
THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE DE MATHÉMATIQUES ET

D’INFORMATIQUE

par Théo Pierron

POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : INFORMATIQUE

Induction Schemes: From Language Separation to
Graph Colorings

Date de soutenance : 08 juillet 2019

Devant la commission d’examen composée de :
Marthe Bonamy Chargée de recherche, CNRS, LaBRI Encadrante
Mireille Bousquet-Mélou Directrice de recherche, CNRS, LaBRI . . . Examinatrice
Thomas Colcombet Directeur de recherche, CNRS, IRIF Examinateur
Zdeněk Dvořák Associate Professor, Charles University . . Rapporteur
Michał Pilipczuk Assistant Professor, University of Warsaw Rapporteur
Jean-Sébastien Sereni Directeur de recherche, CNRS, ICube Rapporteur
Éric Sopena Professeur, Université de Bordeaux Directeur
Marc Zeitoun Professeur, Université de Bordeaux Directeur

Présidée par : Mireille Bousquet-Mélou

2019

Résumé Cette thèse présente des résultats obtenus dans deux domaines :
la théorie des langages, et la théorie des graphes. En théorie des langages, on
s’intéresse à des problèmes de caractérisation de classes de langages réguliers.
Le problème générique consiste à déterminer si un langage régulier donné peut
être défini dans un certain formalisme. Les méthodes actuelles font intervenir
un problème plus général appelé séparation. On présente ici deux types de
contributions : une généralisation d’un résultat de décidabilité au cadre des
langages de mots infinis, ainsi que des bornes inférieures pour la complexité
du problème de séparation.

En théorie des graphes, on considère le problème classique de coloration de
graphes, où on cherche à attribuer des couleurs aux sommets d’un graphe de
sorte que les sommets adjacents reçoivent des couleurs différentes, le but étant
d’utiliser le moins de couleurs possible. Dans le cas des graphes peu denses, la
méthode de déchargement est un atout majeur. Elle a notamment joué un rôle
décisif dans la preuve du théorème des quatre couleurs. Cette méthode peut
être vue comme une construction non conventionnelle d’un schéma de preuve
par induction, spécifique à la classe de graphes et à la propriété considérées, et
où la validité du schéma est rarement immédiate. On utilise des variantes de la
méthode de déchargement pour étudier deux types de problèmes de coloration.

Title Induction Schemes: From Language Separation to Graph Colorings
Abstract In this thesis, we present results obtained in two fields: formal lan-
guage theory and graph theory. In formal language theory, we consider some
problems of characterization of classes of regular languages. The generic prob-
lem consists in determining whether a given regular language can be defined in
a fixed formalism. The current approaches use a more general problem called
separation. We present here two types of contributions: a generalization of a
decidability result to the setting of infinite words, together with lower bounds
for the complexity of the separation problem.

In graph theory, we consider the classical problem of graph coloring, where
we assign colors to vertices of a graph in such a way that two adjacent vertices
receive different colors. The goal is to use the fewest colors. When the graphs
are sparse, a crucial tool for this is the discharging method. It is most notably
decisive in the proof of the Four-Color Theorem. This method can be seen as
an unconventional construction of an inductive proof scheme, specific to the
considered problem and graph class, where arguing the validity of the scheme
is rarely immediate. We use variants of the discharging method to study two
types of coloring problems.
Keywords Coloration de graphe, Graphe planaire, Méthode de décharge-
ment, Langage régulier, Séparation de langages
Mots-clés Graph coloring, Planar graph, Discharging method, Regular lan-
guage, Languages separation
Laboratoire d’accueil LaBRI, 351, cours de la Libération F-33405 Talence
cedex

Remerciements

Bien qu’individuel, une thèse est loin d’être un travail solitaire. Ainsi, de
nombreuses personnes ont contribué, de près ou de loin, et parfois sans s’en
rendre compte, à ce manuscrit. La liste est d’autant plus longue que le chemin
fut sinueux, il y a de fortes chances qu’elle ne soit pas exhaustive.

Les premières lignes sont naturellement adressées à ma famille, ceux qu’on
ne choisit pas mais dont on ne voudrait quand même pas changer. Merci pour
votre présence, et votre soutien, surtout dans les moments difficiles. Dédicace
spéciale à ma maman qui, même si tout ne s’est pas toujours passé comme elle
l’aurait voulu, a été d’un grand secours tout au long de ces quatre ans.

La famille académique n’est pas en reste : merci Marc, pour la liberté que tu
m’as laissée ainsi que ta disponibilité malgré ton emploi du temps surchargé.
Merci Marthe, pour tes multiples casquettes de dealeuse de gâteaux et thé,
amie et encadrante. Accepter le dernier rôle n’a pas dû être une décision facile
à prendre, et je ne te remercierai certainement jamais assez de l’avoir prise.
C’est aussi valide pour Éric : merci de m’avoir pris sous ton aile, ainsi que pour
ton écoute et ta générosité. J’ai énormément apprécié travailler avec vous, et
j’espère continuer à l’avenir. Je suis aussi très fier de vous avoir eu comme
directeurs, j’ai énormément appris à vos côtés, et je ferai tout mon possible
pour ne pas vous faire regretter de m’avoir encadré.

Another trio deserves acknowledgment: Michał, Zdeněk and Jean-Sébastien.
Despite all my efforts, reviewing this manuscript is not an easy task, and I am
very grateful that you still accepted it. Thank you for all your remarks and
comments, even if some of them gave me nightmares. Thanks also for coming
to Bordeaux for the defense, I was very pleased to meet you at last. I could
not dream of any better referees, and I look forward to meet you again in
conferences or even research circumstances.

Mireille, Thomas, merci d’avoir accepté le rôle d’examinateur (et la prési-
dence du jury) pour la soutenance. À ce titre, merci aussi pour votre relecture
attentive du manuscrit.

Merci à l’équipe Méthodes Formelles, où je suis arrivé en stage puis en
thèse, notamment à Anca, qui m’a accompagné dès le master. Merci aussi à
CombAlgo, qui m’a accueilli à bras ouverts. C’est une équipe formidable pour
effectuer un doctorat, et j’espère y revenir très vite, pour discuter de recherche
ou d’autres choses. Plus généralement, merci aussi à la communauté des cher-

v

cheurs en théorie des graphes pour m’avoir fait me sentir comme l’un des leurs,
et pour faire ressembler chaque conférence à une grande réunion de famille. En
particulier, merci à ceux avec qui j’ai pu travailler : Florent (Foucaud), Julien
(Bensmail), Pascal (Ochem), Alexandre (Pinlou), Mickaël (Montassier), Bo-
rut (Lužar), Édouard (Bonnet), Jean-Florent (Raymond), Riste (Škrekovski),
Mirko (Petruševski), Daniel (Paulusma), Matthew (Johnson), Nicolas (Bous-
quet), Dan (Cranston), Ilkyoo (Choi), François (Dross), Sagnik (Sen), Sandip
(Das),... Finally, thanks Dan (Král’) for letting me continue in research with
a postdoc.

Pendant quatre ans, j’ai pu obtenir un service d’enseignement à l’université
(merci Alain). J’ai donc été amené à m’intégrer dans plusieurs équipes pédago-
giques. Merci donc à tous ceux avec qui j’ai pris beaucoup de plaisir à préparer
et organiser les cours : Olivier, Feri, Giuliana, Carole, Marc, Frédérique, Stefka,
Irène, Simon, Philippe (peut-être pourrais-je un jour rentrer dans ton bureau
sans devoir régler un problème d’emploi du temps), Luis (ravi de faire affaire
avec toi), Pierre, Louis-Marie, Henri, François. Toujours au LaBRI, merci aussi
aux gestionnaires, pour votre efficacité et bonne humeur. Je ne doute pas que
mes recettes de gâteaux feront encore des heureux après mon départ.

Parmi les membres du LaBRI que je n’ai pas encore cité, merci aussi à
tous ceux qui sont devenus plus que des collègues : Niko (merci encore pour le
chocolat !), Hervé (pour ta simplicité et ta bonne humeur), Filip (I hope you
will come to Brno for tea or beer), Paul Jr (on ne saura jamais qui est le grand
frère, mais je suis fier que tu fasses partie de la famille), Feri, Laurent, Claire,
Rohan, Jason, Simon, Mathias, Romain, Théo, Henri, Louis-Marie, Moham-
med, Nathan, Vincent (bon courage pour les prochaines soirées jeux), Tristan,
Matthieu, Jonathan (à ton tour de prendre la relève !) et évidemment Tho-
mas, Dimitri, Alexandre (bienvenue dans la fratrie aussi !), Tobias et Antonin,
pour l’ambiance qui règne dans le bureau (j’espère que ça continuera encore
longtemps).

Merci enfin aux amis de plus ou moins longue date : d’abord, Thomas
et Antonin, pour les nombreuses soirées passées ensemble, puis la troupe de
mamies (qui n’ont de mamies que le nom) et le club tarot, que j’espère revoir
très vite, et enfin la troupe du lycée, pour me supporter depuis la nuit des
temps.

vi Théo Pierron

Contents

Contents vii

Introduction (French version) 1
Histoire des méthodes inductives . 1
Organisation de la thèse . 5

Introduction 9
The tale of induction schemes . 9
And so the tale goes... 13

1 An example of what (not) to do: the raw power of discharging 17
1.1 Introduction . 18
1.2 Proof overview . 23
1.3 Configurations . 29
1.4 Reducing configurations . 37
1.5 Discharging process . 105
1.6 Open questions . 124

2 Discharging without discharging: the power of pigeons 127
2.1 Introduction . 128
2.2 A Brooks-like result on graph powers 135
2.3 Coloring squares of planar graphs 140
2.4 Small reducible configurations 141
2.5 Reducing regions . 144
2.6 Finding a large region . 153
2.7 Extension to correspondence coloring 156
2.8 Open questions . 160

3 Separation of regular languages 163
3.1 Introduction . 164
3.2 Preliminaries . 176
3.3 Input format vs complexity . 188
3.4 Conclusion . 210

vii

CONTENTS

4 The polynomial closure operation 211
4.1 Introduction . 212
4.2 The case of finite words . 218
4.3 Pol(C)-separation is PSpace-hard 236
4.4 Extension to infinite words . 251
4.5 Conclusion . 262

Conclusion 265

Bibliography 267

viii Théo Pierron

Introduction (French version)

Cette thèse est divisée en deux parties, chacune d’entre elles considérant
des objets et des problèmes différents. Chaque problème fera l’objet d’une
introduction détaillée dans le chapitre idoine. Ici, on propose tout d’abord
une présentation historique des méthodes inductives. Bien que ces méthodes
soient monnaie courante en informatique théorique, cette introduction s’oriente
spécifiquement vers une présentation des problèmes et outils considérés dans la
première partie. Le domaine de la deuxième partie nécessite plus de pré-requis
et sera donc présenté dans le chapitre dédié.

Histoire des méthodes inductives

Selon [Cajori, 1918], la méthode chakravala, introduite par Bhāskara II
au XIIe siècle est un des premiers exemples de ce qu’on pourrait considérer
comme une preuve par récurrence. Cette méthode est en réalité un algorithme
fournissant une solution entière (x, y) à l’équation diophantienne x2−ny2 = 1,
qui porte aujourd’hui le nom d’équation de Pell-Fermat. Bien que l’étude de ces
équations puisse être retracée jusqu’au VIe siècle, la première solution complète
(donnée par la méthode chakravala) fut découverte seulement au XIIe siècle.
Elle fut ensuite redécouverte bien plus tard (en 1930) en Europe. Entre-temps,
le problème fut aussi résolu indépendamment par Lagrange en 1767, au moyen
d’un autre algorithme.

Bien qu’ils ne soient pas écrits avec un formalisme actuel, on peut trou-
ver de nombreux exemples de preuves par récurrence au fil du temps et des
civilisations. Par exemple, on peut citer les travaux d’Euclide sur les nombres
premiers, ou de Al-Karaji, al-Samaw’al et Ibn al-Haytham en combinatoire
(sommes d’entiers ou de carrés, formule du binôme...), ou bien encore de Ger-
sonide au Moyen Âge. Au XVIIe siècle, on peut trouver de nombreux exemples
dans les traités de Pascal, Fermat et Bernoulli. Enfin, le formalisme de ce
schéma de preuve devint plus précis au XIXe siècle, grâce aux travaux de
Grassmann, puis de Dedekind et Peano.

Supposons qu’on souhaite prouver que tout entier naturel n satisfait une
propriété P . Pour parvenir à nos fins, il suffit de montrer dans un premier
temps que P est vérifiée au premier niveau, c’est-à-dire pour n = 0. Dans un

1

Histoire des méthodes inductives

second temps, on montre que si P est satisfaite par un entier n, alors elle est
aussi satisfaite par son successeur n+ 1. Par exemple, considérons une échelle
infinie que l’on souhaiterait gravir. Si on sait grimper sur le premier barreau, et
on sait monter sur le barreau suivant quand on est sur un barreau donné, alors
on peut atteindre n’importe quel barreau de l’échelle. Ce schéma de preuve
peut se résumer par l’axiome suivant de l’arithmétique de Peano.

P (0)

∀n, P (n)⇒ P (n+ 1)

}
⇒ ∀n, P (n)

Les preuves par récurrence ne sont pas réservées aux entiers : elles peuvent
s’étendre à des structures plus complexes, généralement récursives, comme les
arbres (enracinés). Un arbre est constitué soit d’une feuille, soit d’une racine
adjacente à un nombre fini de sous-arbres. On parle alors de preuve par induc-
tion. Dans ce cadre, le but est de montrer une propriété sur les feuilles, puis
de l’étendre des sous-arbres d’un nœud au nœud lui-même. En fait, on peut se
ramener à une preuve par récurrence sur le bon paramètre de l’arbre comme
sa hauteur ou son nombre de nœuds. Par extension, on parle aussi de schéma
d’induction pour définir des objets récursivement. Les preuves par induction
constituent donc des outils adaptés à l’étude d’objets définis par induction.

Les preuves par induction peuvent se généraliser (d’une manière similaire)
à des ensembles munis d’un ordre bien fondé, c’est-à-dire tel qu’il n’y ait pas
de suite infinie strictement décroissante. En effet, on peut souvent traduire une
preuve par induction via un schéma de preuve alternatif utilisant des ordres
bien fondés. Bien que ce soit seulement une reformulation, cet effet cosmétique
permet d’obtenir des preuves généralement plus lisibles. On peut citer deux
exemples de ce phénomène. Le premier est la méthode de descente infinie.
Sa première apparition est parfois attribuée à Euclide pour sa preuve que
tout nombre composé est divisible par un nombre premier. Elle fut ensuite
popularisée par Fermat pour étudier les équations diophantiennes, dans le but
de montrer qu’il n’y a pas de solution. L’argument principal est le suivant : en
supposant que l’équation admet une solution s, on peut construire une solution
s′ telle que s′ < s pour un ordre bien fondé <. Ainsi, l’existence d’une solution
est incompatible avec la propriété que < est bien fondé, ce qui assure que
l’équation considérée n’a pas de solution. Dans le cas du résultat d’Euclide,
on utilise que l’ordre habituel sur les entiers naturels est bien fondé : à partir
d’un entier composé n sans diviseur premier, on construit un entier n′ < n,
lui aussi composé et sans diviseur premier. On obtient alors une suite infinie
strictement décroissante d’entiers naturels, une contradiction.

L’autre exemple est donné par la méthode dite de déchargement, adaptée
à l’étude des graphes, et centrale dans les chapitres 1 et 2. Un graphe est un
objet déterminé par un ensemble fini de sommets V (G) et par un ensemble
E(G) d’arêtes, i.e. de paires de sommets de la forme uv pour u, v ∈ V (G)

2 Théo Pierron

Introduction (French version)

tels que u 6= v. Un des problèmes les plus connus en théorie des graphes est
la conjecture des quatre couleurs, énoncée en 1852 et qui est dorénavant un
théorème. Un graphe planaire est un graphe qu’on peut dessiner dans le plan
sans que deux arêtes se croisent. Le théorème des quatre couleurs assure qu’on
peut attribuer un entier 1, 2, 3 ou 4 à chaque sommet de tout graphe planaire
(cet entier est la couleur du sommet) de telle sorte que les sommets adjacents
reçoivent des couleurs différentes. La méthode de déchargement fut introduite
il y a plus d’un siècle dans [Wernicke, 1904], pour étudier ce problème. Dans ce
cadre, l’idée générale est de considérer un contre-exemple de taille minimale à la
4-colorabilité, et d’utiliser cette minimalité pour obtenir des propriétés structu-
relles du contre-exemple, d’une manière comparable à la méthode de descente
infinie. On obtient ensuite une contradiction en montrant que ces propriétés
ne sont jamais simultanément satisfaites. Cette méthode est surtout pratique
pour étudier des classes de graphes peu denses (comme les graphes planaires),
et a permis d’obtenir de nombreux résultats, comme l’attestent [Borodin, 2013;
Cranston and West, 2017].

Le cadre général de la méthode de déchargement peut s’exprimer ainsi.
Supposons qu’on veuille montrer une propriété P sur une classe de graphes C.
Pour simplifier, on considère que le graphe vide appartient à C et satisfait P .
Le but est de trouver des informations structurelles sur les graphes de C. Pour
ce faire, on définit certaines structures appelées « configurations ». De nom-
breux exemples de telles configurations seront présentées dans le chapitre 1.
On recherche donc un ensemble S de configurations vérifiant deux types de
propriétés :

• S est C-inévitable, c’est-à-dire que tout graphe non vide de C doit contenir
au moins une configuration de S.

• Chaque configuration S dans S est (P, C)-réductible, c’est-à-dire que
pour tout graphe G ∈ C ne satisfaisant pas P et contenant S, on peut
construire un graphe GS plus petit, appartenant toujours à C et qui ne
satisfait pas P (le graphe GS est généralement construit en supprimant
dans G des sommets ou des arêtes formant S).

Si on peut trouver un ensemble S à la fois C-inévitable et ne contenant que des
configurations (P, C)-réductibles, alors on peut montrer la propriété P sur la
classe C. En effet, considérons un contre-exemple minimal G ∈ C à la propriété
P . Comme S est C-inévitable, G doit contenir une configuration de S. Ce
graphe est (P, C)-réductible, ce qui contredit la minimalité de G.

On peut voir cette méthode sous un autre angle, comme la construction
d’un schéma d’induction ad hoc, spécifique à la classe C. Soit S un ensemble
C-inévitable de configurations (P, C)-réductibles. Comme S ne contient que des
configurations réductibles pour P et C, on a :

• Le graphe vide satisfait P .

Induction Schemes: From Language Separation to Graph Colorings 3

Histoire des méthodes inductives

• Pour tout graphe G et toute configuration S ∈ S tels que GS satisfait
P , le graphe G satisfait P .

En d’autres termes, obtenir des configurations réductibles permet de montrer
P par induction via ce schéma. On utilise alors le fait que S est C-inévitable
pour montrer que tout graphe de C est atteint par ce schéma (on dit alors qu’il
est complet). Ainsi, on obtient ainsi que tout graphe de C satisfait P .

Le nom déchargement provient de la manière traditionnelle de montrer
qu’un ensemble de configurations S est inévitable. L’idée générale est de consi-
dérer un graphe G ne contenant aucune configuration de S, puis d’obtenir une
contradiction en utilisant un argument de double comptage. On commence par
attribuer un certain poids à des éléments de G, puis on les décharge via des
règles adaptées et qui préservent le poids total. Ainsi, la somme des poids reste
constante, et doit donc être la même avant et après le processus. Cependant,
comme G ne contient aucune configuration de S, on peut compter différem-
ment la somme des poids finaux. En considérant une pondération initiale et
des règles adaptées, on peut alors obtenir la contradiction recherchée.

Illustrons ce processus de déchargement sur l’exemple de la preuve de la
formule d’Euler : pour tout dessin dans le plan d’un graphe planaire connexe
G à v sommets, e arêtes et f faces, on a v−e+f = 2. Dans cet exemple, on ne
cherche pas une contradiction, mais seulement une pondération et des règles
telles que le poids total initial soit v − e+ f , et le poids total final soit 2.

Bien que le (même) argument soit valide quand G est un graphe planaire
quelconque, il est plus simple de considérer seulement un graphe dont toutes
les faces (y compris la face extérieure) sont des triangles. Ce n’est pas une
hypothèse restrictive, car on peut toujours ajouter une arête à une face non
triangulaire tout en préservant la valeur de v − e+ f (on ajoute une arête, et
on transforme une face en deux faces). Considérons maintenant la pondération
initiale suivante : chaque sommet et chaque face de G reçoit 1, et chaque arête
reçoit −1. On peut facilement constater que la somme des poids est v− e+ f .

On définit ensuite une seule règle de déchargement, à savoir que tout som-
met et toute arête donne son poids à la face à sa droite. Ceci est ambigu quand
une arête est horizontale, mais on peut éliminer ce cas en tournant G d’un bon
angle. Le poids final des sommets et des arêtes est donc 0. Considérons une
face interne xyz de G, où x est le sommet le plus bas, et z le sommet le plus
haut. On peut distinguer deux cas, selon que y est à gauche ou à droite du
segment [xz]. Ces deux cas sont illustrés en Figure 1.

Dans le premier cas, y, xy et yz donnent leur poids à xyz, tandis que dans
l’autre, seulement xz donne son poids. Ainsi, le poids total transféré est −1
et le poids final de xyz est nul. On peut effectuer la même analyse quand xyz
est la face externe, sauf que dans ce cas le poids transféré est 1 (x, z, xz ou
x, y, z, xy, yz donnent leur poids), ce qui donne un poids final de 2.

Comme la règle préserve le poids total, on obtient alors que le poids total
initial v − e + f est égal au poids total final 2, ce qui achève la preuve de la

4 Théo Pierron

Introduction (French version)

y

x

z

1

1

1

-1

-1
-1

x

y

z

1

1

1

-1

-1
-1

Figure 1 – Application de la règle à deux types de faces

formule d’Euler.
Cet argument est un exemple simple d’utilisation de cette méthode. La

preuve du théorème des quatre couleurs repose sur une version beaucoup plus
évoluée de ce genre d’arguments. Dans les chapitres 1 et 2, on présentera
d’autres exemples, plus élaborés que pour la formule d’Euler (mais moins tech-
niques que pour le théorème des quatre couleurs).

Organisation de la thèse

Cette thèse est divisée en deux parties, chacune d’entre elles s’intéressant à
un domaine spécifique d’informatique théorique. Au lieu de présenter une intro-
duction commune, on la divise en plusieurs parties : chaque chapitre contient
les motivations et l’historique du problème qui y est considéré. De plus, nous
préfaçons chaque chapitre en soulignant les contributions qui y sont présentées,
ainsi que les articles qui en découlent et leurs auteurs.

Dans la première partie de cette thèse, on présente des résultats à propos de
problèmes de coloration de graphes. Ces résultats sont obtenus en appliquant
(des variantes de) la méthode de déchargement présentée ci-dessus.

Dans le chapitre 1, on s’intéresse à la coloration totale par listes, une va-
riante de la coloration de graphes où on souhaite aussi colorer les arêtes, ayant
aussi des restrictions sur quelles couleurs peuvent être utilisées sur chaque
sommet. On s’appuie ici sur la méthode de déchargement, c’est-à-dire qu’on
définit un schéma d’induction spécifique pour montrer une borne supérieure
sur le nombre de couleurs nécessaires. Plus précisément, on montre que tout
graphe planaire de degré maximum ∆ > 8 est totalement (∆ + 2)-colorable
par listes (Théorème 1.11). Ceci étend les résultats précédemment connus à
l’ensemble des graphes de degré maximum 8. L’intérêt de ce chapitre ne se
limite pas à ce résultat : il provient aussi des méthodes génériques utilisées
pour montrer la réductibilité des configurations.

Le chapitre 2 considère un autre type de coloration, paramétré par un en-
tier k, où on impose à toute paire de sommets à distance au plus k de recevoir
des couleurs différentes. En guise de mise en bouche, on montre d’abord qu’on

Induction Schemes: From Language Separation to Graph Colorings 5

Organisation de la thèse

peut économiser k−O(1) couleurs par rapport à la borne supérieure naïve lors-
qu’on colore un graphe quelconque (Théorème 2.3). On s’intéresse ensuite au
cas k = 2 pour les graphes planaires, et on caractérise quels cycles doivent être
interdits pour obtenir une majoration en ∆ +O(1) du nombre de couleurs né-
cessaires pour colorer à distance 2 les graphes planaires de degré maximum ∆.
En particulier, on montre que lorsque ∆ est assez grand, tout graphe planaire
sans C4 peut être coloré à distance 2 avec ∆ + 2 couleurs (Théorème 2.15). On
utilise ici une variante de la méthode de déchargement. On peut toujours y voir
la création d’un schéma d’induction adapté. Cependant, cette fois, la partie in-
téressante est la complétude de ce schéma (i.e., l’inévitabilité de l’ensemble de
configurations), dont la preuve n’utilise pas de déplacement de poids.

La seconde partie de cette thèse s’intéresse à des questions d’expressivité
de formalismes syntaxiques donnés. Une question emblématique dans ce do-
maine consiste à déterminer quelles propriétés définies sur une structure dis-
crète peuvent être exprimées dans un formalisme descriptif donné. Cette ques-
tion dépend donc de deux objets, à savoir :

• Un type de structure discrète, comme par exemple les arbres binaires
étiquetés.

• Un formalisme descriptif, comme par exemple la logique du premier
ordre.

