
Révisions

Exercice 1 – st-connexité en SAT

Soit G = (V,E) un graphe, et s, t deux sommets. On cherche à tester si s et t sont dans deux
composantes connexes différentes.

1. Si uv est une arête de G, que dire des composantes connexes de u et v ?

2. Proposer une modélisation du problème en SAT.

3. Que pouvez-vous dire des clauses obtenues ? En déduire la complexité de l’algorithme issu de
cette approche.

Exercice 2 – k-centres

Si {P1, . . . , Pi} est un ensemble de points du plan et P est un point, la distance dist(P, {P1, . . . , Pi})
est la distance minimum entre P et un point de {P1, . . . , Pi}, c’est-à-dire min1≤j≤i dist(P, Pj).

On se donne un entier k et un ensemble de n points P dans le plan. On cherche à sélectionner k
points P1, . . . , Pk dans P, qui minimisent la quantité maxP∈P dist(P, {P1, . . . , Pk}). Cette quantité est
appelée le coût de {P1, . . . , Pk}.

1. Lorsque k = 1, donner un algorithme permettant de résoudre le problème. Quelle est sa com-
plexité ?

On considère l’algorithme suivant : on choisit un point P1 quelconque. Puis, pour i = 2, . . . , k, on
choisit Pi comme un point de P qui est le plus loin de l’ensemble {P1, . . . , Pi}.

2. Quel coût est calculé par l’algorithme pour k = 3 si on considère l’ensemble de points {A,B,C,D,E, F}
dont les distances sont les suivantes ? On suppose qu’on choisit P1 = A.
Préciser les trois points choisis (et expliquez comment vous les avez trouvés).

A B C D E F
A 0 1 4 3 2 2
B 1 0 1 2 3 4
C 4 1 0 3 2 1
D 3 2 3 0 2 3
E 2 3 2 2 0 1
F 2 4 1 3 1 0

3. Comment s’appelle ce type d’algorithme ?

4. Quelle est la complexité de cet algorithme ?

5. On note {P1, . . . , Pk} les points sélectionnés par notre algorithme et {P ∗
1 , . . . , P

∗
k } une solution

optimale, de coût d∗. On suppose maintenant par l’absurde que la solution renvoyée par l’algo-
rithme a un coût strictement supérieur à 2d∗, c’est-à-dire qu’il existe un point P à distance plus
grande que 2d∗ de tous les Pi.

(a) Montrer que si i ̸= j alors dist(Pi, Pj) > 2d∗.

(b) En déduire que pour tout i, il existe un unique j tel que dist(Pi, P
∗
j ) ⩽ d∗.

(c) Montrer que P est à distance au plus d∗ d’un P ∗
j .

(d) Déduire une contradiction. Quel facteur d’approximation pouvez vous en déduire pour l’al-
gorithme décrit ci-dessus ?
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Exercice 3 – Directed Feedback Vertex Set dans les Tournois

Un graphe orienté est un graphe G = (V,E) où les arêtes uv sont orientées de u vers v. On appelle
u l’origine de l’arête et v la destination de uv.

Un tournoi est un graphe orienté tel que pour toute paire de sommets u, v, uv ou vu est une arête.
Un triangle est un cycle orienté de longueur 3. Dans le problème Directed Feedback Vertex Set dans les
Tournois (DFVST), on se donne un tournoi T et un entier k et on désire déterminer si la suppression
de k sommets laisse un graphe sans cycle orienté.

1. Montrer que dans un tournoi, tout cycle orienté de longueur au moins 4 contient un triangle
orienté comme sous graphe.

2. En déduire un algorithme FPT pour DFVST paramétré par k. Quelle est sa complexité ?

On va essayer d’améliorer la complexité de cet algorithme en utilisant une méthode appelée compression
itérative. On définit le problème Feedback Vertex Set dans les Tournois Quasi-Transitifs
(FVSTQT) comme le problème où on se donne un tournoi T , un ensemble de sommets X tel que
T [V \X] est acyclique et un entier k et on veut savoir s’il existe k sommets de V \X dont la suppression
laisse un tournoi acyclique. (Autrement dit, on veut trouver un feedback vertex set de T qui est disjoint
de X).

Soit T un tournoi et u1, . . . , un un ordre arbitraire des sommets de T . Pour tout i, on note Vi =
{u1, . . . , ui}. On considère les graphes T1, . . . , Tn où Ti est la restriction de T aux sommets u1, . . . , ui.
Soit i un entier. Dans la suite on suppose qu’on nous donne un ensemble Xi de sommets de
taille au plus k tel que Ti[V \Xi] est acyclique.

3. Combien y a-t-il de sous-ensembles de Xi ?

4. On considère le tournoi Ti+1, c’est à dire le tournoi Ti où ui+1 a été ajouté. Montrer que
Ti+1[Vi+1 \ (Xi ∪ {ui+1})] est acyclique.

5. Montrer que si (Ti+1, k) est une instance positive de DFVST alors il existe Y ⊆ Xi ∪ {ui+1} de
taille au plus k tel que (Ti[Vi+1 \ Y ], k − |Y |) est une instance positive de FVSTQT.

6. En déduire que si FVSTQT peut être résolu en temps polynomial nc, alors on peut résoudre
DFVST en temps 2k+1nc+1.

La fin de l’exercice consiste à montrer que FVSTQT peut être décidé en temps polynomial. Soit T
un tournoi et X un ensemble de sommets tels que T [V \X] est acyclique.

7. Montrer que l’on peut numéroter les sommets w1, . . . , wr de T [V \X] tel que, pour tout i < j,
l’arc wiwj est orienté de wi vers wj .

8. Soit t = abc un triangle de T . Montrer que si tous les sommets de t sont dans X alors l’instance
est négative.

9. Montrer que si X contient a, b mais pas c, alors (T,X, k) est positive si et seulement si (T −
c,X, k − 1) est positive.

10. On suppose maintenant que X contient seulement le sommet a de t. Comme abc est un triangle
orienté, on a b = wi et c = wj avec i < j. Montrer que toute solution de (T,X, k) contient tous
les sommets de l’ensemble {wi, wi+1, . . . , wj} sauf au plus un.

11. En déduire un algorithme glouton qui résout FVSTQT en temps polynomial.
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