.

3. On note f(P, j) la valeur optimale transportable dans un sac de capacité P quand on se restreint
aux j premiers objets. Donner une relation de récurrence sur f(P, j).

4. En déduire un algorithme de programmation dynamique permettant de résoudre le problème.
Quelle est sa complexité ?

3



Exercice 10 – Rendu de monnaie
On dispose d’un ensemble de pièces de monnaie de valeurs entières dans P = {p1, . . . , pn}. Chaque

pièce est disponible en quantité suffisante. On veut déterminer pour une somme fixée S le nombre
minimum de pièces nécessaires pour pouvoir faire exactement la somme S.

1. Écrire un algorithme glouton pour résoudre ce problème.

2. Cet algorithme est-il optimal pour tous les systèmes de pièces ?

3. On note M(s, i) le nombre de pièces minimum utilisées pour faire la somme s en utilisant les
pièces p1 à pi. Quelle relation de récurrence est satisfaite par M(s, i) ?

4. En déduire un algorithme de programmation dynamique permettant de résoudre le problème.

5. Comparer la complexité de cet algorithme avec celle de l’algorithme glouton.

4