On cherche alors à déterminer quels ensembles de structures peuvent être défi-
nis à l’aide du formalisme choisi. En particulier, l’exemple cité ci-dessus, bien
qu’utilisant une structure et un formalisme courants, est déjà une question
ouverte majeure dans ce domaine : quels ensembles d’arbres binaires étiquetés
peuvent être définis en logique du premier ordre ?

Dans cette thèse, on considère une version plus simple (mais déjà non-
triviale) de ce problème, en étudiant des structures discrètes plus simples,
mais fondamentales : les mots finis et infinis, au lieu des arbres. Dans ce cadre,
le cas de la logique du premier ordre est déjà résolu : on peut caractériser les
langages (c’est-à-dire les ensembles de mots) définissables dans cette logique.
Cependant, le problème consistant à caractériser les langages définissables par
des formules satisfaisant d’autres restrictions syntaxiques est toujours ouvert
pour de nombreux types de restrictions naturelles.

Les résultats récents sur ce genre de questions sont obtenus en considérant
un problème appelé C-séparation, paramétré par une classe 1 de langages C
représentant les langages définissables dans le modèle considéré. Ce problème
prend deux langages L1, L2 en entrée et teste s’il existe L ∈ C qui sépare L1

de L2, c’est-à-dire tel que L1 ⊂ L ⊂ L2. Comme on le verra plus tard, ce
problème est plus général que le problème de définissabilité présenté ci-dessus.

1. La terminologie « classe » est utilisée dans cette thèse pour des raisons historiques,
mais doit être comprise comme « ensemble ».

6 Théo Pierron

Introduction (French version)

Dans cette thèse, on s’intéresse au problème de séparation sous deux aspects :
décidabilité et complexité.

Une introduction plus détaillée de ces questions est fournie au chapitre 3.
Le but de ce chapitre est tout d’abord d’introduire le domaine et le problème
de séparation d’un point de vue historique. On y illustre le caractère robuste du
problème de séparation à l’aide d’une première contribution (Théorème 3.37)
à propos de sa complexité dans le cadre des langages dits « réguliers », c’est-à-
dire reconnus par un automate fini, ou de manière équivalente, par un monoïde
fini. Selon le formalisme choisi pour représenter des langages réguliers (auto-
mates ou monoïdes), la complexité des problèmes de définissabilité peut varier.
C’est en particulier le cas pour le problème de définissabilité par des formules
du premier ordre, qui est PSpace-difficile lorsque les langages d’entrée sont re-
présentés par des automates, mais LogSpace s’ils le sont par des monoïdes. On
montre en revanche que le comportement du problème de C-séparation est tout
autre : sa complexité ne dépend pas du type de représentation choisi pour ses
entrées (quand C est raisonnable).

On s’intéresse ensuite à l’étude du problème de C-séparation pour des
classes C spécifiques. La plupart des classes considérées historiquement sont
construites à partir d’une autre classe plus petite, en la clôturant par certaines
opérations. Dans le cadre des langages réguliers, il est naturel d’utiliser des
opérations préservant la régularité telles que la concaténation, les opérations
booléennes, ou encore l’étoile (ces opérations seront définies dans le chapitre 3).

À partir d’une classe C, on peut par exemple définir sa clôture booléenne,
c’est-à-dire l’ensemble des langages obtenus comme unions d’intersections de
langages de C ou de complémentaires de langages de C. Une autre opération
historique est donnée par la clôture polynomiale Pol(C) d’une classe C. In-
formellement, il s’agit de l’ensemble des langages obtenus comme unions de
concaténations de langages de C. Ces deux opérations ont une importance
considérable, d’un point de vue historique comme sémantique, qui sera dé-
taillée dans les chapitres 3 et 4.

Le chapitre 4 s’intéresse exclusivement à l’opération de clôture polyno-
miale. On y considère le problème de Pol(C)-séparation sous deux angles. On
s’intéresse tout d’abord à la décidabilité du problème de Pol(C)-séparation
pour une classe C finie. Dans le cas des langages de mots finis, ce résultat est
déjà connu (Corollaire 4.44, provenant de [Place and Zeitoun, 2017d]) : Pol(C)-
séparation est décidable quand C est une classe raisonnable finie. Même si ce
résultat se limite à une classe C finie, sa preuve est non triviale et nécessite
l’introduction d’objets et d’arguments élaborés (voir Théorème 4.43). La pre-
mière contribution de ce chapitre est une borne inférieure générique sur la
complexité de Pol(C)-séparation quand C est une classe assez grande (Théo-
rème 4.10). La seconde contribution consiste à étendre ces résultats lorsqu’on
considère des langages de mots infinis (Théorème 4.67).

Induction Schemes: From Language Separation to Graph Colorings 7

Organisation de la thèse

8 Théo Pierron

Introduction

This thesis is divided into two parts, each of them considering different
objects and problems. Each problem will have its own detailed introduction
in the corresponding chapter. Here, we first give an historical presentation
of inductive methods. While these methods are quite common in theoretical
computer science, this introduction is specifically oriented towards presenting
the problems and tools considered in the first part. Presenting the field of
the second part needs more definitions, and thus will be introduced later, in a
dedicated chapter.

The tale of induction schemes

Once upon a time, in a country across mountains and seas, there lived a
man called Bhāskara II. According to [Cajori, 1918], the chakravala method
he introduced was one of the first examples of what can be classified as an
inductive proof. This method is an algorithm finding an integer solution (x, y)
of the Diophantine equations x2−ny2 = 1, the so-called Pell-Fermat equations.
While studies about this family of equations can be tracked back to the 6th
century, the first complete solution (given by the chakravala method) was
found only in the 12th century. This method was then rediscovered much
later (in 1930) in Europe. In the meantime, Lagrange solved the problem
independently, with a different algorithm, in 1767.

While not stated in nowadays formalism, many examples of proofs by induc-
tion can be traced throughout history and civilizations. For example, one may
cite the work of Euclid on prime numbers, of Al-Karaji, al-Samaw’al and Ibn
al-Haytham on combinatorics (sum of integers, squares, binomial theorem...),
or even of Gersonides during Middle Ages. In the 17th century, many examples
can be found in the books of Pascal, Fermat or Bernoulli. The formalization
of this proof scheme became more precise with the work of Grassmann, and
then Dedekind and Peano during the 19th century.

Say we want to prove that every natural integer n satisfies a property P .
To this end, we first prove that P is verified at first level, i.e. for n = 0. Then,
we prove that if P is satisfied for some integer n, then it is also satisfied for
integer n+ 1. For example, consider an infinite ladder we want to climb. If we

9

The tale of induction schemes

know how to get on the first level, and we know how to climb from every level
n to level n+ 1, then we can reach any level of the ladder. This proof scheme
can be summarized as the following axiom of Peano’s arithmetic.

P (0)

∀n, P (n)⇒ P (n+ 1)

}
⇒ ∀n, P (n)

Proofs using induction are not restricted to integers: they can be extended
to more complex structures, such as (rooted) trees. A tree is either a leaf, or
consists in a root adjacent to an arbitrary but finite number of rooted trees.
In this case, the goal is to prove a given property for single-node trees, and
then to extend it from the children of a node to the node itself. This can be
translated as an inductive proof on some integer parameters of trees, such as
height or number of nodes. By extension, we also speak of induction schemes
for defining some objects (such as trees). Inductive proofs are well-designed
tools for studying inductive objects.

Induction proofs also extend (in a similar way) to sets endowed with a
well-founded order, i.e. such that there is no strictly decreasing sequence of
infinite length. We can give an alternative proof scheme using well-founded
orders. While this is only a reformulation of the previous inductive proofs,
it can obtain more readable proofs. We consider here two examples of this.
The first historical one is the method of infinite descent. Its first appearance
could be traced back to Euclid for his proof that every composite integer is
multiple of some prime number. It was then popularized much later by Fermat
to study Diophantine equations, in view of proving there is no solution. The
main argument is the following: assuming that there is a solution s, we can
construct another solution s′ such that s′ < s for some well-founded order <.
Therefore, the existence of a solution is incompatible with well-foundedness
of <, ensuring that no solution exists. For Euclid’s result, we use that the
standard order on natural integers is well-founded: starting from a composite
number n without any prime divisor, we construct an integer n′ < n, also
composite and without prime divisor. We thus obtain a strictly decreasing
sequence of natural integers, a contradiction.

The second example is the so-called discharging method. It is well-suited
to study graphs, and will be central in Chapters 1 and 2. A graph G is a
discrete object given by a finite set of vertices V (G) and a set E(G) of edges,
i.e. pairs of distinct vertices of the form uv for u, v ∈ V (G) with u 6= v. One
of the most famous problems in graph theory is the Four-Color conjecture,
stated in 1852, and now a theorem. A planar graph is a graph that can be
drawn in the plane without crossing edges. The Four-Color theorem states
that we can assign 1, 2, 3 or 4 to each vertex of any planar graph (we call this
integer the color of the vertex) such that the endpoints of each edge have a
different color. The discharging method was introduced more than a century

10 Théo Pierron

Introduction

ago in [Wernicke, 1904] to tackle this problem. In this case, the idea is to
consider a smallest counterexample to 4-colorability, and to use the minimality
to get some structural information on this counterexample, in a similar fashion
to the infinite descent method. We then reach a contradiction by proving that
these information are never simultaneously satisfied. This method is especially
well-suited for studying sparse graphs (such as planar graphs), and leads to
many results, as shown in [Borodin, 2013; Cranston and West, 2017].

The generic setting of the discharging method can be explained as follows.
Assume we want to prove a property P on a graph class C. For simplicity,
assume that the empty graph lies in C and satisfies property P . We look for
some structural information about the graphs in C. To this end, we describe
some structures in graphs, named “configurations”. Many examples of such
configurations will be given in Chapter 1. We look for a set S of configurations
satisfying two properties:

• S is C-unavoidable, i.e. every non-empty graph of C contains at least one
of the configurations in S.

• Each configuration S ∈ S is (P, C)-reducible, i.e. for every graph G not
satisfying P and containing S, we can construct a smaller graph GS,
which still lies in C and does not satisfies P . (The graph GS is usually
constructed by from G by removing some of the vertices or edges that
form S.)

If we can find a C-unavoidable set S of (P, C)-reducible configurations, then
we can prove the property P . Indeed, consider a smallest counterexample
G for property P in C. Then, since S is C-unavoidable, G has to contain a
configuration in S, which is (P, C)-reducible, yielding a contradiction.

This method can be seen as the construction of a custom induction scheme,
which is specific to the class C. Let S be a C-unavoidable set of (P, C)-reducible
configurations. Since S contains only reducible configurations for P , we have
the following:

• The empty graph satisfies P .

• For each graph G and every configuration S ∈ S such that GS satisfies
P , the graph G also satisfies P .

In other words, obtaining reducible configurations allows us to prove P by in-
duction with this custom induction scheme. Moreover, since S is C-unavoidable,
we know that every graph of C is constructed by this induction scheme (we
say that the scheme is complete). Therefore, every graph of C satisfies P .

The name “discharging” comes from the usual way of proving unavoidability
of a set of configurations S. The idea is to consider a graph G containing none
of the patterns of S, and then to reach a contradiction by double counting a

Induction Schemes: From Language Separation to Graph Colorings 11

The tale of induction schemes

suitable quantity defined on the graph. To this end, we give some weights to
some elements of G, and then “discharge” them using suitable rules that are
bound to preserve the total weight. The sum of the weights should be the
same before and after the process. However, since G does not contain any
pattern of S, we may be able to count differently the sum of the final weights.
Taking the right initial weighting and suitable rules may yield the requested
contradiction.

We illustrate the discharging procedure on the example of Euler’s formula:
for every drawing of a connected planar graph G with v vertices, e edges and
f faces, we have v−e+f = 2. In this case, we do not look for a contradiction,
but for a weighting and rules such that the initial weighting has total weight
v − e+ f , and the final one has 2.

While the (same) argument actually works when G is any planar graph, it
is easier to consider that every face of G is a triangle (even the external one).
This is not restrictive since we can always add an edge in a non-triangular face
without changing the value of v − e+ f (since we add an edge and transform
a face into two). Now consider the following initial weighting: each vertex and
face of G receives 1, and each edge receives −1. It is easy to check that the
sum of all these weights is v − e+ f .

We now define a single discharging rule, stating that every vertex and edge
gives all its weight to the face on its right. This is ambiguous only if there
are some horizontal edges, but we can always find a rotation of G such that
this is not the case. The final weight of vertices and edges is then 0. Consider
an internal face xyz of G, where x is the lowest vertex and z the highest one.
There are two cases, depending on whether y is on the left of [xz] or on its
right. These are depicted in Figure 2.

y

x

z

1

1

1

-1

-1
-1

x

y

z

1

1

1

-1

-1
-1

Figure 2 – Applying the rule to two types of faces

In the former, y, xy and yz give their weight to xyz. In the latter, only xz
gives its weight to xyz. Thus, the total transferred weight is −1, and the final
weight of xyz is 0. The same analysis holds when xyz is the external face,
except that in this case, the transfer-ed weight is 1 (x, z, xz or x, y, z, xy, yz
give weight), for a final weight of 2.

Since the rule preserves the total weight, we thus obtain that the initial

12 Théo Pierron

Introduction

total weight v − e + f equals the final total weight 2. This proves Euler’s
formula.

This argument is a simple example of how to use this method. The proof of
the Four-Color theorem relies on a much more involved version of this kind of
arguments. In Chapters 1 and 2, we will present other examples of discharging
proofs, more involved than for Euler’s formula (but not as technical as for the
Four-Color theorem).

And so the tale goes...
This thesis contains two parts, each of them considering a specific field of

theoretical computer science. Instead of giving a common introduction, we
divide it: each of the chapters will contain the motivations and history of the
problem it considers. Moreover, we preface every chapter with a short text
highlighting the contributions in it, together with the associated papers and
authors.

In the first part of this thesis, we obtain some results about graph coloring
problems by applying (variants of) the discharging method presented above.

Chapter 1 considers total list coloring, a variant of coloring where we also
require for the edges to be colored, with some restrictions on which color can
be used on which element. To this end, we rely on the discharging method
we presented, i.e. we design a custom induction scheme for proving an upper
bound on the number of colors needed. More precisely, we prove that every
planar graph of maximum degree ∆ > 8 is totally (∆+2)-list-colorable (Theo-
rem 1.11). This extends the previously known results to graphs with maximum
degree 8. Interest in this chapter is not limited to this result: it also comes
from the generic methods we use for proving reducibility of configurations.

Chapter 2 investigates another kind of coloring, parameterized by an integer
k, where we require any two vertices within distance k to receive different
colors. As a preliminary result, we first prove that one can spare k−O(1) colors
from the naive upper bound when coloring any given graph (Theorem 2.3),
while the previously known result allowed to spare a constant number of colors.
We then investigate the case k = 2 on planar graphs, and characterize which
cycles have to be forbidden to obtain a ∆ + O(1) upper bound for coloring
planar graphs of maximum degree ∆ at distance 2. In particular, we prove
that for large enough ∆, every C4-free planar graph can be colored at distance
2 with ∆ + 2 colors (Theorem 2.15). We use here a variant of the discharging
method. It can still be seen as a custom induction scheme. However, this
time, the interesting part comes from the completeness of this scheme (i.e.,
the unavoidability of the set of configurations), which is proven in a unusual
way.

The second part of this thesis consider expressiveness problems of given

Induction Schemes: From Language Separation to Graph Colorings 13

And so the tale goes...

syntactic formalisms. An emblematic question in this field is to determine
which properties of a given discrete structure can be expressed in a given
descriptive formalism. This question thus depends on two objects, namely:

• A type of discrete structure, for instance binary labeled trees.

• A descriptive formalism, for instance first-order logic.

We want to determine which sets of these structures can be defined using the
chosen formalism. In particular, the aforementioned example, even if it uses a
basic structure and formalism, is already a major open question in this field:
which sets of binary labeled trees can be defined with first-order logic?

In this thesis, we consider a simpler (yet already non-trivial) version of this
problem by studying simpler but fundamental discrete structures: finite and
infinite words, instead of trees. In this setting, the case of first-order logic
is already solved: we can characterize the languages (i.e., the set of words)
definable in this logic. However, the problem of characterizing languages that
are definable by sentences satisfying some other syntactic restrictions is still
open for many types of natural restrictions.

The recent results about this kind of questions are obtained by considering
a problem called C-separation, which is parameterized by a class 2 of languages
C representing the languages definable using the considered formalism. This
problem takes two languages L1, L2 as input an tests whether there exists
L ∈ C separating L1 from L2, i.e. such that L1 ⊂ L ⊂ L2. As we will see,
this problem is more general than the definability problem stated above. In
this thesis, we investigate the separation problem from two points of view:
decidability and complexity.

We give a more detailed introduction to these questions in Chapter 3. The
goal of this chapter is twofold: first, we introduce the field and the separa-
tion problem from a historical point of view. We illustrate the robustness
of the separation problem with a first contribution (Theorem 3.37) regarding
its complexity when considering “regular” languages, i.e. the ones recognized
by a finite automaton, or equivalently by a finite monoid. Depending on the
formalism chosen to represent regular languages (automata or monoids), the
complexity of definability problems may vary. It is in particular the case for
definability by first-order logic, which is PSpace-hard when the input languages
are represented by automata, but LogSpace when they are given by monoids.
We prove that the behavior of the C-separation problem is different: its com-
plexity does not depend on how its inputs are represented (when C is nice
enough).

We then consider the C-separation problem for specific classes C. Most of
the historically considered classes are built from another smaller class by clos-

2. We use here the terminology “class” for historical reasons, but it is to be understood
as “set”.

14 Théo Pierron

Introduction

ing it under some operations. For regular languages, it is natural to consider
operations preserving regularity, such as concatenation, Boolean operations,
or star (which will be defined in Chapter 3).

Starting from a class C, we may for example define its Boolean closure, i.e.
the set of languages obtained as unions of intersection of languages in C or
complements of languages in C. Another historical operation is given by the
polynomial closure Pol(C) of a class C. Informally, it is the set of languages
obtained as unions of concatenations of languages in C. These two operations
are very important, from historical and semantical points of view, and will be
detailed in chapters 3 and 4.

Chapter 4 is devoted only to the polynomial closure operation. We consider
the problem of Pol(C)-separation under two points of view. We first investigate
the decidability of this problem when C is a finite class. For languages of
finite words, this result is already known (Corollary 4.44, coming from[Place
and Zeitoun, 2017d]): Pol(C)-separation is decidable when C is a reasonable
finite class. Even if this result considers only a finite class C, its proof is not
trivial, and relies on the introduction of involved objects and arguments (see
Theorem 4.43). The first contribution of this chapter consists in a generic lower
bound on this complexity when C is a large enough class (Theorem 4.10). A
second contribution extends both results when considering languages of infinite
words (Theorem 4.67).

Induction Schemes: From Language Separation to Graph Colorings 15

And so the tale goes...

16 Théo Pierron

Chapter 1

An example of what (not) to do:
the raw power of discharging

Contents
1.1 Introduction . 18

1.2 Proof overview . 23

1.2.1 A framework for reducing configurations 23

1.2.2 Combinatorial Nullstellensatz 25

1.2.3 Recoloring approach 26

1.3 Configurations . 29

1.3.1 Notation . 29

1.3.2 The configurations 32

1.4 Reducing configurations 37

1.4.1 Generic arguments 37

1.5 Discharging process 105

1.5.1 The rules . 106

1.5.2 Faces . 107

1.5.3 3-vertices . 108

1.5.4 4-vertices . 109

1.5.5 5-vertices . 110

1.5.6 6-vertices . 111

1.5.7 7-vertices . 111

1.5.8 8-vertices . 115

1.6 Open questions . 124

17

1.1. Introduction

This chapter is joint work with Marthe Bonamy and Éric Sopena ([Bonamy
et al., 2019b]). It uses the discharging method. We rely on three standard
techniques to reduce configurations: the Combinatorial Nullstellensatz, case
analysis, and recoloring. For the third one, we use here a specific framework,
adapted from [Bonamy, 2015]. This framework (the so-called color-shifting
graph) seems to appear only in these two papers.

1.1 Introduction

The chromatic number χ of a graph G is the minimum number of colors
needed to color every vertex of G such that no two adjacent vertices receive the
same color. Edge coloring is a variant of graph coloring where edges (instead
of vertices) are to be colored. We ask for every two incident edges to receive
different colors. The minimum number of colors needed to color a graph is
called its chromatic index and is denoted by χ′. Given a graph G, an edge-
coloring of G can actually be seen as a vertex coloring of its line graph, i.e.
the graph whose vertices are edges of G, and where the edge ef is present if e
and f have a common endpoint in G. Therefore, the edge-coloring problem is
a restriction of the coloring problem to a subclass of graphs. However, while
there are some interesting characterizations of line graphs in terms of forbidden
induced subgraphs (see [Beineke, 1970]), the transformation of a graph into its
line graph does not preserve well the properties of G, like planarity. Therefore,
we rather consider edge-coloring.

Like its vertex analogue, this kind of coloring has many applications in
scheduling problems. Imagine a tournament with n entrants where each player
has to play against every other one. One may ask the minimum duration of
the tournament, assuming all the games last the same time. This problem is
equivalent to finding the chromatic index of the clique Kn. Indeed, each edge
of Kn represents a game that has to be played at some point. A color class
is a set of games that can be played simultaneously, and the chromatic index
is the minimum number of rounds needed to ensure that each game has been
played. While the case of Kn is solved (the solution is n − 1 or n depending
on the parity of n), it is not the case when we consider a general graph G.

A first observation about the chromatic index of graphs is that all the
edges incident to a given vertex have to receive pairwise distinct colors. This
implies that every proper edge-coloring of a graph G uses at least ∆(G) colors,
where ∆(G) is the maximum degree of G. This is a first difference from
the vertex coloring case, since there are 2-colorable graphs of arbitrarily large
maximum degree. We may consider how the classical results about (vertex)
coloring translate in this new setting. A first result is Brooks’ theorem that
characterizes the graphs achieving the greedy upper bound for χ.

18 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

Theorem 1.1 ([Brooks, 1941]). Every connected graph G is ∆(G)-vertex-
colorable, except when G is a clique or an odd cycle.

In any edge-coloring of a graph G, each edge is adjacent to at most 2∆(G)−
2 other edges, thus by a greedy argument, we obtain that χ′(G) 6 2∆(G) −
1. While a greedy coloring gives a polynomial 2-approximation for the edge
coloring problem, Vizing’s theorem states that the bound is actually far from
being tight.

Theorem 1.2 ([Vizing, 1964]). Every graph G satisfies χ′(G) 6 ∆(G) + 1,
and a (∆(G) + 1)-edge-coloring of G can be found in polynomial time.

Moreover, a Brooks-like result about characterizing equality in Vizing’s
theorem is hopeless, since deciding whether χ′(G) is ∆(G) or ∆(G) + 1 is an
NP-complete problem, even for cubic graphs (see [Holyer, 1981]).

While maybe less important, an interesting property of edge-
colorings is that we may always assume that the color classes are
balanced (see Theorem 1.3). This emphasizes again the different
behaviors of vertex and edge coloring, since this property is clearly
false for vertex coloring (consider the star K1,3 on the right).

Theorem 1.3 ([Folkman and Fulkerson, 1966]). Every graph G has a χ′(G)-
edge-coloring where the sizes of every two color classes differ by at most one.

An interesting variation of the coloring problem can be obtained by con-
sidering list coloring: instead of assigning colors from {1, . . . , k} to elements of
the graphs, we associate to each element a list of available colors and we color
each element with a color from its own list. The question is now to determine
the minimum size k of the lists such that G is k-choosable (no matter which
lists of size k are considered), i.e. such that G has a proper coloring using only
available colors, regardless of the list assignment. We thus obtain two param-
eters: the choosability number χ` and the choosability index χ′`. Again, the
situation is quite different from vertex choosability. Indeed, note that there
are 2-colorable graphs with arbitrarily large χ`, see Figure 1.1. However, we do
not know any graph G such that χ′`(G) 6= χ′(G). This motivates the following
conjecture.

Conjecture 1.4 (List edge coloring conjecture [Borodin et al., 1997a; Juvan
et al., 1998; Vizing, 1976]). Every graph G satisfies χ′(G) = χ′`(G).

The following similar conjecture has also been introduced, as an extension
of Vizing’s theorem.

Conjecture 1.5 ([Vizing, 1976]). Every graph G satisfies χ′`(G) 6 ∆(G) + 1.

Induction Schemes: From Language Separation to Graph Colorings 19

1.1. Introduction

k pairwise disjoint lists of size k

all kk combinations

•• •• •• ••

•• ••

Figure 1.1 – A graph G with χ(G) = 2 and χ`(G) > k (here k = 2).

In the generic case, only few results are known towards these conjectures.
The first improvement of the greedy upper bound 2∆ − 1 comes from [Hind,
1988] proving that 2∆ − 2 colors are enough. Using probabilistic arguments,
this bound has been improved to c∆+o(∆) for several values of c: 11

6
[Bollobás

and Harris, 1985], 9
5
[Hind, 1988], 7

4
[Bollobás and Hind, 1989], and finally

c = 1. In this case, the error term has been refined several times, culminating
with the following result.

Theorem 1.6 ([Kahn, 1996; Häggkvist and Janssen, 1997; Molloy and Reed,
2000]). There exists a polynomial P such that, for every graph G, χ′`(G) 6
∆(G) + P (log ∆(G)).

This implies that χ′`(G) 6 χ′(G) + o(χ′(G)) when χ′(G) → ∞, and thus
gives an analogous of Theorem 1.6 for the list edge coloring conjecture. Apart
from these results, we can consider specific classes of graphs, which allows us to
use specific methods to deal with them. For example, for sparse graphs, we can
use the discharging method as an additional tool, which leads to many results.
A first class to consider is the one of planar graphs. In this case, Vizing’s
theorem can be strengthened: planar graphs are ∆-edge-colorable whenever
∆ > 7 [Vizing, 1965; Sanders and Zhao, 1999; Zhang, 2000]. However, for
∆ 6 5, there are some planar graphs needing ∆ + 1 colors, see [Borodin, 2013]
and Figure 1.2. The last open case is then planar graphs of maximum degree 6,
for which only partial results are known, see [Borodin, 2013] for more details.

The situation is maybe more interesting in the edge choosability setting.
For choosability in the generic case, the ∆ + 1 upper bound is only conjec-
tured. Even with the new tools coming with planar graphs, this bound is
actually still unproved. However, partial results are known. For graphs with
small maximum degree, the conjecture holds in the trivial case ∆ 6 2. Using
Brooks’ theorem, it also holds for ∆ = 3 [Vizing, 1976]. An ad-hoc incremental
construction settles the case ∆ = 4 [Juvan et al., 1999]. On the other side, the
discharging method settles the case ∆ > 9 [Borodin, 1990; Cohen and Havet,
2010], which has been extended to the following result using a new technique

20 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

Figure 1.2 – Planar graphs with 2 6 ∆ 6 5 that are not ∆-edge-colorable

we describe later in this chapter.

Theorem 1.7 ([Bonamy, 2015]). Every planar graph with maximum degree 8
is 9-edge-choosable.

Finally, using again discharging, we can even show that χ′` is at most ∆ for
planar graphs with ∆ > 12, see [Borodin, 1990; Borodin et al., 1997a]. Many
results improve these bounds when considering girth or cycle obstructions, and
can be found in [Borodin, 2013].

Vertex and edge colorings can be combined to obtain total coloring. As
expected, vertices and edges are to be colored, and every two adjacent or inci-
dent elements receive different colors. The parameter we obtain is called total
chromatic number and denoted by χ′′. We can also consider the list version of
the problem, and the corresponding parameter is χ′′` . These parameters share
numerous similarities with their edge versions, as we shall see. First note that
if we discard the colors of the vertices, we obtain a proper edge coloring, so
χ′ 6 χ′′ and χ′` 6 χ′′` . Moreover, we can link these parameters in another way:
χ′′` 6 χ′` + 2. Indeed, we can obtain a proper total list coloring of a graph G
by first constructing greedily a vertex-coloring of G (since each vertex has at
least χ′`(G)+2 > ∆(G)+1 available colors). Then, for each edge e, we remove
the colors of the endpoints of e from its list. The obtained lists have size at
least χ′`(G), thus we can find an edge coloring of G. The resulting coloring is
a proper total coloring of G.

We can extend the upper and lower bounds of the edge coloring problem:
every graph G needs at least ∆(G) + 1 colors since the edges incident to a
vertex of degree ∆(G) together with the vertex itself require pairwise distinct
colors. Moreover, the greedy upper bound is almost unchanged: 2∆ + 1 colors
are sufficient to color any graph of maximum degree ∆. On the other hand,
Vizing’s theorem does not extend directly to the total coloring setting. How-
ever, we do not know any graph G needing more than ∆(G)+2 colors (i.e. only

Induction Schemes: From Language Separation to Graph Colorings 21

1.1. Introduction

one more color than the lower bound). This is summarized in the following
conjecture.

Conjecture 1.8 ([Behzad, 1965; Vizing, 1976]). Every graph G satisfies χ′′(G) 6
∆(G) + 2.

This conjecture is a relaxation of the following one, an analogue of the list
edge-coloring conjecture to this new setting.

Conjecture 1.9 (Total list coloring conjecture [Borodin et al., 1997a; Juvan
et al., 1998; Vizing, 1976]). Every graph G satisfies χ′′(G) = χ′′` (G).

Towards these conjectures, the probabilistic method still gives some results
(that imply similar ones for edge colorings). Again, a ∆ + o(∆) bound follows
from the inequality χ′′` 6 χ′` + 2. It has been improved several times [Hind,
1990; Chetwynd and Häggkvist, 1996] up to the following result.

Theorem 1.10 ([Molloy and Reed, 1998]). There exists a constant C such
that for every graph G, χ′′(G) 6 ∆(G) + C.

The constant C is at most 1026, but may be brought down to roughly
100 [Molloy and Reed, 1998]. However, bringing down this bound to tackle
Conjecture 1.8 seems to be out of reach from the probabilistic method for now.
The situation is again more advanced when we consider planar graphs. We
may again separate the results obtained for small ∆ from those considering
large ∆. Conjecture 1.8 clearly holds when ∆ 6 2. Several proofs of the con-
jecture are known for subcubic graphs, using either custom induction or ad-hoc
decompositions involving matchings and 2-factors by Petersen’s theorem [Ju-
van et al., 1998; Rosenfeld, 1971; Vijayaditya, 1971]. This idea of decomposing
into 2-factors also settles the case ∆ = 4 [Kostochka, 1977], and has then been
adapted to ∆ = 5 [Kostochka, 1996]. On the other hand, using discharging
arguments, Conjecture 1.8 has been proved for ∆ > 7 [Borodin, 1987, 1989;
Jensen and Toft, 1995; Sanders and Zhao, 1999].

Moreover, as in the edge-coloring case, planar graphs with large enough
maximum degree need only ∆ + 1 colors for ∆ > 9, as shown by [Borodin,
1989; Borodin et al., 1997a,b; Wang, 2007; Kowalik et al., 2008].

Apart from those using decomposition in 2-factors and matchings, the
proofs cited above are also valid in the list coloring setting. This implies
that Conjecture 1.8 also holds for total choosability of planar graphs with
∆ 6 3 [Juvan et al., 1998] or ∆ > 9 [Borodin, 1987, 1989]. It can even be
extended to (∆ + 1)-choosability when ∆ > 12 [Borodin, 1987, 1989; Borodin
et al., 1997a].

Note that the bounds obtained on total (list) chromatic number seem only
to be one more than the corresponding ones in the edge case. This may suggest
a link between χ′(G) and χ′′(G)−1. However, the inequality χ′(G) 6 χ′′(G)−1

22 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

is false, even for planar graphs, since χ′(K3) = χ′′(K3) = 3. Moreover, we have
χ′(K4) = 3 and χ′′(K4) = 5, hence the converse inequality χ′(G) > χ′′(G)− 1
does not hold either. However, we can still prove the inequality χ′′(G) 6
χ′(G) + 2 when G is a planar graph (using the Four Color Theorem).

This chapter is devoted to the proof of the following result.

Theorem 1.11. Every planar graph with maximum degree 8 is totally 10-
choosable.

This extends Theorem 1.7 to the total choosability setting, and settles Con-
jecture 1.8 for planar graphs with maximum degree 8. We use the discharging
method, as done in all the proofs of Conjecture 1.8 for planar graphs with large
enough maximum degree. We use several tools to reduce our configurations:
the first one is an application of the polynomial method, via the Combinatorial
Nullstellensatz. The other one has been introduced in [Bonamy, 2015] and is
based on recoloring vertices to obtain more information on the coloring. Sec-
tion 1.2 is devoted to presenting these two methods. We then apply them to
reduce the configurations in Section 1.4 and present the discharging argument
in Section 1.5.

1.2 Proof overview

We prove Theorem 1.11 by contradiction. Assuming that it has a coun-
terexample, we consider the one with the smallest number of edges. Our goal
is to prove that G satisfies structural properties incompatible with planarity,
hence the conclusion. We consider G together with a planar embedding M.
Unless specified otherwise, all the faces discussed in the proof are faces inM.

We first introduce a set of configurations in Section 1.3 and prove in Sec-
tion 1.4 that they are not present in G. To this end, we use several techniques
we introduce in this section. Then, we find a contradiction in Section 1.5 us-
ing the discharging method. This means that we assign some initial weights
to vertices and faces of G, then we redistribute these weights, and obtain a
contradiction by double counting the total weight. We present an appropriate
collection of discharging rules, and then argue that every element of G ends
up with non-negative weight while the total initial weight was negative. We
thus reach the required contradiction.

1.2.1 A framework for reducing configurations

We now introduce the generic framework we use to prove that a given
configuration is reducible. Reducing a configuration Ci means to take a list
assignment L of G, to find a suitable subgraph G′ of G (often constructed by
removing elements of G creating Ci), and to extend any L-coloring of G′ to G.

Induction Schemes: From Language Separation to Graph Colorings 23

1.2. Proof overview

Since G is a minimum counterexample, we get a contradiction if G contains
Ci.

There are two non-immediate steps in this proof scheme: first, we have
to find the right subgraph G′. Then, the most difficult part is to extend the
coloring. Note that in some cases, we may have to change the given coloring
before extending it.

We first introduce some terminology. In the previous setting, a constraint
for an element x of G (vertex or edge) is an already colored element y such that
x and y are incident (or adjacent). The total graph of G is the graph denoted by
T (G), whose vertices are V (G)∪E(G), and there is an edge between any two
elements x and y such that x and y are adjacent vertices or incident elements
of G. Observe that finding a total L-coloring of G is equivalent to finding an
L-coloring of T (G).

Given an element x of G, we denote by x̂ the list of colors available for x
after having colored G′. We denote by T (G\G′) the subgraph of T (G) induced
by the elements that are not already colored, i.e. the elements of G \G′. Note
that extending the coloring from G′ to G is equivalent to producing an L′-
coloring of T (G \G′) where L′ is defined by L′(x) = x̂ for every element x of
G \G′.

By definition, for every element x of G \ G′, we have |x̂| > 10 − cx where
cx is the number of constraints of x. We may only consider the worst case, as
stated in the following remark.

Remark 1.12. We may assume that |x̂| = 10 − cx for every element x of
G \G′.

This observation applies every time we compute the number of available
colors for each element. A similar observation allows us to assume when ap-
propriate that, when we color an uncolored element x of G, the lists of all its
neighbors in T (G) always lose a color.

Remark 1.13. Let x, y be adjacent elements in T (G). Unless otherwise stated
(i.e. if we assume explicitly that the color of x does not appear in ŷ, for example
if x̂ and ŷ are disjoint), coloring x makes |ŷ| decrease by 1.

We sometimes forget elements. Forgetting x means that for every coloring
of its neighbors in T (G), we can always find an available color for x. For exam-
ple, this happens when x has more available colors than uncolored neighbors
in T (G). Therefore, when we forget x, we postpone the coloring of x to the
end of the coloring process: we implicitly assign a color to x when all the re-
maining elements are colored. We extend this terminology to lists of elements:
forgetting x1, . . . , xp means that we forget x1, then x2, . . . , then xp (observe
that the order matters). Note that we can always forget uncolored vertices of
degree at most 4 in G, since they have at most eight neighbors in T (G).

24 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

1.2.2 Combinatorial Nullstellensatz

Most of the proofs of Section 1.5 rely on more or less involved case analyses,
depending on the lists x̂. This may lead to rather long proofs. To deal with
this issue, we introduce another approach to reduce the corresponding config-
urations. As we will see, this method relies on an algebraic criterion that can
be computer checked. This leads to much shorter proofs, with the downside of
not being human-checkable. We now describe how to reduce a given configu-
ration, or more precisely how to extend a coloring from a subgraph of G to G
itself. The method uses the Combinatorial Nullstellensatz stated below.

Theorem 1.14 ([Alon and Tarsi, 1992]). Let K be a field, and P ∈ K[X1, . . . , Xn]
a multivariate polynomial. Let Xa1

1 · · ·Xan
n be a monomial with a non-zero co-

efficient in P , and of maximal degree. Then, for any family S1, . . . , Sn of
subsets of K satisfying |Si| > ai for 1 6 i 6 n, there exists a non-zero value of
P in S1 × · · · × Sn.

While this result is stated in terms of polynomials and does not seem to be
related to graphs, it has many applications in algebra, additive combinatorics,
graph theory. . . Several examples of such applications can be found in [Alon,
1999]. It is one of the main tools of the so-called polynomial method. From a
high-level point of view, the generic approach is the following:

• We represent the studied combinatorial object (e.g. a coloring) as a set
E of values for some polynomial indeterminates.

• We define a polynomial P whose roots are the “bad” objects (e.g. im-
proper colorings).

Showing that a “good” object exists thus reduces to finding a non-root of P
in E. This is where Theorem 1.14 is used: it gives a set of sufficient conditions
to ensure that such a non-root exists, and reduces the initial combinatorial
problem to the search of a suitable monomial in P .

Let us now describe how we use this approach to reduce configurations.
With each uncolored element x in G which is neither colored nor forgotten,
we associate a polynomial variable X (we use the same letter but capitalized).
We denote by < the lexicographic order on the variables. The polynomial PG
is then defined as the product of all (X − Y) when X < Y and x and y are
adjacent uncolored vertices of T (G). Using PG, we can associate with each
coloring of G (where colors are integers) a value, obtained by replacing in PG
each variable X with the color of the corresponding element x.

Moreover, due to the construction of PG, this value is not 0 if and only if
the corresponding coloring is proper, i.e. if the coloring of G′ extends to G.
Therefore, we now look for a non-zero value of PG. In particular, applying
Theorem 1.14 to the subsets x̂ gives a sufficient condition in terms of the

Induction Schemes: From Language Separation to Graph Colorings 25

1.2. Proof overview

monomials in PG: to prove that the coloring extends from G′ to G, it is
sufficient to find a monomial m in PG such that the three following conditions
hold:

1. deg(m) = deg(PG).

2. degX(m) < |x̂| for every uncolored element x of G.

3. The coefficient of m in PG is non-zero.

Therefore, proving that a configuration is reducible using the Combinatorial
Nullstellensatz amounts to finding a suitable monomial in PG. For the sake of
readability, we do not state the polynomial PG in each of the reduction proofs.

Note that we do not believe that finding a suitable monomial, as well
as checking Condition 3, can be done without a computer. For the former
problem, we use an exhaustive search algorithm that produces an output in a
reasonable time on most of the instances, but not for all, hence we do not have
a reduction proof using Combinatorial Nullstellensatz for each configuration.
For checking Condition 3, a Maple code is available here 1.

Finally, observe that Theorem 1.14 is not an equivalence in general: a
polynomial may satisfy the conclusion of the theorem even if it has no suitable
monomial. However, we do not know whether there exist reducible configura-
tions such that the associated polynomial contains no suitable monomial.

1.2.3 Recoloring approach

For some configurations, both case analysis and Nullstellensatz approaches
fail. For these configurations, we use a third technique, introduced in [Bonamy,
2015]. This is based on the following idea. Take ϕ a coloring of a subgraph
of G. Depending on ϕ, it may not always be possible to extend it to G.
However, in this case, we can analyze why the extension fails and deduce some
properties of ϕ. We use these properties to prove that we can first transform
ϕ into another coloring ψ, and then hope for ψ to be easier to extend. The
end of this section is devoted to presenting this method in more details.

Our approach is based on recoloring some vertices in a given partial color-
ing, or at least to find sufficient conditions to be able to do so. We start with
a preliminary definition. Let L be a list assignment on T (G) and γ a partial
L-coloring of T (G). Let S be a properly colored clique in T (G). The color
shifting graph of S with respect to γ is the loopless digraph HS,γ defined as
follows (see Figure 1.3 for an example):

• Each element of S is a vertex of HS,γ.

1. http://www.labri.fr/perso/tpierron/Delta8_check.txt

26 Théo Pierron

http://www.labri.fr/perso/tpierron/Delta8_check.txt
http://www.labri.fr/perso/tpierron/Delta8_check.txt

1. An example of what (not) to do: the raw power of discharging

• We add a vertex sα to HS,γ for each color α ∈ ∪x∈Sx̂, where x̂ is the set
of available colors for x when we uncolor S.

• If x, y ∈ S with x 6= y, there is an arc x → y if the color of x lies in ŷ
once S is uncolored.

• For any x, α, there is an arc sα → x if α ∈ x̂ and α /∈ γ(S) which means
that the color α could replace the color of x.

• For any x, α, there is an arc x→ sα.

• For any α 6= β, there is an arc sα → sβ.

In Figure 1.3, we give a set S of three vertices inducing a triangle in T (G).
For each node x, the list of colors depicted inside x is x̂, and the color of x
is γ(x). Since HS,γ is quite dense, we draw its complement in the figure, mean-
ing that HS,γ contains all the non-loop arcs that are not present in Figure 1.3
below.

••
u

••v •• w

(a) A set S, with a coloring γ

sblue

sgreen

sred u

v

w

(b) The complement
of the graph HS,γ

Figure 1.3 – Example of a color shifting graph

The terminology comes from the fact that any directed cycle in HS,γ allows
us to shift the colors of the elements of S as stated in the following lemma.

Lemma 1.15. Let L be a list assignment of T (G), let γ be a partial L-coloring
of T (G) and S be a colored clique of T (G). Assume that there is a directed
cycle x1 → · · · → xn → x1 in the color shifting graph HS,γ.

Then there exists a partial L-coloring γ′, defined on the same elements of
T (G) as γ, and that differs from γ exactly on S ∩ {x1, . . . , xn}.

Proof. We define γ′ by taking γ′(x) = γ(x) for all the vertices x of S outside
the directed cycle. It remains to define γ′ on S ∩ {x1, . . . , xn}.

If none of the xi’s is some sα, we move the colors following the arrows: for
1 6 i 6 n, we define γ′(xi+1) = γ(xi) (the indices are taken modulo n). This
is allowed since we have γ(xi) ∈ x̂i+1 by the definition of the arc xi → xi+1.

Induction Schemes: From Language Separation to Graph Colorings 27

1.2. Proof overview

Moreover, γ′ is still a proper coloring since the color γ(xi) appears only on xi
in γ since S is a clique in G, hence it appears only on xi+1 in γ′.

Otherwise, we decompose the directed cycle into (maximal) directed paths
of the form sα → x1 → · · · → xp. We then apply a similar approach to each
of these paths: for 2 6 i 6 p, we define γ′(xi) = γ(xi−1). Similarly, this gives
a proper coloring. It remains to color x1. Note that sα → x1, so α ∈ x̂1 and
α /∈ γ(S). Therefore, we can take γ′(x1) = α and keep a proper coloring.

Since we consider a cycle, for every α, the vertex sα is the source of at most
one such sub-path of the directed cycle. Therefore, color α appears in γ′ on at
most one vertex of S, and the coloring γ′ is proper.

In both cases, we thus obtain a proper coloring γ′ satisfying γ′(x) 6= γ(x)
for each vertex x of the considered directed cycle.

We are now ready to describe the generic way used to reduce configurations
in this approach. The framework is the same as before: our goal is to extend
a coloring of a subgraph G′ of G to the entire graph G. To this end, we
first identify the conditions on the color lists impeding the coloring to extend
directly to G. If these conditions are not satisfied, then we can extend the
coloring and we are done.

On the contrary, if they are satisfied, we look for some elements of G′ to
recolor in order to change the available colors of the uncolored elements of G,
and hence break the previous conditions. We finally use the previous lemma
to reduce the initial problem to finding a suitable directed cycle in the color
shifting graph of a well-chosen set of elements.

To find such directed cycles, we first state a simple but useful property of
color shifting graphs: if HS,γ is the color shifting graph of a set S with respect
to γ, then the in-degree of any vertex x ∈ S of HS,γ is at least |x̂|. We often use
this property together with the following lemma to find the required directed
cycles. Recall that a strong component of HS,γ is a maximal set of vertices C
such that any two of them are linked by a directed path in C.

Lemma 1.16. Every directed graph H has a strong component C such that

|C| > max
x∈C

d−H(x)

Proof. Consider the graph π(H) obtained by contracting each strong compo-
nent of H to a single vertex.

Note that π(H) is an acyclic digraph, therefore it contains a vertex C of
in-degree 0. Take x ∈ C. Then note that due to the definition of π(H), for
each arc y → x, we also have y ∈ C. Therefore C contains every predecessor
of x. Since G is a simple graph, there are d−(x) such predecessors, and x is
not such a predecessor. Thus |C| > d−(x). This is valid for any x ∈ C, thus
we obtain the result.

28 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

Our goal is to prove that the elements we want to recolor are not alone
in their strong component in the color shifting graph we consider (so that
one of these elements is contained in a suitable directed cycle, and we can
recolor it using Lemma 1.15). With the previous result, we have a dichotomy:
if there is a strong component containing a vertex with large in-degree, then
it is a large component, and it is likely to contain an element we want to
recolor. Otherwise, we remove all the vertices with large in-degree and apply
recursively the same dichotomy until (hopefully) a suitable directed cycle is
found.

In order to applying this method, we need to compute the in-degree of
every vertex in a color shifting graph. This is the goal of the last lemma of
this section.

Lemma 1.17. Let L be a list assignment of T (G), let γ be a partial L-coloring
of T (G) and S be a colored clique of T (G). Let x be a vertex of HS,γ. We have

d−(x) =

{
|x̂| − 1 if x ∈ S
|V (HS,γ)| − 1 otherwise.

Proof. Let x ∈ V (HS,γ). If x is some sα, then by definition, there is an arc
y → x for every other vertex y of HS,γ. Therefore, d−(x) = |V (HS,γ)| − 1.

Otherwise, assume that x ∈ S. By definition, every predecessor of x is
either an element of S colored with some color in x̂, or a vertex sα with
α ∈ x̂ \ γ(S). Observe that since γ is proper and S is a clique, then for every
α ∈ γ(S), there is exactly one vertex of S colored with α. In particular, there
is no vertex y 6= x with γ(y) = γ(x). Therefore, there is one predecessor of x
for every color of x̂ \ {γ(x)}.

Conversely, let α ∈ x̂ \ {γ(x)}. If α does not appear on S, i.e. α /∈ γ(S),
then we have an arc sα → x in HS,γ. Otherwise, α = γ(y) for some y ∈ S\{x},
and we have an arc y → x in HS,γ.

Therefore, the number d−(x) of predecessors of x is |x̂\{γ(x)}| = |x̂|−1.

1.3 Configurations
In this section, we first introduce some terminology and then present our

configurations.

1.3.1 Notation

We say that a vertex is triangulated if all the faces containing it are triangles
(recall that we fix a planar embedding of G). Given a vertex u and two of its
neighbors v1, v2, the triangle-distance between v1 and v2 around u, denoted by
distu(v1, v2), the (possibly infinite) distance between v1 and v2 in the subgraph

Induction Schemes: From Language Separation to Graph Colorings 29

1.3. Configurations

ofG induced by the edges vw such that uvw is a triangular face (see Figure 1.4).
This distance is the minimum of the lengths of (at most) two paths in the
neighborhood of u, each one turning in one direction. In all the following, a
k−- (resp. k+-) vertex is a vertex of degree at most (resp. at least) k. Moreover,
in the figures, a node containing an integer i represents a vertex with degree
i. An empty node is a vertex with no degree constraint. Moreover, observe
that all the edges incident to the depicted vertices are not necessarily drawn.
Moreover, for configurations, the drawing does not necessarily corresponds to
the chosen embedding of the graph. When we reduce a configuration, we give a
figure with the name of all the elements we will have to color. It may happen
that not every element has a name (meaning that we keep its color from a
coloring obtained using minimality). In this case, the corresponding element
will be depicted in boldface.

5 u

2 v3

3

3
2 v1

1 v2

Figure 1.4 – Triangle-distance: du(v1, v2) =∞ and du(v1, v3) = 3.

Given an edge uv, we say that v is:

• a weak neighbor of u if either v is a 4−-vertex and both faces containing
the edge uv are triangles, or v is a triangulated 5-vertex (see Figure 1.5).

4− uv 5 vu

Figure 1.5 – A weak neighbor v of u.

• a semi-weak neighbor of u if v is a 4−-vertex and exactly one of the faces
containing uv is a triangle (see Figure 1.6).

4− vu

Figure 1.6 – A semi-weak neighbor v of u.

30 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

Moreover, if v is a weak neighbor of u, we often consider the degree of the
common neighbors of u and v. We thus define the following: for any integers
p 6 q, we say that v is a (p, q)-neighbor of u if v is a weak neighbor of u and the
two vertices w1, w2 such that uvw1 and uvw2 are triangular faces have degree
p and q, respectively. The same holds with p+ (resp. p−), meaning that the
degree is at least (resp. at most) p.

We also define special types of 5-vertices. Consider a 7-vertex u with a
weak neighbor v of degree 5. We say that v is:

(i) an S3-neighbor of u if one of the following conditions holds (see Fig-
ure 1.7):

• v is a (6, 6+)-neighbor of u.

• v is a (7+, 7+)-neighbor of u and v has two neighbors w1, w2 such
that d(w1) = d(w2) = 6 and uvw1, uvw2 are not triangular faces.

• v has a neighbor w of degree 5 such that uvw is not a triangular
face.

5 v7u

6 w1

6+ w2

5 v7u

7+

7+

6 w1

6 w2

5
v

7u 5 w

Figure 1.7 – v is an S3-neighbor of u

(ii) an S5-neighbor of u if every neighbor of v has degree 7.

(iii) an S6-neighbor of u if it is not a (5, 6)-neighbor of u, nor an S3-neighbor
nor an S5-neighbor.

We give a similar definition when u is an 8-vertex with a weak neighbor
v of degree 5. We say that v is an E3-neighbor of u if one of the following
conditions holds (see Figure 1.8):

• v is a (6, 7+)- or (7, 7)-neighbor of u.

• v is a (7+, 8)-neighbor of u and v has two neighbors w1, w2 such that
d(w1) = d(w2) = 6 and uvw1, uvw2 are not triangular faces.

• v is a (7+, 8)-neighbor of u and v has a neighbor w of degree 5 such that
uvw is not a triangular face.

Induction Schemes: From Language Separation to Graph Colorings 31

1.3. Configurations

5 v8u

6 w1

7+ w2

5 v8u

7 w1

7 w2

5 v8u

7+

8

6 w1

6 w2

5
v

8u

7+

8

5 w

Figure 1.8 – v is an E3-neighbor of u

1.3.2 The configurations

We now present several configurations, defined as all the sub-configurations
of the forthcoming nineteen configurations C1 to C19. A configuration C is a
sub-configuration of C ′ if we can obtain C by decreasing the degree of vertices in
C ′ while preserving the adjacency relation and the triangle-distance: for every
vertices x, y, z, the vertices x and y are adjacent in C if and only if they are
in C ′ and distz(x, y) is the same in C and C ′. For example, a path uvw where
d(u) = d(v) = d(w) = 4 is a sub-configuration of C4 but a path u1u2u3u4 is
not a subconfiguration of C2 even if d(u1) = d(u3) = 3 and d(u2) = d(u4) = 8.

• C1 is an edge (u, v) such that d(u) + d(v) 6 10 and d(u) 6 4.

• C2 is an even cycle v1 · · · v2nv1 such that for 1 6 i 6 n, d(v2i−1) 6 4 and
d(v2i−1) + d(v2i) 6 11.

• C3 is a triangle with two vertices of degree 5 and one of degree 6.

• C4 is a vertex of degree 5 with two neighbors of degree 5.

• C5 is a 7-vertex u with a (5, 6)-neighbor v1 and a 5-neighbor v2 such that
either distu(v1, v2) = 2, or v2 is a (5, 6)-neighbor of u with distu(v1, v2) 6
3, see Figure 1.9.

7
u

5

5v1

weak
6

5 v2
7
u

6

5v1

weak
5 v2

weak

6
7
u5

5v1
weak

6 6

5 v2
weak

5

Figure 1.9 – Configuration C5

• C6 is a 5-vertex u adjacent to three 6-vertices v1, v2, v3 and two vertices
v4, v5 such that either there are two edges v1v2 and v2v3 or u is triangu-
lated and d(v4) = d(v5) = 7, see Figure 1.10.

• C7 is a 7-vertex u with a (5, 6)-neighbor of degree 5 and a neighbor of
degree 4, see Figure 1.11.

32 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

6 v25u

6 v1

6 v3

5u

6 v1

7v4

6v2 6 v3

7 v5

Figure 1.10 – Configuration C6

5 weak7
u

5

6

4

Figure 1.11 – Configuration C7

• C8 is a 7-vertex u with an S3-neighbor v1, a (7, 7+)-neighbor v3 of degree
4, and a neighbor v4 of degree 5 such that distu(v1, v3) = 2 and the
common neighbor v2 of u, v1, v3 has degree 7, see Figure 1.12.

7
u 5 S3

v1

7 v2

4
v3 weak

5v4

8

Figure 1.12 – Configuration C8

• C9 is a 7-vertex u with a weak neighbor v1, a (7, 7+)-neighbor v2 of degree
4 and a weak neighbor v3(6= v2) such that distu(v1, v2) = distu(v1, v3) = 2
and either v1 is a S3-neighbor of u, or it is an S5-neighbor of u such that
the common neighbor of u, v1, v2 has degree 7, see Figure 1.13.

7u 5
S3

v1

84v2

weak

7

85v3

weak

8
7u 5 v1

74
weak

v2

8

8

75
weak

v3

7

7

Figure 1.13 – Configuration C9

• C10 is a 7-vertex u with three weak neighbors of degree 4 and a neighbor
of degree 7.

Induction Schemes: From Language Separation to Graph Colorings 33

1.3. Configurations

• C11 is a 7-vertex u with a (7, 7+)-neighbor v1 of degree 4, two weak
neighbors v2 and v3 of degree 4 and 5 such that distu(v1, v2) = 2 and
either u, v1 and v3 have a common neighbor of degree 7, or v3 is an
S3-neighbor of u such that distu(v1, v3) = 3, see Figure 1.14.

7u
4

v1
weak

7

8
4v2

weak

5 v3

weak

8

8 7u
4weak

v1

7

8
4v2

weak

5 S3

v3

8

8

Figure 1.14 – Configuration C11

• C12 is a 7-vertex u with two weak neighbors v1, v2 of degree 4 satisfying
distu(v1, v2) > 2, and a weak neighbor v3 of degree 5 such that either v1

is a (7, 7)-neighbor of u, or so is v3, or v1 is a (7, 7+)-neighbor and v3 is
an S3-neighbor of u, see Figure 1.15.

7u 5
v3
weak

74v1

weak

7

4v2

weak

7u

7

5
v3
weak

74v1

weak

4v2

weak

7u 5
v3
S3

74v1

weak

4v2

weak

7u 5
v3
S3

4v1

weak

7

4v2

weak

Figure 1.15 – Configuration C12

• C13 is an 8-vertex u with either five weak neighbors of degree 5 and three
neighbors of degree 6, or two (6, 6)-neighbors of degree 5 with two weak
neighbors of degree 5 and four neighbors of degree 6, see Figure 1.16.

8
u

5
weak5

weak

5
weak

5
weak

5
weak 6

6

6 8
u

6
5

6

5
weak

6
5

6

5
weak

8
u

6
5

6

5

6
6

5
weak

5
weak

Figure 1.16 – Configuration C13

• C14 is an 8-vertex u with four pairwise non-adjacent neighbors v1, v2, v3, v4

of degree 4 or 5 such that one of the following holds (see Figure 1.17):

34 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

– v1, v2, v3, v4 are weak neighbors of degree 4 and u has a neighbor of
degree 7,

– v1, v2, v3, v4 are (7, 8)-neighbors, and at most one of them has degree
5

– v1 is a (7, 7)-neighbor of degree 4, and v2 is a weak neighbor of u of
degree 4 such that distu(v1, v2) = distu(v1, v4) = 2.

8
u

7 w
4
v1

8

4v4

8
4
v3

8

4 v2 8
u

7
4

8

5
weak

7
4

8

4 8
u

7
4
v1weak

7

5v4

5
v3

8

4 v2

weak

Figure 1.17 – Configuration C14

• C15 is an 8-vertex u with a weak neighbor of degree 3 and either two
(6, 6)-vertices of degree 5, or three weak neighbors of degree 5 and two
neighbors of degree 6, see Figure 1.18.

8
u

3
weak

6

5weak
6

5 weak

6

88

8
u

3
weak

5
weak

5
weak 5

weak

6

6

Figure 1.18 – Configuration C15

• C16 is an 8-vertex u with a weak neighbor of degree 3 and:

– either a (7, 8)-neighbor of u of degree 4 and two weak neighbors of
degree 5 not in a triangular face in u

– or at triangle-distance 2 from a weak neighbor of u of degree 5 with
two neighbors of degree 6, see Figure 1.19.

• C17 is an 8-vertex u with a weak neighbor of degree 3, a weak neighbor of
degree 4, and either a (6, 6)-neighbor of degree 5, or two weak neighbors
of degree 5, one of them being an E3-neighbor, see Figure 1.20.

• C18 is an 8-vertex u with two weak neighbors of degree 3 and another
neighbor of degree at most 5, see Figure 1.21.

Induction Schemes: From Language Separation to Graph Colorings 35

1.3. Configurations

8
u

3

4
7

88

8

5weak 5 weak 8
u

3

5

6

6

88

Figure 1.19 – Configuration C16

8
u

3

4

8
6

5 weak

6

88

8
u

3
weak

4
weak

5
weak

5
E3

Figure 1.20 – Configuration C17

8
u

3
weak

3
weak

5

Figure 1.21 – Configuration C18

• C19 is an 8-vertex u with a weak and a semi-weak neighbor v1, v2 of
degree 3 and adjacent to two vertices w1, w2 such that (d(w1), d(w2)) is
(4, 7) or (5, 6), see Figure 1.22.

8
u

3
weak

3
semi-weak

4

7 8
u

3
weak

3
semi-weak

5

6

Figure 1.22 – Configuration C19

• C20 is an 8-vertex u with a weak neighbor of degree 3 and four neighbors
of degree 4, 4, 5, 7, see Figure 1.23.

• C21 is an 8-vertex u with a weak neighbor of degree 3, two weak neighbors
of degree 4 and a neighbor of degree 7, see Figure 1.24.

36 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

8
u

3
weak

4

4 5

7

Figure 1.23 – Configuration C20

8
u

3
weak

4weak

4
weak

7

Figure 1.24 – Configuration C21

• C22 is an 8-vertex u with a neighbor of degree 7 and either three semi-
weak neighbors of degree 3 or two semi-weak neighbors of degree 3 and
two neighbors of degree 4, see Figure 1.25.

8
u

3
semi-weak

3
semi-weak

3
semi-weak

7
semi-weak

8
u

3
semi-weak

3
semi-weak

4 4

7

Figure 1.25 – Configuration C22

1.4 Reducing configurations

This section is devoted to the proofs that each configuration is reducible,
i.e. that G does not contain them. We first introduce some generic arguments
we use to handle small cases.

1.4.1 Generic arguments

Recall that proving that a configuration is reducible amounts to extending
a coloring of a subgraph G′ of G to the entire graph G. This can be rephrased
in terms of f -choosability. This variant of the choosability problem is defined

Induction Schemes: From Language Separation to Graph Colorings 37

1.4. Reducing configurations

as follows. Let H be a graph and f : V (H) → N. We say that H is f -
choosable if we can produce a vertex L-coloring of H from any list assignment
L satisfying |L(v)| > f(v) for every vertex v of G.

To extend a coloring from G′ to G, we often prove that T (G \ G′) is f -
choosable, where f(x) is the number of available colors of the element x (in
our case, f(x) is ten minus the number of elements of G′ incident to x). This
point of view gives another tool to extend colorings, as shown by the following
theorem.

Theorem 1.18 ([Borodin et al., 1997a; Erdős et al., 1979]). Let G be a con-
nected graph such that none of its blocks is a complete graph or an odd cycle.
For any function f : V (G)→ N such that f(v) > d(v) for each vertex v, G is
f -choosable.

Despite the fact that Theorem 1.18 is about vertex choosability while we
focus on total choosability, Theorem 1.18 will turn out to be helpful when
looking at the constraint graphs.

As a consequence, we get this classical result about choosability of even
cycles.

Corollary 1.19. Any even cycle is 2-choosable.

We introduce some other useful results. The first one is based on Corol-
lary 1.19.

Lemma 1.20. Let G be the graph composed of a cycle v1 · · · vnv1 such that
v1, vn share a common neighbor u, see Figure 1.26. Let L be a list assignment
satisfying that for every vertex v, |L(v)| > 2. Then G is L-choosable if either
|L(v1)| > 3 or n is even and L(v1) 6= L(u).

v1 v2

vn−1

vn

u

Figure 1.26 – Configuration of Lemma 1.20

Proof. Without loss of generality, we may assume that for any v 6= v1, |L(v)| =
2, and that |L(v1)| is 2 or 3. First assume that the cycle has odd length, thus
|L(v1)| = 3. If L(vn) = L(u), we color v1 with a color not in L(u), then
v2, . . . , vn, u. Otherwise, we color vn with a color not in L(u), then color
vn−1, . . . , v1, u.

If the cycle has even length, we distinguish two cases:

38 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

• L(v2) = · · · = L(vn), then we color v2, v4, . . . , vn with a color, v3, v5 . . . , vn−1

with another color. Denote by L̂ the list assignment obtained from L by
removing the colors of the neighbors of each vertex. Observe that we
have |L̂(v1)| = 1 or 2. If |L̂(v1)| = 2, we color u then v1. Otherwise,
since L̂(v1) 6= L̂(u), we can color v1 then u.

• Otherwise, there exists i such that L(vi) 6= L(vi+1). Color vi+1 with a
color not in L(vi), then color vi+1, . . . , vn. With L̂ defined as previously,
we now have |L̂(u)| = 1 and |L̂(v1)| = 1 or 2. If |L̂(v1)| = 2, we color
u, v1, v2, . . . , vi. Otherwise, since we have L(u) 6= L(v1), we can color u
with a color not in L(v1), then v1, v2, . . . , vi.

The next result is a consequence of Hall’s necessary and sufficient condition
for a perfect matching to exist in a bipartite graph. Finding an L-coloring of a
graph G can be reduced to finding a perfect matching in the following graph.
It has one vertex per color c and per vertex x of G, and an edge (c, x) when
c ∈ L(x). Since this graph is bipartite, Hall’s criterion gives a condition for an
L-coloring to exist.

Theorem 1.21 (Hall’s marriage theorem). Let G be a clique. Then for any
list assignment L, the graph G is L-choosable if and only if for all S ⊂ V (G),
|S| 6 | ∪x∈S L(x)|.

We end this subsection with a last configuration, depicted in Figure 1.27.

v1

v2

v3

v4

vn−3

vn−2

vn−1

vn

Figure 1.27 – Configuration of Lemma 1.22

Lemma 1.22. Let n > 4 be an integer such that n 6≡ 0 mod 3. Let G be the
graph formed by a path v1 . . . vn with additional edges vivi+2 for 1 6 i 6 n− 2
(see Figure 1.27). Let L be a list assignment L such that |L(v)| > 2 for
v ∈ {v1, vn−1, vn}, and |L(v)| > 3 for any other v. Then G is L-choosable.

Proof. We proceed by induction on n.

• Assume n = 4. If L(v3) = L(v4), we color v2 with a color not in L(v3),
then v1, v3, v4. Otherwise, we color v3 with a color not in L(v4), then
v1, v2, v4.

Induction Schemes: From Language Separation to Graph Colorings 39

1.4. Reducing configurations

• Assume n = 5. If L(v4) = L(v5), we color v3 with a color not in L(v4),
then v1, v2, v4, v5. Otherwise, we color v5 with a color not in L(v4) and
use the case n = 4 to color v1, v2, v3, v4.

• Assume n > 6. If L(vn−1) = L(vn), we color vn−2 with a color not in
L(vn), then apply the case n−3 to color v1, . . . , vn−3, then color vn−1 and
vn. Otherwise if n ≡ 2 mod 3, we color vn with a color not in L(vn−1),
then apply the use case n−1 to color v1, . . . , vn−1. If n ≡ 1 mod 3, color
vn−1 with a color not in L(vn), then use case n− 2 to color v1, . . . , vn−2,
then color vn.

We are now ready to prove that all the configurations C1 to C22 are re-
ducible. We devote a subsection to each configuration. We use the recoloring
approach to reduce C18 to C22. For C1 to C15, we try to give a case analy-
sis argument and another one using the Combinatorial Nullstellensatz. The
first one can be checked by hand, while the second one often requires some
computations. However, in some cases, we only present one argument. This is
because either the case analysis leads to an unreasonably long proof, or because
the (naive) algorithm we use to find a suitable monomial in the Nullstellensatz
approach does not output a result on the instance in a reasonable time.

Configuration C1

Lemma 1.23. The graph G does not contain C1.

Proof. Assume that G has an edge e = uv such that dG(u) + dG(v) 6 10 and
dG(u) 6 4.

Color G \ {e} by minimality and uncolor u. We may assume that |ê| = 1
and |û| = 3.

We can extend the coloring to G using the following argument. We first
forget u. Then uv has at most dG(u) + dG(v)− 1 < 10 constraints, so we can
color it.

We can also conclude using the Nullstellensatz: note that PG is E − U .
Then the monomial m = U satisfies:

1. deg(m) = 1 = deg(P).

2. degE(m) = 0 < 1 = |ê| and degU(m) = 1 < 3 = |û|.

3. m has coefficient −1 in P .

Hence we can color G using Theorem 1.14.

40 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

Configuration C2

Lemma 1.24. The graph G does not contain C2.

Proof. Assume that G has an even cycle v1 · · · v2nv1 such that for 1 6 i 6 n,
d(v2i−1) 6 4 and d(v2i−1) + d(v2i) 6 11.

Denote by G′ the graph obtained from G by removing the edges of the cycle.
Using the minimality of G, we can color G′. Remove the color of vertices with
odd subscript, and forget them since they have degree at most 4. Observe that
each edge of the cycle has now d(v2i)−1+d(v2i+1)−2 = 11−3 = 8 constraints.

By Corollary 1.19, we can color the edges of the cycle and obtain a valid
coloring of G.

We can also conclude using the Nullstellensatz: we have PG = (E1 −
E2) · · · (E2n−1 − E2n)(E1 − E2n) and m = E1 · · ·E2n, where e1, . . . , e2n are
the uncolored edges of G. We have:

1. deg(m) = 2n = deg(PG).

2. For 1 6 i 6 2n, degEi
(m) = 1 < 2 = |êi|.

3. The coefficient of m = E1 · · ·E2n in PG is then −2.

Using Theorem 1.14, we can extend the coloring to G.

Configuration C3

Lemma 1.25. The graph G does not contain C3.

Proof. We name the elements according to Figure 1.28. By minimality, we
color G′ = G \ {a, c, u} and we remove the color of b, v, w.

5v 6 u

5

w

a

b c

Figure 1.28 – Notation for Lemma 1.25

Observe that u has eight constraints, while a, c have seven and v, w, b have
six. Thus, there are at least two colors in û, three in â and ĉ and four in v̂, b̂ and
ŵ. By Remark 1.12, it is sufficient to treat the worst case: when |â| = |ĉ| = 3,
|v̂| = |ŵ| = |̂b| = 4 and |û| = 2.

We color c with a color not in û. If afterwards, we have |â| = 2, then
we color b with a color not in â (since |̂b| is now at least 3). Otherwise, we
color b arbitrarily. In both cases, we obtain |â| = 2 after coloring c and b. We
conclude the proof applying Lemma 1.22 on T (G) with the path wvua.

We can also conclude using the Nullstellensatz: the coefficient ofA2B3C2V 2W 3

in PG is 1. Hence, using Theorem 1.14, we can extend the coloring to G.

Induction Schemes: From Language Separation to Graph Colorings 41

1.4. Reducing configurations

Configuration C4

Lemma 1.26. The graph G does not contain C4.

Proof. Assume that G contains a path uvw such that d(u) = d(v) = d(w) = 5.
Note that we may assume that uw /∈ E(G) due to C3. We denote by a, b the
edges uv and vw.

We color by minimality the graph G′ obtained by removing a and b from
G. Then we uncolor u, v and w. By Remark 1.12, we may assume that |v̂| = 4,
|â| = |̂b| = 3 and |û| = |ŵ| = 2. We conclude using Lemma 1.22 on T (G) with
the path uavbw.

We can also conclude using the Nullstellensatz: the coefficient of A2B2V 2W
in PG is −1. Hence, using Theorem 1.14, we can extend the coloring to G.

Configuration C5

To prove thatG does not contain C5, it is sufficient to prove the three follow-
ing lemmas, one for each possible minimal triangle-distance between neighbors
of u satisfying the hypothesis of v1 and v2.

Lemma 1.27. The graph G does not contain a 7-vertex u with two (5, 6)-
neighbors v1, v2 such that uv1v2 is a triangle.

Proof. We use the notation depicted in Figure 1.29. By minimality, we color
G′ = G\{a, b, c, d, e, f, g} and uncolor u, v1, v2, w1, w2. By C3, there is no edge
w1v2 nor w2v1. Therefore, the only possible edge of G not on the drawing is
w1w2. By Remark 1.12, we may assume that |d̂| = |ĝ| = 3, |â| = |ĉ| = |û| = 4,
|ê| = |f̂ | = 5 and |v̂1| = |v̂2| = |̂b| = 6. Moreover, if w1w2 /∈ E(G), we can take
|ŵ1| = |ŵ2| = 2 and |ŵ1| = |ŵ2| = 3 otherwise. We remove a color α ∈ ê \ â

7

u

6w1

5
v1

5
v2

6 w2

d g

a
e f

cb

Figure 1.29 – Notation for Lemma 1.27

from û and ĝ. If w1w2 /∈ E(G), we apply Lemma 1.22 on T (G) with the path
w1dugw2, otherwise, we color w2 with a color not in ĝ and apply Lemma 1.22
on T (G) with the path w1dug. Due to the choice of α, either d is colored with
α and we have |â| = 3, or d is not colored with α, hence we still have α ∈ ê\ â.
In the first case, we color e arbitrarily, otherwise, we color e with α. Then we
color f and c and apply Lemma 1.22 on T (G) with the path av1bv2.

42 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

We can also conclude using the Nullstellensatz approach. Let

m = A2B5C3D2E4F 4G2U3V 4
1 V

5
2 W2.

If w1w2 /∈ E(G), m has coefficient 1 in PG. Otherwise, mW2 has coefficient
−1 in PG. Hence, using Theorem 1.14, we can extend the coloring to G.

Lemma 1.28. The graph G does not contain a 7-vertex u with four neighbors
v1, v2, v3, v4 such that d(v1) = d(v2) = d(v4) = 5, d(v3) = 6 and vivi+1 ∈ E(G)
for i = 1, 2, 3.

Proof. We use the notation depicted in Figure 1.30. By minimality, we color
G′ = G \ {a, b, c, d, e, f, g} and uncolor u, v1, v2, v3, v4. Due to C4, v1v4 and
v2v4 are not edges of G. Moreover, by C3, v1v3 /∈ E(G). Therefore, all the
edges between u, v1, . . . , v4 in G are drawn in the figure. By Remark 1.12,
we may assume that |v̂1| = |v̂3| = |v̂4| = |û| = |ĉ| = |d̂| = |f̂ | = |ĝ| = 4,
|â| = |̂b| = |ê| = 5 and |v̂2| = 6. We consider three cases:

7

u

5v1

5
v2

6
v3

5 v4

b ca

e f
gd

Figure 1.30 – Notation for Lemma 1.28

1. If v̂1 ∩ v̂3 6= ∅, we color v1 and v3 with the same color. Then we can
forget v2, a, b, e. We color f arbitrarily, then apply Lemma 1.22 on T (G)
with the path cv4gud.

2. If v̂1 ∩ v̂3 = ∅ and û 6= v̂1, we color u with a color not in v̂1, then we can
forget v1, a, v2, b, e, d. We color c arbitrarily and we apply Corollary 1.19
to the cycle v3v4gf in T (G).

3. Otherwise, we color u arbitrarily. Since û = v̂1 which is disjoint from
v̂3, this does not affect v̂3. Then, we color c with a color not in f̂ . We
again consider three subcases. After each of them, {v1, v2, v3, a, b} will
remain to be colored. To do it, we apply Lemma 1.22 on T (G) to the
path v1av2bv3.

(a) If v̂4 ∩ f̂ 6= ∅, then we color them with the same color, and color
g, d, e arbitrarily.

(b) If v̂4 ∩ f̂ = ∅ and ĝ 6⊂ f̂ , we color g with a color not in f̂ , then we
color v4. If |v̂3| = 2, we color f with a color in f̂ \ v̂3 (recall that, up

Induction Schemes: From Language Separation to Graph Colorings 43

1.4. Reducing configurations

to deleting an arbitrary color from v̂3, we may assume that |v̂3| = 2
after having colored v4), otherwise we color f arbitrarily. Then we
color d, e.

(c) Otherwise, we can color g with a color not in v̂4. Then we forget
v4, and color f, d, e arbitrarily.

We can also conclude using the Nullstellensatz: the coefficient of

A4B4C3D2E4F 3G3UV 5
2 V

3
3 V

3
4

in PG is 1. Hence, using Theorem 1.14, we can extend the coloring to G.

Lemma 1.29. The graph G does not contain a 7-vertex u with six neighbors
v1, . . . , v6 such that d(v1) = d(v2) = d(v5) = d(v6) = 5, d(v3) = d(v4) = 6 and
vivi+1 ∈ E(G) for 1 6 i 6 6.

Proof. We use the notation depicted in Figure 1.31. By minimality, we color
G′ = G \ {a, . . . , k} and uncolor u, v1, v2, v5, v6. By Remark 1.12, we may
assume that |ĉ| = 2, |̂b| = |d̂| = 4, |â| = |ê| = |ĥ| = |̂i| = 5, |û| = |f̂ | = |k̂| = 6
and |ĝ| = |̂j| = 7.

Note that due to C4, there is no edge vivj for i = 1, 2 and j = 5, 6. Thus,
we may assume that |v̂1| = |v̂6| = 4 and |v̂2| = |v̂5| = 5. We did not succeed

7

u
5v1

5v2

6
v3

6
v4

5 v5

5 v6

a

b
c

d

e
f

g

h i

j

k

Figure 1.31 – Notation for Lemma 1.29

in finding a suitable monomial for the Nullstellensatz approach, hence we only
present a case analysis proof. We color e with a color not in v̂6. We forget
v6 and v5, then color d, i and h with colors not in ĉ and forget c. We color
j, k, u, f, g, then apply Lemma 1.22 on T (G) with the path v1av2b.

Configuration C6

To prove that G does not contain C6, we prove the two following lemmas.

Lemma 1.30. The graph G does not contain a 5-vertex u adjacent to three
consecutive 6-vertices v1, v2, v3.

44 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

6
v2

5

u

6v1 6 v3

a

b

c

d e

Figure 1.32 – Notation for Lemma 1.30

Proof. We use the notation depicted in Figure 1.32. We color G \ {a, . . . , e}
by minimality, and then uncolor u, v1, v2, v3.

By Remark 1.12, we may assume that |v̂1| = |v̂3| = 3 or 2 depending on
whether v1v3 ∈ E(G), |d̂| = |ê| = 3, |v̂2| = |â| = |ĉ| = 4, |̂b| = 5 and |û| = 6.
Assume that the coloring cannot be extended to G. We prove several assertions
on the color lists.

1. If v1v3 /∈ E(G), then v̂1 ∩ v̂3 = ∅. Otherwise, assign the same color
to v1 and v3. We can forget u. Recall that now we may assume that
|d̂| = |ê| = 2 and |v̂2| = 3. If d̂ = ê, then color v2 and b with a color
not in d̂, and conclude using Corollary 1.19 on the cycle aced in T (G).
Otherwise, color d with a color not in ê, and then color a. To conclude,
apply Lemma 1.22 on T (G) with the path cbev2.

2. v̂2∩ â = ∅ (and by symmetry v̂2∩ ĉ = ∅). Otherwise, put the same color
on v2 and a and forget u, b, c. If v1v3 /∈ E(G), Item 1 ensures that the
common color is not in both v̂1 and v̂3. If it is not in v̂3, color v1, d, e, v3,
otherwise, v3, e, d, v1. If v1v3 ∈ E(G), we apply Corollary 1.19 on the
cycle v1v3ed in T (G).

3. v̂1 ⊂ û (and by symmetry v̂3 ⊂ û). Otherwise, color v1 with a color not
in û and forget u. Item 2 ensures that this color is not in both v̂2 and â.
If it is not in â, we forget a, c, b and apply Lemma 1.22 on T (G) with the
path dv2ev3. Otherwise, we color e with a color not in v̂3. Again, by Item
2, this color is not in both v̂2 and ĉ. If it is not in ĉ, color d, v2, a, b, v3, c,
otherwise, observe that |v̂2| = 4 and color d, c, a, b, v3, v2.

4. â ⊂ û (and by symmetry ĉ ⊂ û). Otherwise, color a with a color not in
u and forget u. Note that this does not affect v̂1. Color d, v1 such that
ê 6= v̂3, then e with a color not in v̂3. This color is not in both v̂2 and ĉ.
If it is not in ĉ, then color v2, v3, b, c, otherwise apply Corollary 1.19 on
the cycle v2v3cb in T (G).

5. v̂2 ⊂ û. Otherwise we can color v2 with a color not in û (and hence not
in v̂1 nor in v̂3 by Items 1 and 3) and then forget u. We consider two
cases:

Induction Schemes: From Language Separation to Graph Colorings 45

1.4. Reducing configurations

(a) Assume that v1v3 /∈ E(G). If v̂1 6= d̂, then color d with a color not
in v̂1, then color v3, c, b, a, v1. Otherwise, we also have v̂3 = ê by
symmetry, hence d̂ ∩ ê = v̂1 ∩ v̂3 = ∅ by Item 1. We may thus
color d with a color not in ê, color v1 and a arbitrarily and apply
Lemma 1.22 on T (G) with the path bcev3.

(b) Assume that v1v3 ∈ E(G). We color d, e, b arbitrarily and apply
Corollary 1.19 on the cycle v1v3ca in T (G).

We proved that â and v̂2 are disjoint and contained in û. Since |â| = |v̂2| = 4
and |û| = 6, this is a contradiction. Therefore, the coloring extends to G.

We can also conclude using the Nullstellensatz. Letm = A2B4C3D2E2U5V1V
3

2 V3.
If v1v3 /∈ E(G), the coefficient of m in PG is 1, otherwise, mV3 has coefficient
−2 in PG. Hence, using Theorem 1.14, we can extend the coloring to G.

Lemma 1.31. The graph G does not contain a triangulated 5-vertex u with
neighbors v1, . . . , v5 satisfying d(v1) = d(v3) = d(v5) = 6 and d(v2) = d(v4) =
7.

Proof. We use the notation depicted in Figure 1.33. We color G′ = G \
{a, . . . , j} by minimality, and then uncolor u, v1, . . . , v5. By Remark 1.12,

5u

6

v3

7v2

6v1 6 v5

7 v4
a
b

cd

e

f

g

h

i

j

Figure 1.33 – Notation for Lemma 1.31

we may assume that |v̂2| = |v̂4| = 2, |f̂ | = |ĝ| = |̂i| = |̂j| = 3, |v̂1| = |v̂3| =

|v̂5| = |ĥ| = 4, |̂b| = |ê| = 6, |â| = |ĉ| = |d̂| = 7 and |û| = 10. Moreover, for
1 6 i 6 5, |v̂i| may differ depending on the presence of edges between the vi’s
that are not on the figure, but we may assume that |v̂2|, |v̂4| are at least 2 and
|v̂1|, |v̂3|, |v̂5| are at least 4.

We do not have a case analysis proof in this case, only the Combinatorial
Nullstellensatz approach. Letm0 = A6B4C6D3E5F 2G2H3I2J2U9V 3

1 V2V
3

3 V4V
3

5 .
We distinguish several cases depending on the edges between the vi’s that may
not be in the figure. In each of them we define a monomial m and give its
coefficient in PG, so we can apply Theorem 1.14 to m in order to extend the
coloring to G.

First note that the subgraph H of G induced by the vi’s is an outerplanar
graph on five vertices. It has thus at most seven edges, so there are at most

46 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

two additional edges on the figure. Moreover, these edges must be non-crossing
diagonals of the pentagon formed by the vi’s, otherwise, there is a K4 minor
in H. Due to the symmetry, we may only consider the following cases:

1. There is no additional edge. Then we take m = m0 and m has coefficient
−1 in PG.

2. The only additional edge is v2v4. Then we take m = m0V2 and m has
coefficient −2 in PG.

3. The only additional edge is v1v3. Then we take m = m0V1 and m has
coefficient 1 in PG.

4. The only additional edge is v2v5. Then we take m = m0V2 and m has
coefficient −1 in PG.

5. The two additional edges are v2v4, v2v5. Then we take m = m0V
2

2 and
m has coefficient −2 in PG.

6. The two additional edges are v1v3, v3v5. Then we take m = m0V
2

3 and
m has coefficient 1 in PG.

7. The two additional edges are v1v3, v1v4. Then we take m = m0V3V4 and
m has coefficient 1 in PG.

In each case, we have degm = degPG, m has a non-zero coefficient in PG,
and for any element x of the configuration, degX m < |x̂|. Therefore, we can
extend the coloring to G.

Configuration C7

Lemma 1.32. The graph G does not contain a 7-vertex u with four neighbors
v1, . . . , v4 satisfying d(v1) = d(v2) = 5, d(v3) = 6, d(v4) = 4, and v1v2, v2v3 ∈
E(G).

Proof. We consider the notation depicted in Figure 1.34. By minimality, we
color G′ = G \ {a, . . . , f} and uncolor u, v1, v2, v3, v4.

5 v27

u

5v1

6v3

4v4

a

b

c

d

e

f

Figure 1.34 – Notation for Lemma 1.32

Induction Schemes: From Language Separation to Graph Colorings 47

1.4. Reducing configurations

By Remark 1.12, we may assume that |ĉ| = 3, |û| = |v̂4| = |â| = |d̂| =

|f̂ | = 4, |̂b| = |ê| = 5 and |v̂2| = 6. Moreover, none of v1, v2, v3 are adjacent to
v4 because of C1, and v1v3 /∈ E(G) because of C3. Hence, we have |v̂1| = 4,
|v̂3| = 2. We forget v4, then color c and u with colors not in v̂3, and color
a, d, b. We finally apply Lemma 1.22 on T (G) with the path v1ev2fv3.

We can also conclude using the Nullstellensatz. Let

m = A3B4C2D3E4F 3V 2
1 V

5
2 V3.

The coefficient of m in PG is −1. Hence, using Theorem 1.14, we can extend
the coloring to G.

Configuration C8

According to the definition of a S3-neighbor, if G contains C8, v1 is trian-
gulated and we are in one of the following cases:

• C8a: u and v1 have a common neighbor w of degree six.

• C8b: v1 has two neighbors w1, w2 of degree six such that uv1w1 and
uv1w2 are not triangular faces. Moreover, due to C8a, we know that
w1w2, v2w2 ∈ E(G) and uw1, uw2 /∈ E(G).

• C8c: v1 has a neighbor w of degree five such that uv1w is not a triangular
face.

We dedicate a lemma to each of these configurations.

Lemma 1.33. The graph G does not contain C8a.

Proof. We use the notation depicted in Figure 1.35. By minimality, we color
G \ {a, . . . , j} and uncolor u, v1, . . . , v4, w.

7
u

6 w

5v4

8

4
v3

7 v2

5 v1

c d

e

f
a
b

h

i

j

g

Figure 1.35 – Notation for Lemma 1.33

By Remark 1.12, we may assume that |̂b| = |ĝ| = 2, |̂i| = |̂j| = 4,
|d̂| = |f̂ | = |â| = |ĥ| = 5, |û| = |v̂3| = |ê| = 7 and |ĉ| = 8. More-
over, the sizes |v̂1|, |v̂2|, |ŵ|, |v̂4| depend on the presence of edges between the

48 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

vertices v1, v2, v4, w. Note that v3 is not adjacent to any of v1, v4, w by C1.
Moreover, |N(v4) ∩ {v1, w}| 6 1 by C3. We may thus assume that |v̂1| =
6 + |N(v1)∩ {v4}|, |v̂2| = 2 + |N(v2)∩ {v4, w}|, |v̂4| = 2 + |N(v4)∩ {v1, v2, w}|
and |ŵ| = 2 + |N(w) ∩ {v2, v4}|. We forget v3.

The following procedure shows how to extend the coloring to G, even if
some edges among v2w, v2v4, v1v4 and wv4 are present in G. Note that v2w
and v2v4 do not affect the procedure. We separate the first step in three cases:

1. If ĝ 6⊂ ĥ, we color g with a color not in ĥ, then we forget h, c and color
b, v2, d, i arbitrarily.

2. If ĝ ⊂ ĥ and b̂ = ĝ, then we color b and h with the same color, then color
g, v2, d, i arbitrarily and forget c.

3. Otherwise, we color b with a color not in g. Then, we color i with a color
not in ĥ \ ĝ, then v2, d arbitrarily,. The lists ĥ, ĝ are thus different lists
of size 2, so we can color h with a color not in ĝ, and forget g and c.

In each case, we are left with the same set of uncolored elements, namely
{u, v1, v4, w, a, e, f, j}. Moreover, we have |û| = |ê| = 4, |â| = |f̂ | = |̂j| = 3,
|v̂4| = 2 + |N(v4) ∩ {v1, w}| and |v̂1| = 4 + |N(v1) ∩ {v4}|.

We may assume that ê ∩ ŵ = ∅. Otherwise, we color w and e with the
same color. Then, we can forget v1, j and conclude using Lemma 1.22 on T (G)
with the path fuav4.

We now separate three cases depending on the presence of the edges v1v4

and wv4:

1. Assume there is an edge v1v4 in G. Then we have |v̂1| = 5 and |v̂4| > 3.
We consider two cases:

(a) If ĵ 6⊂ ê, we color j with a color not in ê, then color w and f . If
û = â, we color v4 and e with a color not in û, then color v1, u and
a. If û 6= â, we color a with a color not in û, and apply Lemma 1.22
on T (G) with the path ev1uv4.

(b) Otherwise, we color e with a color not in ĵ. As we have ĵ ∩ ŵ = ∅,
we can forget j, v1, v4, and conclude applying Lemma 1.22 on T (G)
with the path aufw.

2. Assume there is an edge wv4 but no edge v1v4. Thus we have |v̂1| = 4,
|v̂4| = 3 and |ŵ| = 3. Let α ∈ û \ v̂4. We separate two cases depending
on whether ê or ŵ does not contain α. Recall that α cannot be in both
ê and ŵ. In any case, we first color u with α and forget v4.

(a) Assume that α /∈ ŵ. If f̂ = â, we color e with a color not in f̂ , forget
a and apply Lemma 1.22 on T (G) with the path fwjv1. Otherwise,
we color f with a color not in â, forget a, and apply Lemma 1.22
on T (G) with the path ev1jw.

Induction Schemes: From Language Separation to Graph Colorings 49

1.4. Reducing configurations

(b) Assume that α /∈ ê. We color a arbitrarily. Let β ∈ f̂ . If β /∈ ê, then
color f with β and then w, j, v1, e. Otherwise, recall that ŵ∩ ê = ∅,
so β /∈ ŵ, and we color f with β and apply Lemma 1.22 on T (G)
with the path ev1jw.

3. Assume there is no edge v1v4 nor wv4. We thus have |v̂4| = 2, so we can
color a with a color not in v̂4, then forget v4. We consider three cases:

(a) If f̂ = ŵ, we have f̂ ∩ ê = ∅. We color j and u with a color not in
f̂ , then color e. Recall that this does not affect f̂ . Then we color
v1, w arbitrarily and f .

(b) If f̂ 6= ŵ and ĵ∩ û 6= ∅, we color j and u with the same color. Note
that f̂ 6= ŵ, hence we can color f and w, then e and v1.

(c) Otherwise, f̂ 6= ŵ and ĵ ∩ û = ∅. We color f with a color α /∈ ŵ.
Free to exchange u and j in T (G), we may assume that α /∈ û.
Since ê ∩ ŵ = ∅, we can color either e or w with a color not in û.
We color j, either w or e, v1 and u.

We can also conclude using the Nullstellensatz. Let

m0 = A4BC6D4E6F 4GH4I3J3V 5
1 V4W

We distinguish several cases depending on which edges are present between
v1, v2, v4 and w. In each case, we define a monomial with non-zero coefficient
in PG, so that Theorem 1.14 ensures that the coloring extends to G. First
observe that since G is planar, only one of the edges v1v4 and v2w is present
in G.

1. If no additional edge is present in G, then we take m = m0CU
2V2 which

has coefficient 3 in PG.

2. If the only additional edge is v2v4, then we take m = m0CUV
2

2 V4 which
has coefficient 2 in PG.

3. If the only additional edge is v4w, then we take m = m0CUV2V4W which
has coefficient −1 in PG.

4. If the only additional edge is v2w, then we take m = m0CUV
2

2 W which
has coefficient 1 in PG.

5. If the only additional edge is v1v4, then we take m = m0CU
3V4 which

has coefficient −2 in PG.

6. If the only additional edges are v2v4 and v4w, then we takem = m0CV
2

2 V
2

4 W
which has coefficient 3 in PG.

50 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

7. If the only additional edges are v1v4 and v2v4, then we takem = m0CV1V
2

2 V
2

4

which has coefficient 3 in PG.

8. If the only additional edges are v1v4 and v4w, then we takem = m0CV1V2V
2

4 W
which has coefficient −3 in PG.

9. If the only additional edges are v2v4 and v2w, then we takem = m0CV
3

2 V4W
which has coefficient −3 in PG.

10. If the only additional edges are v2w and v4w, then we takem = m0UV
2

2 V4W
2

which has coefficient −1 in PG.

11. If the only additional edges are v1v4, v2v4 and v4w, then we take m =
m0CV1V2V

3
4 W which has coefficient 3 in PG.

12. If the only additional edges are v2v4, v2w and v4w, then we take m =
m0CV

2
2 V

2
4 W

2 which has coefficient −1 in PG.

Lemma 1.34. The graph G does not contain C8b.

Proof. We consider the notation of Figure 1.36. By minimality, we color G \
{a, . . . , h} and uncolor v1, v2, v3, w1, w2. By Remark 1.12, we may assume that

7
u

8

4
v3

7
v2

5
v1

6 w1

6 w2

a b c
d

e

f
g

h

Figure 1.36 – Notation for Lemma 1.34

|ê| = 2, |â| = |ĝ| = |ĥ| = 3, |ŵ2| = |f̂ | = 4, |v̂3| = |̂b| = |d̂| = 5, |ĉ| = 6,
|v̂1| = 7. Moreover, |v̂2|, |ŵ1| are 2 or 3 depending on the presence of the edge
v2w1 in G. We forget v3.

We color a with a color not in ê, then forget e, f . The resulting configura-
tion is now the same as in Lemma 1.30.

Lemma 1.35. G does not contain C8c.

Proof. We use the notation depicted in Figure 1.37. Note that we may assume
that, if w 6= v4, uw /∈ E(G) due to Lemma 1.33. By minimality, we color
G′ = G \ {a, . . . , g} and uncolor u, v1, v2, v3, v4, w. By Remark 1.12, we may
assume that |ĉ| = 3, |û| = |ê| = |f̂ | = 4, |̂b| = |d̂| = 5 and |v̂1| = |v̂3| = 6.

Moreover, if w = v4, we have |â| = 4 and |ĝ| = 5, otherwise, |â| = 3 and
|ĝ| = 4. We may also assume that |v̂2|, |v̂4|, |ŵ| are 2, 3 or 4 depending on
whether v2v4, v2w ∈ E(G). We forget v3.

Induction Schemes: From Language Separation to Graph Colorings 51

1.4. Reducing configurations

7
u

8

4
v3

7
v2

5
v1

5v4 5
w

b c

da

e

f
g

Figure 1.37 – Notation for Lemma 1.35

If w = v4, we color v2, c and u arbitrarily. Then, we color v4 with a color
not in â. We then color a such that ĝ 6= v̂1 if they have both size 3. Then, we
color the even cycle induced by {b, e, f, d}. We then obtain that |ĝ| = |v̂1| = 1,
but ĝ 6= v̂1, hence we can color them.

Assume now that w 6= v4. Take α ∈ d̂ \ f̂ , and remove it from û and â. If
v2v4 /∈ E(G), apply Lemma 1.22 on T (G) with the path v2cuav4, otherwise,
color v4 with a color not in â and apply Lemma 1.22 on T (G) with the path
v2cua. Due to the choice of α, we now have d̂ 6= f̂ if |d̂| = |f̂ | = 2. We have
the following:

1. |d̂ ∪ f̂ | > 3, otherwise we color v̂1 with a color not in d̂ nor in f̂ , then
color w and apply Lemma 1.20 on T (G) with the cycle dbef and the
element g.

2. ŵ ⊂ v̂1, otherwise we color w with a color not in v̂1, then forget v1, g,
and apply Corollary 1.19 to color the cycle bdfe in T (G).

3. f̂ ∩ ŵ = ∅, otherwise we can color f, w with the same color, and then
color e, b, d, v1, g arbitrarily. Therefore, we may assume that ŵ is disjoint
from f̂ and (by symmetry) from d̂.

Therefore, we can color either d or f with a color not in v̂1. We then forget
v1, g, w and color b, e, f (or e, b, d).

We can also conclude using the Nullstellensatz. Take

m0 = A2B4C2D4E3F 3G3UV 4
1 V2V4

We distinguish several cases depending on whether w = v4, and on the presence
of edges between uncolored vertices that are not drawn. Here the only such
edges are v2w and v2v4. In each case, we define a monomial with non-zero
coefficient in PG, so that Theorem 1.14 ensures that the coloring extends to G.

1. If w = v4 and v2w /∈ E(G), then we takem = A3B4C2D4E3F 3G4V 4
1 V2W

3

which has coefficient −1 in PG.

2. If w = v4 and v2w ∈ E(G), then we takem = A3B4C2D4E3F 3G4V 5
1 V2W

3

which has coefficient 2 in PG.

52 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

3. If w 6= v4 and there is no additional edge between v2, v4 and w, then we
take m = m0UV1, which has coefficient −2 in PG.

4. If w 6= v4 and the only additional edge is v2w, then we define m =
m0V2W

2, which has coefficient −1 in PG.

5. If w 6= v4 and the only additional edge is v2v4, then we define m =
m0V2V4W , which has coefficient −2 in PG.

6. If w 6= v4 and the only additional edges are v2v4 and v2w, then we define
m = m0UV2W

2, which has coefficient −5 in PG.

Configuration C9

Note that G does not contain C8, therefore, if G contains C9, we are in one
of the following cases:

• C9a: the common neighbor of v1, u and v2 has degree 7 and v1 is an
S5-neighbor of u.

• C9b: the common neighbor of v1, u and v2 has degree 8 and v1 is a (6, 8)-
neighbor of u.

• C9c: the common neighbor of v1, u and v2 has degree 8 and v1 has two
neighbors w1, w2 of degree 6 such that uv1w1 and uv1w2 are not triangular
faces

• C9d: the common neighbor of v1, u and v2 has degree 8 and v1 has a
neighbor w of degree 5 such that uv1w is not a triangular face.

We dedicate a lemma to each of these configurations.

Lemma 1.36. The graph G does not contain C9a.

Proof. We use the notation depicted in Figure 1.38. By minimality, we color
G\{a, . . . ,m} and uncolor u, v1, v2, v3, w1, w2. By Remark 1.12, we may assume
that |ĝ| = |ĥ| = 2, |â| = |̂̀| = |m̂| = |n̂| = 3, |̂i| = 5, |ĉ| = |ê| = |̂j| = |k̂| = 6,
|f̂ | = |v̂2| = 7, |û| = |v̂1| = 8, |̂b| = 9 and |d̂| = 10.

Moreover, note that the only edges of G between uncolored vertices that
may not be present on the figure are w1w2 and w2v3. Depending on the presence
of these edges, |ŵ2| is 2, 3 or 4, |ŵ1| is 2 or 3 and |v̂3| is 4 or 5.

We first forget v2, and color j with a color not in î. Then we color m,n,w2,
and forget i, b, h.

To color the remaining graph G′, we do not have a case analysis proof, we
use the Combinatorial Nullstellensatz. The coefficient of

U6V 3
1 V

3
3 W1A

2C3D6E3F 6GK2L2

in PG is −2. Therefore, by Theorem 1.14, we can extend the coloring to G.

Induction Schemes: From Language Separation to Graph Colorings 53

1.4. Reducing configurations

7u 5 v1

4

v2

5v3

8
7
w2

8
7
w1

7

7
g

a b c
d

ef

h
i

j

k
`

m

n

Figure 1.38 – Notation for Lemma 1.36

Lemma 1.37. The graph G does not contain C9b.

Proof. We use the notation depicted in Figure 1.39. By minimality, we color
G′ = G \ {a, . . . , `} and uncolor u, v1, v2, v3, w. By Remark 1.12, we may

7u 5 v1

4

v2

5v3

7
8

8
6 w

a b c
d

efg

h
i

j

k
`

Figure 1.39 – Notation for Lemma 1.37

assume that |ĝ| = |̂j| = 2, |ĥ| = |̂i| = 3, |ŵ| = |â| = |ĉ| = |̂̀| = 4, |k̂| = 5,
|v̂2| = 6, |û| = |ê| = |f̂ | = 7, |d̂| = 8 and |̂b| = 9.

Note that, due to C3, v1v3 /∈ E(G). Moreover, due to C1, v2 is not adjacent
to v1, v3, w. Since the graph G is simple, all the edges of G between uncolored
vertices are drawn in the figure. We may thus assume that |v̂1| = 5 and
|v̂3| = 4.

We forget v2, then we color i and c with a color not in ĵ. We then color
g, then e with a color not in ŵ, then a, h, and finally v3 with a color not in ̂̀.
We separate two cases:

1. If û = f̂ , we color b and d with some colors not in û. Then we color j
arbitrarily, and color v1 with a color not in û, then k. We color w with
a color α. If α ∈ f̂ , then we can also color f with α, then color u and `.
Otherwise, we color `, f, u.

2. If û 6= f̂ , we color f with a color not in û. We again separate two cases:

(a) If b̂ = û, we color d with a color not in b̂, then j. We forget b and
apply Lemma 1.22 on T (G) with the path uv1wk`.

54 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

(b) If b̂ 6= û, we can color d with a color not in ĵ and still color b and
u afterwards. We then apply Lemma 1.22 on T (G) with the path
jv1kw`.

We can also conclude using the Nullstellensatz: the coefficient of

A3B8C3D7E6F 6GH2I2JK4L3V 3
1 V

3
3 W

3

in PG is −3. Hence, using Theorem 1.14, we can extend the coloring to G.

Lemma 1.38. The graph G does not contain C9c.

Proof. We use the notation depicted in Figure 1.40. By minimality, we color
G\{a, . . . , q} and uncolor u, v1, v2, v3, w1, w2. By Remark 1.12, we may assume

7u 5 v1

4

v2

5v3

7
8

8
8

6
w2

6
w1

a b c
d

efg

j n

ok

h
i

m

q

p
`

Figure 1.40 – Notation for Lemma 1.38

that |m̂| = |p̂| = |̂̀| = 2, |ĥ| = 3, |â| = |̂i| = |q̂| = 4, |ĉ| = |ê| = |̂j| = |k̂| = 5,
|v̂2| = 6, |f̂ | = |n̂| = |ô| = 7, |v̂1| = 8, |̂b| = 9 and |d̂| = 10.

Moreover, |ĝ|, |û|, |v̂3|, |ŵ1| and |ŵ2| may differ depending on the presence
of edges between these vertices that are not on the figure, and whether g is
incident to w1 or w2. However, we still have at least 2 colors in ĝ, 3 in ŵ1, v̂3, ŵ2

and 6 in û.
We did not succeed in finding a suitable monomial for the Nullstellensatz

approach, hence we only present a case analysis proof. We forget v2, then color
a with a color not in ĥ and g arbitrarily. Then we forget h, b, i. We color `
such that û and f̂ are not the same set of size 4 afterwards, then p, e. We
color m such that ŵ1, ŵ2 are not the same set of size 2, then c, k, j. We then
separate three cases:

1. Assume that g is not incident to w1, w2 and that f̂ = v̂3. We color u
with a color not in f̂ and forget v3, f . We have three cases:

(a) If ŵ2 = q̂ (or ŵ1 = q̂ by symmetry), we color w1 with a color not in
q̂, then o with a color not in q̂, and we apply Lemma 1.22 on T (G)
with the path dv1nw2q.

Induction Schemes: From Language Separation to Graph Colorings 55

1.4. Reducing configurations

(b) If ŵ2 6= q̂ and moreover, q̂ 6⊂ ŵ1 ∪ ŵ2, we color q with a color not in
this union. We color w2 with a color not in ŵ1, color n, and apply
Lemma 1.22 on T (G) with the path dv1ow1.

(c) Otherwise, we have ŵ2 = {α, β}, ŵ1 = {γ, δ} and q̂ = {α, γ} (with
possibly β = δ). Therefore, there are two possible colorings for
{w1, w2, q} hence at least one of them ensures that v̂1 6= d̂. We then
apply Theorem 1.21 on {v1, d, n, o}.

2. Assume that g is not incident to w1, w2 and that f̂ 6= v̂3.

Since |ŵ1| 6= |ŵ2|, {w1, w2, q} is colorable. Moreover, there are at least
two different colorings for this set. Therefore, we may always color
w1, w2, q such that afterwards we have n̂ 6= ô if they are lists of size
two.

If |n̂ ∪ ô| = 3, we can color v1 with a color not in n̂ ∪ ô, then color u.
Since f̂ 6= v̂3, we can color f, v3, then d. Finally, we can color n and o
since n̂ 6= ô.

Otherwise, we have |n̂∪ ô| > 3. We may thus color v3, f, u (since v̂3 6= f̂)
and apply Theorem 1.21 on {v1, d, n, o}.

3. Assume that g is incident to w1 or w2. Free to exchange w1 and w2, we
may assume that g = uw1. The situation is depicted on Figure 1.41. We
may thus assume that |f̂ | = |q̂| = |ŵ2| = 2, |û| = |v̂3| = 3, |d̂| = |n̂| =
|ô| = |ŵ1| = 4 and |v̂1| = 6.

7u 5 v1

5v3

6
w2

6
w1

d

f

n

o
q

Figure 1.41 – Remaining elements for Lemma 1.38

If n̂ = ô, we color w2 arbitrarily, otherwise, there exists α ∈ n̂ 6= ô and we
color w2 not with α. We then color q and w1 such that f̂ 6= v̂3 afterwards.

Due to the choice for the color of w2, we now have n̂ 6= ô if they have
size two. We have n̂ 6= ô and f̂ 6= v̂3, hence may now apply the same
procedure as in the previous item.

Lemma 1.39. The graph G does not contain C9d.

Proof. We use the notation depicted in Figure 1.42. By definition, there is an
edge m between w and either w1 or w2. We separate three cases depending

56 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

7u 5
v1

4

v2

5v3

7
8 w2

8
8 w1

a b c
d

e
fg

h
i

j

k

`

7u 5
v1

4

v2

5v3

7
8 w2

8
8
w1

5
w

a b c
d

efg

h
i

j

k
`

mn

7u 5
v1

4

v2

5v3

7
8
w2

8
8 w1

5
w

a b c
d

efg

h
i

j

k

`

m

Figure 1.42 – Notation for Lemma 1.39

on whether w = v3, and whether m = ww1 or m = ww2. In each case, we
color by minimality the graph G′ obtained from G by removing a, . . . , ` and
the labeled edges incident to m if w 6= v3. We then uncolor u, v1, v2, v3 and the
endpoints of m if w 6= v3.

Observe that if w 6= v3, there is no edge v3w nor v1v3 in E(G) due to C4.
Moreover, since v3 is a weak neighbor of u, we cannot have g = uw either
(otherwise, v1wv3 creates C4).

By Remark 1.12, we may assume that:

1. If w = v3, |ĝ| = |k̂| = 2, |ê| = |ĥ| = |̂i| = |̂j| = 3, |v̂3| = |â| = |ĉ| = 4,
|û| = |v̂1| = |v̂2| = |̂̀| = 6, |f̂ | = 7 and |̂b| = |d̂| = 9.

2. If m = ww1, |ŵ1| = |ĝ| = 2, |ĥ| = |̂i| = |̂j| = |m̂| = |n̂| = 3, |v̂3| = |ŵ| =
|â| = |ĉ| = 4, |k̂| = 5, |v̂2| = |ê| = |̂̀| = 6, |û| = |v̂1| = |f̂ | = 7, and
|̂b| = |d̂| = 9.

3. If m = ww2, |v̂3| = |ŵ2| = |ĝ| = |k̂| = 2, |ê| = |ĥ| = |m̂| = 3, |ŵ| = |â| =
4, |ĉ| = |̂i| = |̂j| = 5, |f̂ | = |̂̀| = 6, |v̂1| = |v̂2| = |û| = 7 and |̂b| = |d̂| = 9.

In each case, we forget v2, then color a with a color not in ĥ, forget h, b, i
and color g.

We consider two cases depending on whether w and v3 are equal.

1. Assume that w = v3. We color e, c, k, j arbitrarily, then v3 with a color
not in f̂ , then u, and we apply Lemma 1.22 on T (G) with the path f`dv1.

2. Assume that w 6= v3. We show how to obtain the same configuration
regardless of whether m = ww1 or m = ww2.

(a) If m = ww1, we color w1 arbitrarily, then n such that û 6= f̂ if
|û| = |f̂ | = 4 afterwards and finally color m, e, k, c, j.

(b) If m = ww2, we color e, k, thencolor w2 such that û 6= f̂ if |û| =

|f̂ | = 3 afterwards, and finally we color c,m, j arbitrarily.

Induction Schemes: From Language Separation to Graph Colorings 57

1.4. Reducing configurations

In both cases, the same set of uncolored elements remains. If f̂ = v̂3, we
color u with a color not in f̂ , then forget v3, f and apply Lemma 1.22
on T (G) with the path dv1`w. Otherwise, we color u such that v̂1 6= ̂̀
if |v̂1| = |̂̀| = 3 afterwards. Then we can color v3 and f , then d, w and
v1, `.

We can also conclude using the Nullstellensatz. We distinguish several
cases depending on whether w = v3, m = ww1 or m = ww2 and whether
v3w2 ∈ E(G). In each case, we define a monomial with non-zero coefficient in
PG, so that Theorem 1.14 ensures that the coloring extends to G.

1. If w = v3, then AB8C3D8E2F 6GH2I2J2KL5U4V 4
1 V

3
3 has coefficient 1

in PG.

2. If m = ww1, then AB8C3D7E5F 6GH2I2J2K4L4M2N2U6V 6
1 V

3
3 W

3W1

has coefficient −1 in PG.

3. Ifm = ww2 and v3w2 /∈ E(G), thenAB8C4D8E2F 5GH2I4J4KL5M2U6V 5
1 V3W

3W2

has coefficient 1 in PG.

4. Ifm = ww2 and v3w2 /∈ E(G), thenA3B8C3D8E2F 5GH2I4J4KL5M2U4V 5
1 V

2
3 W

3W 2
2

has coefficient 1 in PG.

Configuration C10

Lemma 1.40. The graph G does not contain a 7-vertex u with three weak
neighbors v1, v2, v3 of degree 4 and a neighbor v4 of degree 7.

Proof. As G does not contain C2, we may assume that v4 is adjacent to only
one vertex among {v1, v2, v3}. Moreover, due to C1, we may assume (up to
renaming the vertices) that the situation is depicted in Figure 1.43. By mini-
mality, we color G′ = G \ {a, . . . ,m} and uncolor u, v1, v2, v3.

7u 4
v2

4

v1

4v3

8

8

7v4

8

a b c
d

efg

h
i

j

k

`

m

Figure 1.43 – Notation for Lemma 1.40

By Remark 1.12, we may assume that |ĥ| = 2, |â| = |̂i| = |̂j| = |k̂| = |̂̀| =
|m̂| = 3, |ĉ| = |ê| = |ĝ| = 4, |û| = |v̂1| = |v̂2| = |v̂3| = 6 and |̂b| = |d̂| = |f̂ | = 9.

58 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

We forget v1, v2, v3 and color h arbitrarily. Take α ∈ f̂ \ b̂, and remove it
from ̂̀and m̂. Assume that we can color every element excepted b and f . If α
appears on a, c, d, e, g or u, we end up with |̂b| = 2 and |f̂ | = 1, thus we color
f then b. Otherwise, we can color f with α, and then b since α /∈ b̂.

We can thus forget b and f . Then we can also forget u and d. We then
color g with a color not in â, then m and `. As |â| = |̂i| = 2 and |ĉ| = 3, we
can color i such that â 6= ĉ afterwards. We conclude applying Lemma 1.20 on
T (G) with the cycle cjke and the element a.

We can also conclude using the Nullstellensatz: the coefficient of

B6C2D8E3F 8G3HI2J2K2L2M2U4

in PG is −2. Hence, using Theorem 1.14, we can extend the coloring to G.

Configuration C11

Due to the definitions of C11 and S3-neighbor, if G contains C11, then we
are in one of the following cases:

• C11a: distu(v1, v3) = 2 and the common neighbor w of v1, u and v3 has
degree seven.

• C11b: distu(v1, v3) = 3 and u, v3 share a common neighbor w1 of degree
six.

• C11c: distu(v1, v3) = 3 and v3 has two neighbors w2, w3 of degree six.

• C11d: distu(v1, v3) = 3 and v3 has a neighbor w of degree five.

We dedicate a lemma to each of these configurations.

Lemma 1.41. The graph G does not contain C11a.

Proof. We use the notation depicted in Figure 1.44. By minimality, we color
G′ = G \ {a, . . . , `} and uncolor u, v1, v2, v3, w.

By Remark 1.12, we may assume that: |f̂ | = |k̂| = |ŵ| = 2, |ê| = |̂i| =

|̂j| = |̂̀| = 3, |v̂3| = |ĉ| = 4, |ĥ| = 5, |â| = |v̂2| = 6, |û| = |v̂1| = |ĝ| = 7 and
|̂b| = |d̂| = 9.

We forget v1, v2, then color a with a color not in ŵ ∪ ̂̀, then f, e, k, c, j, i.
We then color u with a color not in ŵ. Remove a color α ∈ b̂ \ d̂ from ĥ, if
any. Apply Lemma 1.22 on T (G) with the path gv3`wh. Due to the choice of
α, either g has color α and we have |d̂| = 2, |̂b| = 1 and we can color b, d, or
we can color b with α and color d since |d̂| = 1.

Induction Schemes: From Language Separation to Graph Colorings 59

1.4. Reducing configurations

7u

4v1

4

v2

5 v3

8
8

8

7
w

a

b

c d e

fg

h

i

j k

`

Figure 1.44 – Notation for Lemma 1.41

We can also conclude using the Nullstellensatz: the coefficient of

A5B7C2D8E2FG6H4I2J2KL2U4V 3
3 W

in PG is −1. Hence, using Theorem 1.14, we can extend the coloring to G.

Lemma 1.42. The graph G does not contain C11b.

Proof. We use the notation depicted in Figure 1.45. By minimality, we color
G′ = G \ {a, . . . , n} and uncolor u, v1, v2, v3, w1, w2. By Remark 1.12, we may

7u

4
v2

4v1

5 v3

7
w2

8

6
w1

8

a

b

c d e

fg

h

i

j k

`

m

n

Figure 1.45 – Notation for Lemma 1.42

assume that: |̂̀| = 2, |̂i| = |̂j| = |k̂| = |n̂| = 3, |ŵ1| = |ĉ| = |ê| = 4,
|ĥ| = |m̂| = 5, |â| = |v̂2| = 6, |ĝ| = |v̂1| = 7, |û| = |f̂ | = 8 and |̂b| = |d̂| = 9.

If v3w2 ∈ E(G), we have |v̂3| = 6 and |ŵ2| = 3. Otherwise, we may assume
that |v̂3| = 5 and |ŵ2| = 2.

We forget v1, v2 and color k, ` arbitrarily. Then we remove a color α ∈ b̂\ d̂
from ĥ and î. Assume that we can color every element excepted b and d. Then
either α appears on a, c, e, f, g, u and we have |̂b| = 1 and |d̂| = 2, or α is still
in b̂ at the end, therefore, we have b̂ 6= d̂. In both cases, we can color b and d.

We may thus forget b and d. We remove a color β ∈ û \ f̂ from ŵ1 and
ŵ2. We color w2, n, w1,m, v3, h, i, j, c, e, a, g. Due to the choice of β, either β

60 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

appears on a, c, e, g or v3 and we have |û| = 1 and |f̂ | = 2, or β is still in û so
û 6= f̂ . We can thus color u then f .

We can also conclude using the Nullstellensatz. Let

m = B4C3D8E3F 7G6H4I2J2K2LM4N2U7V 4
3 W

3
1W2

If v3w2 /∈ E(G), the coefficient of m in PG is 3, otherwise, mV3W2

B
has coefficient

−2 in PG. Hence, using Theorem 1.14, we can extend the coloring to G.

Lemma 1.43. The graph G does not contain C11c.

Proof. We use the notation depicted in Figure 1.46. By minimality, we color
G \ {a, . . . , q} and uncolor u, v1, v2, v3, w1, w2, w3. By Remark 1.12, we may

7u 5 v3

4

v2

7

8
8
w1

4v1

8

6
w2

6
w3

ab

c d e
f

g

h

i

j k

`

m

n

o

p

q

Figure 1.46 – Notation for Lemma 1.43

assume that: |ĝ| = |ĥ| = |̂i| = |̂j| = |m̂| = |n̂| = |q̂| = 3, |ŵ2| = |â| = |ĉ| = 4,
|k̂| = 5, |v̂1| = |ê| = |̂̀| = |p̂| = 6, |û| = |v̂2| = |ô| = 7, |v̂3| = |̂b| = |d̂| = 9 and
|f̂ | = 10. Moreover, depending on the presence of the edge w1w3 in E(G) we
may assume that |ŵ1|, |ŵ3| are 2 or 3.

We did not succeed in finding a suitable monomial for the Nullstellensatz
approach, hence we only present a case analysis proof. We forget v1, v2 and
we color a with a color not in ĥ. Then we forget h, b, i, d, j, k and color c with
a color not in ĝ.

Note that if w1w3 /∈ E(G), then we may assume that ŵ1∩ŵ3 = ∅, since oth-
erwise we color them with the same color, then color g,m, n, q, w2, e, `, o, p, u, f, v3.

We remove a color α ∈ v̂3 \ f̂ from ŵ1, ŵ2, ŵ3. Assume that we can color
every element excepted v3 and f . Either α appears on `,m, o, p or u so |v̂3| = 1

and |f̂ | = 2, or α is still in v̂3 at the end, so v̂3 6= f̂ . Thus we can extend the
coloring to v3 and f . We may thus forget v3 and f , and then o, p, `,m, u, e, g
also. Considering the edge w1w3, we have two cases:

1. If w1w3 /∈ E(G), ŵ1 and ŵ3 are disjoint, so at most one of them (say w)
loses a color when we removed α. We color w, then apply Lemma 1.22
to T (G) with the path nw2qw3 if w = w1 or qw2nw1 if w = w3.

Induction Schemes: From Language Separation to Graph Colorings 61

1.4. Reducing configurations

2. Assume that w1w3 ∈ E(G). If ŵ1 = ŵ3, we color w2 with a color not in
ŵ1, then apply Corollary 1.19 on the cycle w1w3qn in T (G). Otherwise,
we color w1 with a color not in ŵ3, then apply Lemma 1.22 on T (G)
with the path w3qw2n.

Lemma 1.44. The graph G does not contain C11d.

Proof. We use the notation depicted in Figure 1.47. By minimality, we color
G′ = G \ {a, . . . , n} and uncolor u, v1, v2, v3, w.

7u 5
v3

4

v2

7

8
8
w1

4v1

8

5
w

ab

c d e
f

g

h

i

j k

`

m

n

Figure 1.47 – Notation for Lemma 1.44

By Remark 1.12, we may assume that: |ŵ| = |m̂| = 2, |ĝ| = |ĥ| = |̂i| =

|̂j| = |k̂| = |̂̀| = 3, |â| = |ĉ| = |ê| = 4, |n̂| = 5, |û| = |v̂1| = |v̂2| = |v̂3| = 6 and
|̂b| = |d̂| = |f̂ | = 9.

We forget v1, v2, then color a with a color not in ĥ. We forget h, b, i, d, j, k
and color g,m, `, e, c, u arbitrarily. We conclude by applying Lemma 1.22 on
T (G) to the path fv3nw.

We can also conclude using the Nullstellensatz: the coefficient of

B7C3D8E3F 8G2H2I2JK2L2MN3U5V 5
3 W

in PG is −3. Hence, using Theorem 1.14, we can extend the coloring to G.

Configuration C12

Note that, when v3 is an S3-neighbor of u, it cannot be a (6, 6+)-neighbor
of u otherwise we obtain C1 since the 6-vertex would be adjacent to v1 or v2.
Thus, due to the definitions of C12 and S3-neighbor, if G contains C11, then
we are in one of the following cases:

• C12a: v1 is a (7, 7)-neighbor of u.

• C12b: v3 is a (7, 7)-neighbor of u.

• C12c: v1 is a (7, 8)-neighbor of u and v3 has two neighbors w2, w3 of degree
6 such that uv3w2, uv3w3 are not triangular faces.

62 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

• C12d: v1 is a (7, 8)-neighbor of u and v3 has a neighbor w of degree 5
such that uv3w is not a triangular face.

We dedicate a lemma to each of these configurations.

Lemma 1.45. The graph G does not contain C12a.

Proof. We use the notation depicted in Figure 1.48. By minimality, we color
G′ = G \ {a, . . . , n} and uncolor u, v1, v2, v3, w.

7u 5 v3

4
v1

4
v2

7
7 w

8
8

a b c
d

efg

h
i

j

k

`
m

Figure 1.48 – Notation for Lemma 1.45

By Remark 1.12, we may assume that: |ŵ| = |k̂| = |m̂| = 2, |ĝ| = |ĥ| =

|̂̀| = 3, |â| = |ê| = |̂j| = 4, |v̂3| = |̂i| = 5, |v̂2| = |ĉ| = 6, |û| = |v̂1| = 7, |d̂| = 8

and |̂b| = |f̂ | = 9.
We forget v1, v2 and color m in order to obtain ̂̀ 6= k̂. Then we remove

from ĥ and î a color α ∈ b̂ \ f̂ . We can forget b and f . Indeed, if we can color
the remaining elements and α appears on a, c, d, e, g, or u, we end up with
|f̂ | = 2 and |̂b| = 1. Otherwise, at the end, we still have α ∈ b̂ but α /∈ f̂ , thus
we may color b with α and end up with |f̂ | > 0.

We now color ` and e with colors not in k̂. Then we color g, w, a, h arbi-
trarily. If ĉ = î, we color j with a color not in ĉ, then k. We forget i and apply
Lemma 1.22 on T (G) with the path cudv3. Otherwise, we color j with a color
not in k̂, then i and c (since î 6= ĉ) and apply Lemma 1.22 on T (G) with the
path udv3k.

We can also conclude using the Nullstellensatz: the coefficient of

A3B7C5D7E3F 8G2H2I4J3KL2MUV 4
3 W

in PG is 3. Hence, using Theorem 1.14, we can extend the coloring to G.

Lemma 1.46. The graph G does not contain C12b.

Proof. We use the notation depicted in Figure 1.49. By minimality, we color
G′ = G \ {a, . . . ,m} and uncolor u, v1, v2, v3, w1, w2.

Induction Schemes: From Language Separation to Graph Colorings 63

1.4. Reducing configurations

7u 5 v3

4
v1

4
v2

8
7 w2

8
7 w1

a b c
d

efg

h
i

j

k

`
m

Figure 1.49 – Notation for Lemma 1.46

By Remark 1.12, we may assume that: |ŵ1| = |ŵ2| = |ĥ| = |m̂| = 2,
|â| = |ĝ| = 3, |̂j| = |k̂| = 4, |̂i| = |̂̀| = 5, |v̂3| = |ĉ| = |ê| = 6, |v̂1| = |v̂2| = 7,
|û| = |d̂| = 8 and |̂b| = |f̂ | = 9.

We forget v1, v2, color m, then remove from ĥ and î a color α ∈ b̂ \ f̂ . We
then color h, a, g, w2, i, j, c. We color v3 with a color not in k̂, then w1, apply
Lemma 1.22 on T (G) with the path udek and finally color `.

Note that due to the choice of α, if α appears on u, a, c, d, e or g then
|f̂ | = 2, so we can color b and f . Otherwise, we can put color α on b and then
color f (since α /∈ f̂).

We can also conclude using the Nullstellensatz. Let

m = B3C4D7E5F 8G2HI4J3K3L4MU7V 5
3 W1W2

If w1w2 /∈ E(G), the coefficient ofm in PG is 3, otherwise, mW1W2

B
has coefficient

1 in PG. Hence, using Theorem 1.14, we can extend the coloring to G.

Lemma 1.47. The graph G does not contain C12c.

Proof. We use the notation depicted in Figure 1.50. Recall that v1 is a (7, 8)-
neighbor of u, hence w or w4 has degree 7. By minimality, we color G \
{a, . . . , r} and uncolor u, v1, v2, v3, w1, w2, w3, w4. By Remark 1.12, we may
assume that: |m̂| = 2, |ĝ| = |q̂| = 3, |r̂| = 4, |̂̀| = 5, |ê| = |k̂| = 6, |ô| = |p̂| =
|v̂1| = |v̂2| = 7, |û| = 8, |̂b| = |f̂ | = 9 and |v̂3| = |d̂| = 10. Moreover, depending
on the presence of edges between the wi’s, their lists size may vary, but we
may assume that |ŵ1| > 2 and |ŵ2|, |ŵ3| are at least 4. We did not succeed
in finding a suitable monomial for the Nullstellensatz approach, hence we only
present a case analysis proof. We forget v1, v2.

We separate two cases depending on the degrees of w4 and w:

1. We first assume that d(w4) = 8 and d(w) = 7. Then we may also assume
that |ĥ| = |n̂| = 3, |â| = 4, |̂i| = 5, |ĉ| = |̂j| = 6 and |ŵ4| > 2.

64 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

7u 5 v3

4

v1

4
v2

w

w4

8
8
w1

6
w3

6
w2

a b c
d

efg

j o

pk

h
i

n

r

q
`

m

Figure 1.50 – Notation for Lemma 1.47

We remove from ŵ3 and r̂ a color α ∈ ô \ ĵ, if any. We then color w2

with a color not in r̂, then w1 and q, and apply Lemma 1.22 on T (G)
with the path w4nw3r.

Due to the choice of α, we may now color j with a color not in ô, then
color i, c, h, a, g, e,m, `, k. We color u such that v̂3 6= ô, then b, f, d, p.
Since v̂3 6= ô, we can finally color v3 and o.

2. Assume that d(w4) = 7 and d(w) = 8. We may assume that |ĥ| = 2,
|â| = 3, |n̂| = 4, |̂i| = 6, |ĉ| = |̂j| = 7 and |ŵ4| > 4.

We color g, ` with a color not in m̂. Then we forget m, f, b, then h, i (or
i, h, depending on whether w has degree 7 or 8) and color w1, q, a, e, k,
w2, r, w3, n, o, p. We then color v3 with a color not in ŵ4. If ŵ4 = ĵ,
we color c with a color not in ĵ, then apply Corollary 1.19 on the cycle
uw4jd in T (G). Otherwise, we color w4 with a color not in ĵ, then apply
Lemma 1.22 on T (G) with the path jdcu.

Lemma 1.48. The graph G does not contain C12d.

Proof. We use the notation depicted in Figure 1.51. By minimality, we color
G′ = G \ {a, . . . , n} and uncolor u, v1, v2, v3, w1.

7u 5
v3

4

v1

4
v2

w3

w2

8
8

5
w1a b c

d

efg

j
n

k

h
i

`
m

Figure 1.51 – Notation for Lemma 1.48

Induction Schemes: From Language Separation to Graph Colorings 65

1.4. Reducing configurations

By Remark 1.12, we may assume that: |ŵ1| = |m̂| = 2, |ĝ| = |k̂| = |̂̀| = 3,
|ê| = 4, |n̂| = 5, |û| = |v̂1| = |v̂2| = |v̂3| = 6 and |̂b| = |d̂| = |f̂ | = 9.

Moreover, if d(w2) = 8 and d(w3) = 7, we have |ĥ| = |̂i| = |̂j| = 3 and
|â| = |ĉ| = 4. Otherwise, d(w2) = 7 and d(w3) = 8 so |ĥ| = 2, |â| = 3,
|̂i| = |̂j| = 4 and |ĉ| = 5. We forget v1, v2 and color g, ` with a color not in m̂,
then forget m, f, b, i, h. We color a, e, k, c, j, u and apply Lemma 1.22 on T (G)
with the path dv3nw1.

We can also conclude using the Nullstellensatz. Let

m = B7C2D8E3F 8G2HI2J2K2L2MN3V 4
3 W1

If d(w2) = 8 and d(w3) = 7, thenmHU5V3 has coefficient−1 in PG. Otherwise,
mABC2IJN has coefficient 1 in PG. Hence, in each case, using Theorem 1.14,
we can extend the coloring to G.

Configuration C13

By definition, if G contains C13, then we are in one of the following cases
(v1, . . . , v8 denote the neighbors of u in cyclic ordering around u):

• C13a: u has four neighbors of degree 6, and four (6, 6)-neighbors of degree
5. We may assume that d(v2i) = 5 and d(v2i−1) = 6 for 1 6 i 6 4 and
that v1v2, . . . , v7v8, v8v1 are in E(G).

• C13b: u has five weak neighbors of degree 5 and three neighbors of degree
6. Due to C4 and C3, we may assume that v1, v2, v4, v6, v7 have degree 5,
v3, v5, v8 have degree 6 and that v1v2, . . . , v7v8, v8v1 are in E(G).

• C13c: u has four neighbors of degree 6, two (6, 6)-neighbors of degree
5 at triangle-distance 2, and two (5, 6)-neighbors of degree 5. We may
assume that v2, v4, v6, v7 have degree 5, v1, v3, v5, v8 have degree 6 and
that v1v2, . . . , v7v8 are in E(G).

• C13d: u has four neighbors of degree 6, two (6, 6)-neighbors of degree 5
at triangle-distance at least 3, and two (5, 6)-neighbors of degree 5. We
may assume that v2, v4, v5, v7 have degree 5, v1, v3, v6, v8 have degree 6
and that v1v2, . . . , v7v8 are in E(G).

We dedicate a lemma to each of these configurations. In each of them, we did
not succeed in finding a suitable monomial for the Nullstellensatz approach,
hence we only present case analysis proofs.

Lemma 1.49. The graph G does not contain C13a.

66 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

8
u

6 v7

5
v6

6v5

5v4

6v3

5
v2

6 v1

5 v8

a
bc

d

e f g

h

ij

k

`

m n

o

p

Figure 1.52 – Notation for Lemma 1.49

Proof. We use the notation depicted in Figure 1.52. By minimality, we color
G\{a, . . . , p} and uncolor u, v1, . . . , v8. First note that there is no edge between
5-vertices excepted maybe v2v6 and v4v8 since otherwise, it would create C3.

Using that G is planar, we first show the following:

1. We may assume (up to symmetry) that there is no edge between v2 and
v5, v6, v7.

Assume that v6 or v7 is a neighbor of v2. Then there is no edge between
v8 and v3, v4, v5, otherwise, {{u}, {v3, v4, v5}, {v8}, {v6, v7}, {v1, v2}} is a
K5-minor of G. By exchanging v2 and v8, we obtain that v2 has no
neighbor among v5, v6, v7.

If v2v5 is an edge, we obtain the same result by exchanging v2 and v4.

2. With such a v2, we may also assume that v4 has at most one neighbor
among v1, v7, v8. First note that if v4v8 ∈ E(G), then v1, v7 are not
neighbors of v4 due to C3. In this case, v4 has thus only one neighbor
among v1, v7, v8.

Otherwise, both v1 and v7 are neighbors of v4, so there is no edge between
vv8 with v ∈ {v3, v5}. Indeed, otherwise, {u, v, v1, v4, v7, v8} would be a
K3,3 minor of G. Thus, by exchanging v4 and v8, we obtain that v4 has
at most one neighbor among v1, v7, v8.

By Remark 1.12, we may thus assume that: |̂i| = |̂j| = |k̂| = |̂̀| = |m̂| =

|n̂| = |ô| = |p̂| = 5, |v̂2| = 6, |â| = |ĉ| = |ê| = |ĝ| = 7, |̂b| = |d̂| = |f̂ | = |ĥ| = 8
and |û| = 10. Moreover, v̂1, v̂3, v̂5 and v̂7 have size at least 4, and v̂6, v̂8 at least
6.

Due to the previous observations, we may also assume that |v̂4| is 6 or 7.
We separate three cases:

1. Assume that n̂ 6⊂ v̂6. Then we color n with a color not in v̂6, d with a
color not in v̂4, g with a color not in ô and h with a color not in p̂. We

Induction Schemes: From Language Separation to Graph Colorings 67

1.4. Reducing configurations

then color a, c, e, f, b, u, v7,m, v5, `, and forget v4, v6. We color v8 with a
color not in ô, then v1 and forget o, p. We finally apply Lemma 1.22 on
T (G) with the path iv2jv3k.

2. If n̂ ⊂ v̂6 (and by symmetry î ⊂ v̂2) and v6 is not a neighbor from both
v1, v3. Then |v̂6| < 8 and we can color f with a color not in v̂6 (hence
not in n̂), and b with a color not in v̂2 (hence not in î). Then we color
a, c, e, g, h, d, u and forget v2, i, j, v6,m, n, and use Theorem 1.18 to color
{v1, v3, v4, v5, v7, v8, k, `, o, p}.

3. Otherwise, we color b with a color not in v̂2, then color a, c, e, g, d, f, h, u, v3

and forget v2, i, j. We apply Lemma 1.22 on T (G) with the path kv4`v5,
then color m.

If v1v7 6∈ E(G), then |v̂7| = 2 = |n̂|. If n̂ = v̂7, we color v6 and o with
a color not in n̂, then color v1, p, v8, v7, n. Otherwise, we color n with a
color not in v̂7, then color v1 with a color not in v6, forget v6 and apply
Lemma 1.22 on T (G) with the path pv8ov7.

Otherwise, v1v7 ∈ E(G). We then color v1 with a color not in v̂6, forget
v6 and apply Lemma 1.22 on T (G) with the path pv8ov7n.

Lemma 1.50. The graph G does not contain C13b nor C13c.

Proof. First note that C13b is a sub-configuration of C13c. It is thus sufficient
to prove that G does not contain C13c. We use the notation depicted in Fig-
ure 1.53. By minimality, we color G \ {a, . . . , o} and uncolor u, v1, . . . , v8.

8
u

5 v7

5
v6

6v5

5v4

6v3

5
v2

6 v1

6 v8

a
bc

d

e f g

h

ij

k

`

m n

o

Figure 1.53 – Notation for Lemma 1.50

By Remark 1.12, we may assume that |̂i| = |ô| = 4, |̂j| = |k̂| = |̂̀| = |m̂| =
5, |â| = |ĥ| = |n̂| = 6, |ĉ| = |ê| = 7, |̂b| = |d̂| = |f̂ | = |ĝ| = 8 and |û| = 10.
Moreover, |v̂1|, |v̂8| are at least 2, |v̂3|, |v̂5| are at least 4 and |v̂2|, |v̂4|, |v̂6|, |v̂7|
are at least 6.

We color c with a color not in ĵ and d with a color not in k̂. Then, we
color v1, and v8 such that û 6= f̂ . We color a, h, e, b, g, then u, f since û 6= f̂ ,

68 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

and color i, o. We then color v3 such that v̂4 6= ̂̀. Then we color v2, j, k (if
v2v4 ∈ E(G), when we color v2, we ensure that we still have v̂4 6= ̂̀). We then
color v̂5 such that v̂6 6= n̂, v4 and ` (since v̂4 and ̂̀ are different and of size at
least one), then m, v7 arbitrarily, and finally v6 and n (since again v̂6 and n̂
are different of size at least one).

Lemma 1.51. The graph G does not contain C13d.

Proof. We use the notation depicted in Figure 1.54. By minimality, we color
G \ {a, . . . , o} and uncolor u, v1, . . . , v8.

8
u

5 v7

6
v6

5v5

5v4

6v3

5
v2

6 v1

6 v8

a
bc

d

e f g

h

ij

k

`

m n

o

Figure 1.54 – Notation for Lemma 1.51

By Remark 1.12, we may assume that |̂i| = |ô| = 4, |̂j| = |k̂| = |m̂| = |n̂| =
5, |â| = |ĥ| = |̂̀| = 6, |ĉ| = |f̂ | = 7, |̂b| = |d̂| = |ê| = |ĝ| = 8 and |û| = 10.
Moreover, |v̂1|, |v̂8| are at least 2, |v̂3|, |v̂6| are at least 4 and |v̂2|, |v̂4|, |v̂5|, |v̂7|
are at most 6.

We color f with a color not in n̂ and b with a color not in ĵ, then we color
v8, and v1 such that û 6= d̂. We color a, h, c, e, g, then u and d since û 6= d̂,
then i, o, v6, v7, n,m, v5. We color v3 such that v̂4 6= ̂̀, then v2, j, k and finally
v4, ` since v̂4 6= ̂̀.
Configuration C14

By definition, if G contains C14, then we are in one of the following cases:

• C14a: v1, . . . , v4 are weak neighbors of u of degree 4 and u has a neighbor
w of degree 7.

• C14b: v1, . . . , v4 are (7, 8)-neighbors of u such that v1, v2, v3 have degree
4 and v4 has degree at most 5.

• C14c: u has a (7, 7)-neighbor v1 of degree 4, a weak neighbor v2 of degree 4
and two non-adjacent neighbors v3, v4 of degree 5 such that distu(v1, v2) =
distu(v1, v3) = 2.

Induction Schemes: From Language Separation to Graph Colorings 69

1.4. Reducing configurations

We dedicate a lemma to each of these configurations, and we begin with a
preliminary lemma, used to edge-color the following graph:

a b

c
d

e

f

g

h i
j

Figure 1.55 – Notation for Lemma 1.52

Lemma 1.52. We can produce an edge-coloring of the graph H given in Fig-
ure 1.55 as soon as |ĉ|, |f̂ |, |ĝ|, |̂i| are at least 2, |̂j| > 4 and any other list has
length at least 3.

Proof. We have the following:

1. If î 6⊂ ê, then we color i with a color not in ê, then d such that ĵ 6= â and
c, and finally apply Lemma 1.20 on T (H) with the cycle jefgha and the
element b.

2. If î 6⊂ d̂, then we color i with a color not in d̂. Then, if e, f, g, h, a share
the same list, we color them putting the same color on e and a, then
apply Corollary 1.19 on the cycle jdcb of T (H). Otherwise, we may
color one edge among e, f, g, h, a with a color not in the list of one of
its neighbors, then we can color or forget the other edges excepted a or
e, and apply Lemma 1.20 on T (H) with either the cycle bcdj and the
element a or the cycle jbcd and the element e.

3. If d̂ 6= ê, then we color d with a color not in ê (thus not in î), then i such
that â 6= b̂. We then apply Lemma 1.20 on T (H) with the cycle ahgfej
and the element b.

Otherwise, we have î ⊂ d̂ = ê so we can color j with a color not in d̂∪ ê∪ î. If
î = â afterwards, then we color h with a color not in î, then g and f , and apply
Lemma 1.20 on T (G) with the cycle dcbai and the element e. Otherwise, we
color i with a color not in â, then apply Corollary 1.19 on the cycle abcdefgh
of T (H).

We can also conclude using the Nullstellensatz: the coefficient ofA2B2CD2E2FGH2IJ3

in PH is −1. Hence, using Theorem 1.14, we can find a coloring for H.

Lemma 1.53. The graph G does not contain C14a.

70 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

8
u

7
4
v1

8

4v4

8
4
v3

8

4 v2

def

g

h
a b

c

`m

n

o

p i

j

k

Figure 1.56 – Notation for Lemma 1.53

Proof. We use the notation depicted in Figure 1.56. By minimality, we color
G′ = G \ {a, . . . , p} and uncolor u, v1, . . . , v4.

By Remark 1.12, we may assume that: |k̂| = |̂̀| = |m̂| = |n̂| = |ô| = |p̂| = 3,
|d̂| = |f̂ | = |ĥ| = |̂i| = |̂j| = 4, |̂b| = 5, |v̂1| = |v̂2| = |v̂3| = |v̂4| = |û| = 6, and
|â| = |ĉ| = |ê| = |ĝ| = 9.

We forget v1, v2, v3, v4 and color g with a color not in n̂ ∪ ô. We now
distinguish three cases depending on the lists d̂, f̂ and ĥ.

1. Assume that d̂ = f̂ = ĥ. Then we remove their colors from â, b̂, ĉ, ê and
û. Thus we may assume that d, f, h are not adjacent to them in T (G)
anymore. We color b and u. Due to the previous manipulations, coloring
G is now equivalent to 3-list-edge-coloring the graph of Figure 1.57. Note

a e m n

j k d h

i c ` f o

p

Figure 1.57 – Auxiliary graph for Lemma 1.53

that we now have â ∩ ĥ = ∅, therefore coloring p affects at most one
among a, h. Note that Figure 1.57 is symmetrical when we exchange
a, c, e, i, j, k with respectively h, f, d, o, n,m. We may thus assume that
we can color p with a color not in â. We then color n with a color not in
ô and forget o.

If f̂ = ĥ, we color d with a color not in f̂ and forget f, h. Otherwise, we
color f with a color not in ĥ, then m and we forget h. Up to renaming
a, e,m into j, k, d respectively, we may assume we are in the first case
(since we obtain the same configuration).

Induction Schemes: From Language Separation to Graph Colorings 71

1.4. Reducing configurations

If ̂̀= m̂, we color e with a color not in ̂̀, then forget m, ` and apply
Lemma 1.20 on T (G) with the cycle caij and the element k. Otherwise,
we color ` with a color not in m̂, forget m, color k and apply Lemma 1.20
on T (G) with the cycle aijc and the element e.

2. Assume that d̂ = ĥ 6= f̂ . We color f with a color not in d̂, u with a color
not in d̂, ` with a color not in m̂. We distinguish two cases:

(a) If |̂b ∪ d̂ ∪ ĥ| = 3, we remove these colors from â, ĉ and ê. Then, we
color k such that ĉ 6= ê, and color d, b, h.
If ê, m̂, n̂, ô, p̂ are all the same list of size 2, then, we can color
e, n and p with a color not in ĉ, then m and o, and apply Corol-
lary 1.19 on the cycle acji in T (G). Otherwise, denote e,m, n, o, p
by e1, . . . , e5, and take α as the smallest index such that êα 6= êα+1.
We color eα+1 with a color not in êα, then forget eα, . . . , e2 and color
eα+1, . . . , e4. We then apply Lemma 1.20 on T (G) with the cycle
aijc and the element e.

(b) Otherwise, we may color b or d with a color not in ĥ, then color the
other one and k, and we conclude using Lemma 1.52 on {p, i, j, c, e,m, n, o, h, a}.

3. Assume that d̂ 6= ĥ. We color d with a color not in ĥ, f such that m̂ 6= ̂̀,
` with a color not in m̂, and finally k. We first prove that we may assume
that b̂ = ĥ with two cases:

(a) Assume that b̂ 6= ĥ, and if we color b with a color not in ĥ, we have
û 6= ĥ. Then we color u with a color not in ĥ and apply Lemma 1.52
to {p, i, j, c, e,m, n, o, h, a}.

(b) Assume that b̂ 6= ĥ, and if we color b with a color not in ĥ, we have
û = ĥ. We remove the colors of û from â, ĉ and ê and we forget u.
This ensures that there is no common color in ĥ and ĉ∪ ê anymore.
If afterwards, we have ĉ = ê, we color a with a color not in ĉ, then
we apply Lemma 1.20 on T (G) with the cycle pijcemno and the
element h (since ĥ∩ (ĉ∪ ê) = ∅). Otherwise, we color c with a color
not in ê, then j and h such that î 6= p̂ and apply Lemma 1.20 on
T (G) with the cycle aemnop and the element i.

We may thus assume that b̂ = ĥ. Then we remove their colors from
û, â, ĉ and ê, and we color u. We conclude with two cases:

(a) If ĉ = ê, we color a with a color not in ĉ. If ĥ = p̂, we color o with a
color not in ĥ, then n,m, e, c and apply Lemma 1.20 on T (G) with
the cycle bhpi and the element j. Otherwise, we color h with a color
not in p̂, then b and apply Corollary 1.19 on the cycle cemnopij in
T (G).

72 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

(b) If ĉ 6= ê, we color c with a color not in ê. If b̂ = ĵ, we color h such
that p̂ 6= î\b̂, then we color b, j and apply Lemma 1.20 on T (G) with
the cycle aemnop and the element i. Otherwise, we color b with a
color not in ĵ, then forget j, i, color h and apply Corollary 1.19 on
the cycle aemnop in T (G).

We can also conclude using the Nullstellensatz: the coefficient of

A5B4C8D3E8F 3G8H3I3J3K2L2M2N2O2P 2

in PG is 16. Hence, using Theorem 1.14, we can extend the coloring to G.

Lemma 1.54. The graph G does not contain C14b.

Proof. We use the notation depicted in Figure 1.58. By minimality, we color
G \ {a, . . . , p} and uncolor u, v1, . . . , v4, w1, w2.

8
u

7 w1

4
v1

8

5v4

7w2

4
v3

8

4 v2

def

g

h
a b

c

`m

n

o

p i

j

k

Figure 1.58 – Notation for Lemma 1.54

By Remark 1.12, we may assume that: |ô| = 2, |k̂| = |̂̀| = |p̂| = 3, |d̂| =

|ĥ| = |n̂| = 4, |v̂4| = |̂i| = |̂j| = |m̂| = 5, |̂b| = |f̂ | = 6, |v̂1| = |v̂2| = |v̂3| = 7,
|û| = |ĝ| = 8 and |â| = |ĉ| = |ê| = 9. Moreover, we may also assume that
|ŵ1|, |ŵ2| are at least 2.

We did not succeed in finding a suitable monomial for the Nullstellensatz
approach, hence we only present a case analysis proof. We forget v1, v2, v3,
color h with a color not in p̂, then color o. We remove from ŵ2, f̂ and n̂ a
color α ∈ m̂ \ ̂̀. Then, we color w2, n, f, d. We color u, v4, w1, b, g applying
Theorem 1.18 on the subgraph of T (G) they induce. Due to the choice of α,
we have m̂ 6= ̂̀ if |m̂| = |̂̀| = 2 thus we can color ` with a color not in m̂ and
forget m. We then color k, then p such that â 6= ê and apply Lemma 1.20 on
T (G) with the cycle aijc and the element e.

Lemma 1.55. The graph G does not contain C14c.

Proof. We use the notation depicted in Figure 1.59. By minimality, we color
G′ = G \ {a, . . . , `} and uncolor u, v1, v2, v4, w1, w2.

Induction Schemes: From Language Separation to Graph Colorings 73

1.4. Reducing configurations

8
u

7 w2

4
v1

7w1

5v4

5 v3

8

4 v2

fg
a

b
c d

e
h

i j

k

`

Figure 1.59 – Notation for Lemma 1.55

By Remark 1.12, we may assume that: |f̂ | = |̂̀| = 2, |ĥ| = 3, |v̂4| = |ĝ| = 4,
|̂b| = |d̂| = |̂i| = |̂j| = |k̂| = 5, |â| = |û| = 6, |v̂2| = 7, and |v̂1| = |ĉ| = |ê| = 8.
Moreover, |ŵ1|, |ŵ2| are 2 or 3 depending on whether w1w2 ∈ E(G).

We do not have a case analysis proof in this case, only the Combinatorial
Nullstellensatz approach. We forget v1, v2.

We consider two cases depending on whether w1w2 is an edge of G.

1. If w1w2 /∈ E(G), we have |ŵ1| = |ŵ2| = 2. The monomial

m = U5V 3
4 W2A

5B4C7D4E7FG3H2I4J4K4

has coefficient 1 in PG.

2. If w1w2 ∈ E(G), then |ŵ1| = |ŵ2| = 3. The monomial

m′ = U5V 3
4 W

2
2A

5B3C7D4E7FG3H2I4J4K4L =
W2L

B
m

has coefficient −1 in PG.

Therefore, we can extend the coloring to G.

Configuration C15

Due to C4 and to the definition of C15, if G contains C15 then G contains
a subconfiguration of one of the three following cases:

• C15a: u has two (6, 6)-neighbors of degree 5.

• C15b: u has three weak neighbors of degree 5 and two neighbors of degree
6, such that there is a triangular face containing u and two vertices of
degree 5.

• C15c: u has three weak neighbors of degree 5 and two neighbors of degree
6, such that there is no triangular face containing u and two vertices of
degree 5.

74 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

We dedicate a lemma to each of these configurations. In each of them, we did
not succeed in finding a suitable monomial for the Nullstellensatz approach,
hence we only present case analysis proofs.

Lemma 1.56. The graph G does not contain C15a.

Proof. We use the notation depicted in Figure 1.60. By minimality, we color
G \ {a, . . . , n} and uncolor u, v1, v2, v3, w2.

8
u

8
3
v1

8

6w3

5v3

6
w2

5 v2

6 w1

e
fg

h

a b c
d

`m

n

i j

k

Figure 1.60 – Notation for Lemma 1.56

By Remark 1.12, we may assume that: |â| = |ĉ| = |̂i| = |̂j| = |k̂| = |n̂| = 3,
|ŵ2| = 4, |v̂2| = |v̂3| = |d̂| = |ĥ| = |̂̀| = |m̂| = 5, |û| = 6, |f̂ | = 7, |v̂1| = |ê| =

|ĝ| = 8 and |̂b| = 10. We forget v1 and consider two cases:

1. Assume that ĝ 6= v̂3 ∪ n̂, and color g with a color not in v̂3 ∪ n̂. Then
forget v3, n,m. We then color a, c such that afterwards we have î 6= ĵ if
|̂i| = |̂j| = 2. We can thus forget i and j (since after coloring every other
element, either one of them has 2 choices, or both have one but not the
same), then b.

(a) If d̂ = ĥ, we color u, f, e with colors not in d̂, forget h, d and apply
Lemma 1.22 on T (G) with the path kv2`w2.

(b) Otherwise, if |û ∪ d̂ ∪ ĥ| = 3, we color f, e with a color not in
this union, then color d with a color not in ĥ, forget h and apply
Lemma 1.22 on T (G) with the path uv2w2`.

(c) Otherwise, if |û ∪ d̂ ∪ f̂ ∪ ĥ| = 4, we color e with a color not in this
union, then d with a color not in ĥ. If ĥ = û, we color f with a
color not in û, forget h and apply Lemma 1.22 on T (G) with the
path uv2w2`. Otherwise, we color u with a color not in ĥ, forget h
and apply Lemma 1.22 on T (G) with the path v2`w2f .

(d) Otherwise, we color e with a color not in k̂ and color {u, d, f, h}
using Theorem 1.21. Then we apply Lemma 1.22 on T (G) with the
path kv2`w2.

Induction Schemes: From Language Separation to Graph Colorings 75

1.4. Reducing configurations

2. Otherwise, we can assume by symmetry that v̂3 ∩ n̂ = ∅ = v̂2 ∩ k̂. Then
we can forget v2, v3, color g with a color not in m̂ and color a, c such that
afterwards we have î 6= ĵ if |̂i| = |̂j| = 2. Then, we again forget i and j
and we color h, d, u, f, e, k, `, w2, n,m, b.

Lemma 1.57. The graph G does not contain C15b.

Proof. We use the notation depicted in Figure 1.61. By minimality, we color
G \ {a, . . . , o} and uncolor u, v1, . . . , v4, w1, w2.

8
u

8
3
v1

8

5v4

6w2

5
v3

5 v2

6 w1

def

g

h
a b

c

i

j

k`

m

n

o

Figure 1.61 – Notation for Lemma 1.57

By Remark 1.12, we may assume that: |n̂| = 2, |̂b| = |̂i| = 3, |ĥ| = |̂j| =

|ô| = 4, |̂̀| = |m̂| = 5, |ĉ| = |k̂| = 6, |f̂ | = 7, |û| = |v̂1| = |d̂| = |ê| = |ĝ| = 8
and |â| = 10. We may moreover assume that |ŵ1| > 2, |ŵ2| > 4, |v̂4| > 5 and
|v̂2|, |v̂3| > 6.

We forget v1, then we remove from ĥ and n̂ a color α ∈ ô\ î. We then color
n. Due to the choice of α, we may forget i, o since any coloring of the other
elements gives either |ô| > 1 or ô 6= î, hence we can always color i then o. We
may also forget a.

Note that v4 has degree 5 hence it is adjacent (in G) to at most four
uncolored vertices, hence we may assume that |v̂4| < 7. We color g with
a color not in v̂4, then h, b. We then color f with a color not in m̂, then
w1, c, u, j, d, e. We forget v4,m and color v3, v2, w2, k, ` using Theorem 1.18 on
the subgraph of T (G) they induce.

Lemma 1.58. The graph G does not contain C15c.

Proof. We use the notation depicted in Figure 1.62. By minimality, we color
G \ {a, . . . , p} and uncolor u, v1, . . . , v4, w1, w2.

By Remark 1.12, we may assume that: |̂j| = |ô| = 2, |̂b| = |ĥ| = |̂i| = |p̂| =
4, |k̂| = |̂̀| = |m̂| = |n̂| = 5, |d̂| = |f̂ | = 7, |v̂1| = |ĉ| = |ê| = |ĝ| = |û| = 8
and |â| = 10. We may also assume that |v̂2|, |v̂4| are at least 5, |ŵ1|, |ŵ2| are
at least 4 and |v̂3| is at least 6.

76 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

8
u

8
3
v1

8

5v4

6w2

5
v3

6 w1

5 v2

def

g

h
a b

c

`m

n

o

p i

j

k

Figure 1.62 – Notation for Lemma 1.58

We forget v1, color j and remove from ĥ and ô a color α ∈ p̂ \ î. Then we
may forget i, p. Indeed, if we can color every element excepted i, p, then due
to the choice of α, if |p̂| = |̂i| = 1, p̂ 6= î, hence we can color them. We may
then forget a. We also color o.

Note that there are only six uncolored vertices, hence w1 has at most 5
uncolored neighbors in G. We thus have |ŵ1| 6 6, hence we can color d with a
color not in v̂1. We then color h, b arbitrarily, and c with a color not in k̂. We
color f, g, then u, v4, w2, n applying Theorem 1.18 on the subgraph of T (G)
they induce, and then color e,m. We finally apply Lemma 1.22 on T (G) with
the path v2kw1`v3.

Configuration C16

To prove that G does not contain the configuration C16, we prove that it
does not contain any of the configuration below.

• C16a is a 8-vertex u with a weak neighbor v of degree 3, and a (7, 8)-
neighbor of degree 4 at triangle distance 2 from v.

• C16b is a 8-vertex u with a weak neighbor v of degree 3 and a weak
neighbor of degree 5 at triangle distance 2 from v, having two neighbors
of degree 6.

• C16c is a 8-vertex u with a weak neighbor v of degree 3, a (7, 8)-neighbor
of degree 4 at triangle distance at least 3 from v, and two weak neighbors
of degree 5.

We dedicate a lemma to each of these configurations.

Lemma 1.59. The graph G does not contain C16a.

Proof. We use the notation depicted in Figure 1.63. By minimality, we take a
coloring γ of G \ {a, b, c}, and uncolor d, e, f, g, v1, v2. We forget v1, v2.

Induction Schemes: From Language Separation to Graph Colorings 77

1.4. Reducing configurations

8 u

8
3
v1

8

4
v2

7

8
d

f
c

g

e

a b

Figure 1.63 – Notation for Lemma 1.59

By Remark 1.12, we may thus assume that: |̂b| = |d̂| = 2 and |â| = |ĉ| =

|ê| = |f̂ | = |ĝ| = 3.

• If d̂ 6⊂ ĝ, then we can color d with a color not in ĝ, forget g, and apply
Lemma 1.20 to {b, a, e, f, c}. We may thus assume that d̂ ⊂ ĝ.

• If d̂ 6⊂ ê, then we color d with a color not in ê, color b, and apply
Lemma 1.20 to {g, e, a, c, f}. We may thus assume (by symmetry) that
d̂ ⊂ ê and d̂ ⊂ f̂ .

• If f̂ 6= ĝ, we color g with a color not in f̂ (hence not in d̂). We color b
an apply Lemma 1.20 to color {d, f, c, a, e}. Therefore, we may assume
that f̂ = ĝ. By symmetry, we also have ê = ĝ.

Therefore, we have |d̂ ∪ ê ∪ f̂ ∪ ĝ| = 3, hence {d, e, f, g} is not colorable.
This is impossible since γ is a proper coloring. This means that one of the
previous cases should happen, hence that we can color G.

Lemma 1.60. The graph G does not contain C16b.

Proof. We use the notation depicted in Figure 1.64. By minimality, we take a
coloring γ of G \ {a, b, c, v1}, uncolor d, e, f, g, h, v2 and forget v1.

8 u

8
3
v1

8

5v2

6

6
8

e

f g

h
c

d

b a

Figure 1.64 – Notation for Lemma 1.60

By Remark 1.12, we may thus assume that: |â| = |ĝ| = 2, |̂b| = |ĉ| = |d̂| =
|ĥ| = 3, |ê| = |f̂ | = 4 and |v̂2| = 5.

78 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

If we color d, e, f, g, h, v2 with their colors in γ, then the only way for
the coloring not to extend to G is to have â, b̂ and ĉ to be the same list of
size two. To avoid this, our goal is to find another coloring of d, e, f, g, h, v2

which differs from γ on either d or h. We consider the color shifting graph H of
{d, e, f, g, h, v2}. By Lemma 1.16, there exists a strongly connected component
C of H such that |C| > maxx∈C d

−(x). By Lemma 1.17, this inequality ensures
that |C| > 1. We show that C contains either d or h by distinguishing some
cases:

1. If C contains a vertex sα, then |C| > d−(sα) = |V (H)| − 1. Then
C = V (H) and contains d and h.

2. Otherwise, if C contains v2, then |C| > 5 and C contains either d or h.

3. Otherwise, if C contains e or f , then |C| > 4 and C contains either d or
h.

Therefore, C has size at least 2 and is contained in {d, g, h}, hence it contains
d or h. Thus, we can apply Lemma 1.15 to ensure that we can recolor d or h,
hence we can extend the coloring to G.

Lemma 1.61. The graph G does not contain C16c.

Proof. We use the notation depicted in Figure 1.65. By minimality, we take a
coloring γ of G \ {b, c, n}, and uncolor a, . . . , q, v1, v2, v3, v4. We forget v1, v3.

8
u

8
3
v1

8

5v4

7
4

v3

8

5 v2

8

def

g

h
a b

c

`m

n

o

p i

j

k

q

Figure 1.65 – Notation for Lemma 1.61

By Remark 1.12, we may thus assume that: |̂j| = |k̂| = |ô| = |q̂| = 2,
|n̂| = 3, |̂b| = |d̂| = |ĥ| = |̂i| = |̂̀| = |p̂| = 4, |f̂ | = |m̂| = 5, |û| = 6,
|ĉ| = |ĝ| = 8 and |â| = |ê| = 10. Moreover, v̂2 and v̂4 have size 4 or 5
depending on whether v2v4 ∈ E(G).

Induction Schemes: From Language Separation to Graph Colorings 79

1.4. Reducing configurations

1. Assume that b̂ ∩ k̂ 6= ∅. Then we color b and k with the same color,
then color j. Let H be the graph induced by the remaining elements.
We conclude using the Nullstellensatz: if v2v4 /∈ E(G), the coefficient of

A6C5D2E7F 3G6H2IL2M4N2OP 3QU4V2V
3

4

in PH is 1.

Otherwise, we have |v̂2| = 3, |v̂4| = 5 and the coefficient of

A6C5D2E7F 3G6H2IL2M4N2OP 3QU4V 2
2 V

3
4

in (V2 − V4)PH is 1. Using Theorem 1.14, we can find a coloring for H.
Therefore, we may assume that b̂ and k̂ are disjoint.

2. Assume that d̂∩ ĵ 6= ∅. We color d and j with the same color, then k and
`, q arbitrarily. Let H be the graph induced by the remaining elements.
We conclude using the Nullstellensatz: if v2v4 /∈ E(G), the coefficient of

A7B2C5E6F 3G6H2I2M2N2OP 3U3V2V
3

4

in PH is −1.

Otherwise, we have |v̂2| = 3, |v̂4| = 5 and the coefficient of

A7B2C5E6F 3G6H2I2M2N2OP 3U3V 2
2 V

3
4

in (V4 − V2)PH is 1. Using Theorem 1.14, we can find a coloring for H.
Therefore, we may assume that q̂ and d̂ are disjoint.

3. Assume that d̂ ∩ v̂2 6= ∅. We color d and v2 with the same color (which
hence does not lie in ĵ). Then we color k, j, `, q. Let H be the graph in-
duced by the remaining elements. We conclude using the Nullstellensatz:
the coefficient of

A7BC4E6F 3G6H2I2M2N2OP 3U4V 3
4

in PH is −3. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that d̂ and v̂2 are disjoint.

4. Assume that b̂ ∩ v̂2 6= ∅. We color b and v2 with the same color (which
hence does not lie in k̂ nor in d̂). Then we color j, k.

• If ô 6⊂ p̂, we color o with a color not in p̂, then forget p, i, a. If î 6⊂ p̂,
we color i with a color not in p̂, then o, and we forget p, a. Finally, if
ô∩ î 6= ∅, we color o and i with the same color, then forget p, a. In
the three cases, we end up with the same configuration. Let H be

80 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

the graph induced by the remaining elements. We conclude using
the Nullstellensatz: the coefficient of

C4D2E8F 3G5LM4NQU4V 2
4

in PH is 1. Using Theorem 1.14, we can find a coloring for H.
Therefore, we may assume that ô and î are disjoint, and that their
union is p̂.

• If ĥ 6⊂ p̂, we color h with a color not in p̂ (hence not in ô), then
forget p, i, a. If ĥ∩ î 6 ∅, we color h and i with the same color (hence
not in ô), then forget p, a.
In both cases, we end up with the same configuration. Let H be
the graph induced by the remaining elements. We conclude using
the Nullstellensatz: the coefficient of

C3DE7F 2G4LM4N2OQU3V 3
4

in PH is 1. Using Theorem 1.14, we can find a coloring for H.
Therefore, if ĥ and î are not disjoint, we can reduce the configura-
tion. Otherwise, since |ĥ| = 3, |̂i| = 2 and |p̂| = 4, we have ĥ 6⊂ p̂,
in which case we can also reduce the configuration.

Therefore, we may assume that b̂ and v̂2 are disjoint.

5. If ĵ 6⊂ v̂2 (resp. k̂ 6⊂ v̂2), we color j (resp. k) with a color not in v̂2. We
forget v2, color k (resp. j), then q, `, d arbitrarily. We then end up with
the same configuration as in 3., which is reducible. Therefore, we may
assume that k̂ contains ĵ and v̂2.

6. Now observe that γ(b) ∈ b̂. Since b̂ is disjoint from v̂2, which contains
ĵ, we have γ(b) /∈ ĵ. Similarly, γ(d) /∈ k̂. We color b, d, f, g, h, n, o, u, v4

with their color in γ.

• If |̂j ∪ v̂2 ∪ k̂| = 3, then we can color c with γ(c), and this does not
affect ĵ, v̂2, k̂, hence we can forget v2. Afterwards, we have |q̂| = 2,
|ê| = |̂̀| = |m̂| = 3.

– If q̂ 6⊂ m̂, then we color q with a color not in m̂, forget m and
color p. The remaining elements {e, i, j, k, `, n} induce an even
cycle, which is 2-choosable. We may thus assume that q̂ ⊂ m̂.

– If q̂ 6⊂ ̂̀, then we color p, and apply Lemma 1.20 to {m, e, a, i, j, k, `}.
We may thus assume that q̂ ⊂ ̂̀.

– If m̂ 6= ê, we color e with a color not in m̂ (hence not in q̂).
We then color p, i, j, k, `, q,m. Therefore, we may assume that
m̂ = ê.

Induction Schemes: From Language Separation to Graph Colorings 81

1.4. Reducing configurations

– Since {`, q,m, e} has a proper coloring (namely, γ), we know
that ê 6= ̂̀. We can thus color ` with a color not in ê (hence
not in m̂ nor in q̂). Then, we color k, j, i, p, a, e, q,m.

Therefore, we may assume that |̂j ∪ v̂2 ∪ k̂| > 4.

• Assume that |̂̀∪ q̂∪ m̂| = 3, then we can color e with γ(e), and this
does not affect ̂̀, q̂, m̂ hence we can forget m, q, `.
If ĵ = k̂, since |̂j ∪ v̂2 ∪ k̂| = 4, we can remove the colors of ĵ from
v̂2, and |v̂2| has size at least 2. Therefore, we can forget v2. We then
color p and apply Lemma 1.20 to color {k, c, a, i, j}.
Otherwise, we color c such that p̂ and â are different if they have
size 2. Since before we had ĵ 6= k̂ and |̂j ∪ v̂2 ∪ k̂| > 4, we can then
color {j, k, v2}, then i and p, a (since p̂ 6= â).

• Since |k̂| = 2, we can color k such that |̂̀∪ q̂ ∪ m̂| > 4 afterwards.
We then color j, v2, c, i, p, a. Afterwards, we have |̂̀∪ q̂ ∪ m̂| > 3,
hence we can color {`, q,m}.

Configuration C17

To prove that G does not contain C17, we prove that G cannot contain the
following configurations.

• C17a is a 8-vertex u with two weak neighbors of degree 3 and 4, and a
(6, 6)-neighbor of degree 5.

• C17b is a 8-vertex u with a weak neighbor v of degree 3, a weak neighbor
of degree 4 at triangle distance at least 3 from v, and two weak neighbors
of degree 5, one of them having a neighbor of degree 5.

• C17c is a 8-vertex u with a weak neighbor v of degree 3, a weak neighbor
of degree 4 at triangle distance 2 from v, and two (6, 8)-neighbors of
degree 5.

• C17d is a 8-vertex u with a weak neighbor v of degree 3, a weak neighbor
of degree 4 at triangle distance 2 from v, and two (7+, 8)-neighbors of
degree 5 such that one of them is a triangle-distance 2 from v and has a
neighbor of degree 5.

• C17e is a 8-vertex u with a weak neighbor v of degree 3, a weak neighbor
of degree 4 at triangle distance 2 from v, and two (7+, 8)-neighbors of
degree 5 such that one of them is a triangle-distance at least 3 from v
and has a neighbor of degree 5.

82 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

• C17f is a 8-vertex u with a weak neighbor v of degree 3, a weak neighbor
of degree 4 at triangle distance 2 from v, and two (7+, 8)-neighbors of
degree 5 such that one of them is a triangle-distance at least 3 from v
and has two neighbors of degree 6.

We dedicate a lemma to each of these configurations.

Lemma 1.62. The graph G does not contain C17a.

Proof. We use the notation depicted in Figure 1.66. By minimality, we color
G \ {a, . . . , n, v1, . . . , v5}. We forget v1, v2.

8
u

8
3
v1

8

6
v5

5v4

6 v3

8

4 v2

def

g

h
a b

c

`

m

n i

j

k

Figure 1.66 – Notation for Lemma 1.62

By Remark 1.12, we may thus assume that: |v̂3| = |v̂5| = |k̂| = 2, |d̂| =

|̂j| = |ĥ| = |n̂| = 3, |̂b| = |̂i| = |̂̀| = |m̂| = 4, |v̂4| = |ê| = |ĝ| = 6, |û| = 7,
|f̂ | = 8, |ĉ| = 9 and |â| = 10.

We color j and d with colors not in k̂ and forget k.

• If b̂ = ĥ, we remove the colors of b̂ from â, ĉ, ê, f̂ , ĝ and û.

We then color {u, v3, v4, v5, e, f, g, `,m} as done in Lemma 1.30. We then
color c and a. The remaining elements {h, b, i, n} induce an even cycle,
which is 2-choosable.

• Otherwise, we color h with a color not in b̂, then i with a color not in
n̂ and forget n, a, c. We color b and we again come back to the case of
Lemma 1.30.

Lemma 1.63. The graph G does not contain C17b.

Proof. We use the notation depicted in Figure 1.67. By minimality, we color
G \ {a, p, i}, and uncolor a, . . . , s, v1, . . . , v5. We forget v1, v3.

By Remark 1.12, we may thus assume that: |n̂| = |ô| = |r̂| = |ŝ| = |v̂5| = 2,
|v̂4| = |̂b| = |d̂| = |f̂ | = |ĥ| = |̂i| = |̂j| = |k̂| = |̂̀| = |m̂| = |p̂| = 4, |q̂| = |û| = 6,
|v̂2| = 7, |ĝ| = 8 and |â| = |ĉ| = |ê| = 10.

For all items except the last one, we remove from v̂2 the colors from v̂5, so
that v̂5 becomes disjoint from v̂2, so we can forget v5 then q.

Induction Schemes: From Language Separation to Graph Colorings 83

1.4. Reducing configurations

8
u

8
3
v1

8

5v4

8
4

v3

8

5 v2

8

5 v5

8def

g

h
a b

c

`m

n

o

p i

j

k

s

q

r

Figure 1.67 – Notation for Lemma 1.63

• If ĥ ∩ n̂ 6= ∅, we color h and n with the same color, then o, r, s. Let H
be the graph induced by the remaining elements. We conclude using the
Nullstellensatz: the coefficient of

A8B2C7D2E7F 2G5I3J2K2L2U4V 3
2 V4

in PH is −3. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that ĥ and n̂ are disjoint.

• If ĥ ∩ v̂4 6= ∅, we color h and v4 with the same color (hence not in n̂),
then o, n, r, s. Let H be the graph induced by the remaining elements.
We conclude using the Nullstellensatz: the coefficient of

A8B2C7D2E7FG4I3J2K2L2MU4V 3
2

in PH is −8. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that ĥ and v̂4 are disjoint.

• If f̂ ∩ ô 6= ∅, we color f and o with the same color, then n,m, s, r. Let
H be the graph induced by the remaining elements. We conclude using
the Nullstellensatz: the coefficient of

A8B2C7D2E6G5H2I3J2K2LU4V 3
2 V4

in PH is −3. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that f̂ and ô are disjoint.

• If f̂ ∩ v̂4 6= ∅, we color f and v4 with the same color (hence not in ô),
then n, o,m, s, r. Let H be the graph induced by the remaining elements.
We conclude using the Nullstellensatz: the coefficient of

A8B2C7D2E6G4HI3J2K2LPU4V 3
2

in PH is −4. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that f̂ and v̂4 are disjoint.

84 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

• If ô ∪ n̂ 6⊂ v̂4, then we color n or o with a color not in v̂4, then o or n,
then r, s, and we forget v4.

Let H be the graph induced by the remaining elements. We conclude
using the Nullstellensatz: the coefficient of

A9B3C8D3E8F 2G5HI3J2K2L2MU5V 3
2

in PH is −8. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that n̂ and ô are contained in v4.

• If n̂ 6= ô, we color n with a color not in ô, then f,m, s, r. We remove v̂5

from q̂, so that we can forget v5 and v2.

Let H be the graph induced by the remaining elements. We conclude
using the Nullstellensatz: the coefficient of

A8B2C7D2E6G5H2I3J2K2LOP 2Q2U4V 2
4

in PH is −1. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that n̂ = ô.

Now we have γ(h) ∈ ĥ, hence not in ô since ô ⊂ v̂4 which is disjoint from ĥ.
Therefore, γ(h) /∈ ô, and similarly, γ(f) /∈ n̂.

We now color h, b, f and d with their color in γ. Since n̂ = ô and {g, n, o, v4}
is colorable, coloring g and v4 with their color in γ does not affect n̂ and ô.
We also color u with its color in γ.

We remove v̂5 from q̂, so that v̂5 becomes disjoint from q̂, hence we can
forget v5 and v3.

Therefore, we obtain |̂j| = |k̂| = |r̂| = |ŝ| = 2, |̂i| = |̂j| = |k̂| = |̂̀| = |m̂| =
|p̂| = 3, |â| = |ĉ| = |ê| = |q̂| = 4. Moreover, ĵ = k̂.

Observe that if we color everything but a, i, p with their color in γ, the only
problematic case is when â, î and p̂ are the same list of size 2. Observe then
that any recoloring of j or m can break this condition.

Let α ∈ ê 6= m̂. We distinguish two cases.

• Assume that {c, j, k, q, r} stays colorable when we remove α from ĉ. If̂̀ 6= ŝ ∪ {γ(k)}, then we color c, j, k, q, r with their color from γ, so that
ê 6= m̂ and ̂̀ 6= ŝ. We then color ` with a color not in ŝ, then i arbitrarily.
We then apply Lemma 1.20 to {s,m, n, o, p, a, e} since ê 6= m̂.

Let H be the color shifting graph of {c, j, k, q, r}. By Lemma 1.16, there
exists a strongly connected component C of H stable by predecessor. By
Lemma 1.17, this ensures that |C| > d−(r) = 1.

– If C contains j, then we can recolor j by Lemma 1.15, which now
breaks â = î = p̂ after having colored every other element. Thus we
may assume that C does not contain j.

Induction Schemes: From Language Separation to Graph Colorings 85

1.4. Reducing configurations

– If C contains k, then we can recolor k by Lemma 1.15, and the con-
dition ̂̀= ŝ∪{γ(k)} does not hold anymore with the new coloring.
Thus we may assume that C does not contain k.

– If C contains some sβ, then it contains j and k.
– Otherwise, C ⊂ {c, q, r}. If q ∈ C, then |C| > 3, which is not

possible.
– Otherwise C ⊂ {c, r}, hence c ∈ C and |C| > 2, which is again

impossible.

Therefore, we may always recolor either j or k, and then extend the
coloring to G.

• Assume that {c, j, k, q, r} is not colorable when we remove α from ĉ.
This means that γ(c) = α. In particular, when coloring {c, j, k, q, r}
with their color in γ, we obtain that ê and m̂ are the same list of size 3.
Since {e, `,m, s} is colorable, there must exist a color in ̂̀∪ ŝ not in m̂.
We color ` or s (say `, by symmetry) with this color, then s. We then
apply Lemma 1.20 to {i, p, o, n,m, e, a}.

Lemma 1.64. The graph G does not contain C17c.

Proof. We use the notation depicted in Figure 1.68. By minimality, we color
G \ {a, . . . , q, v1, . . . , v5}. We forget v1, v5.

8
u

8
3
v1

8

4
v4

8
5

v3

6

5 v28
def

g

h
a b

c

`m

n

o

p i

j

k

q

Figure 1.68 – Notation for Lemma 1.64

By Remark 1.12, we may thus assume that: |̂j| = |m̂| = |q̂| = 2, |v̂3| = |̂b| =
|f̂ | = |ĥ| = |̂i| = |n̂| = |ô| = |p̂| = 4, |k̂| = |̂̀| = 5, |û| = |d̂| = 7, |ĉ| = |ê| = 8
and |â| = |ĝ| = 10. Moreover, v̂2 and v̂4 have size 5 or 6 depending on whether
v2v4 ∈ E(G).

We color i with a color not in ĵ, then o with a color not in p̂, then q, then
b with a color not in ĵ, then h, f,m, n, v4.

Let H be the graph induced by the remaining elements. The monomial

C4D3E2G3JK4L2UV 4
2 V

2
3

86 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

has coefficient 1 in PH . By Theorem 1.14, we can find a coloring for H, and
hence color G.

Lemma 1.65. The graph G does not contain C17d.

Proof. We follow here the same approach as for C17b. We use the notation
depicted in Figure 1.69. By minimality, we color G \ {a, p, i}, and uncolor
a, . . . , s, v1, . . . , v5. We forget v1, v4.

8
u

8
3
v1

8

4
v4

8
5
v3

8

5 v28
5 v5

8def

g

h
a b

c

`m

n

o

p i

j

k

s
q

r

Figure 1.69 – Notation for Lemma 1.65

By Remark 1.12, we may thus assume that: |̂̀| = |m̂| = |r̂| = |ŝ| = |v̂5| = 2,
|v̂3| = |̂b| = |d̂| = |f̂ | = |ĥ| = |̂i| = |̂j| = |k̂| = |n̂| = |ô| = |p̂| = 4, |q̂| = |û| = 6,
|v̂2| = 7, |ê| = 8 and |â| = |ĉ| = |ĝ| = 10.

For all items except the last two, we remove from v̂2 the colors from v̂5, so
that v̂5 becomes disjoint from v̂2, so we can forget v5 then q.

• If f̂ ∩ ̂̀ 6= ∅, we color f and ` with the same color, then m,n, s, r. Let
H be the graph induced by the remaining elements. We conclude using
the Nullstellensatz: the coefficient of

A8B2C7D2E5G6H2I3J2KP 2U4V 3
2 V3

in PH is −1. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that f̂ and ̂̀are disjoint.

• If d̂ ∩ m̂ 6= ∅, we color d and m with the same color, then `, k, r, s. Let
H be the graph induced by the remaining elements. We conclude using
the Nullstellensatz: the coefficient of

A8B2C6E5F 2G7H2I3JNOP 2U4V 2
2 V3

in PH is −2. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that d̂ and m̂ are disjoint.

Induction Schemes: From Language Separation to Graph Colorings 87

1.4. Reducing configurations

• If f̂ ∩ v̂3 6= ∅, we color f and v3 with the same color (hence not in ̂̀),
then m, `, n, s, r. Let H be the graph induced by the remaining elements.
We conclude using the Nullstellensatz: the coefficient of

A8B2C7DE4G6H2I3J2KOP 2U4V 3
2

in PH is −1. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that f̂ and v̂3 are disjoint.

• If d̂ ∩ v̂3 6= ∅, we color d and v3 with the same color (hence not in m̂),
then `,m, k, r, s. Let H be the graph induced by the remaining elements.
We conclude using the Nullstellensatz: the coefficient of

A8B2C6E4FG7H2I3JNO2P 2U4V 2
2

in PH is −2. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that d̂ and v̂3 are disjoint.

• If m̂ 6= ̂̀, we remove the colors of v̂5 from q̂, so that we can forget v2 and
v5. We then color m with a color not in ̂̀, then f, n, s, r. We conclude
using the Nullstellensatz: the coefficient of

A8B2C7D2E5G6H2I3J2K2LOP 2Q2U4V 2
3

in PH is −1. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that m̂ = ̂̀.
• We remove a color α ∈ v̂2 \ q̂ from û, so that if everything is colored

except v2, v5, q, we obtain v̂2 6= q̂. Therefore, we can forget v2, v5, q. The
configuration is now symmetric (vertically).

Assume that m̂ 6⊂ v̂3 so that there exists α ∈ m̂ \ v̂3. We color m with α
and forget v3. Since m̂ = ̂̀, we have α ∈ ̂̀, hence α /∈ f̂ . In this case, we
color `, then f with a color not in d̂, then n, s, r.

We conclude using the Nullstellensatz: the coefficient of

A8B2C7D2E4G6H2I3J2KP 2U3

in PH is −1. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that m̂ ⊂ v̂3 and then ̂̀⊂ v̂3 since m̂ = ̂̀.

Now we have γ(f) ∈ f̂ , hence not in m̂ since m̂ ⊂ v̂3 which is disjoint from f̂ .
Therefore, γ(f) /∈ m̂, and similarly, γ(d) /∈ ̂̀.

We now color h, b, f and d with their color in γ. Since ̂̀ = m̂ and
{e, `,m, v3} is colorable, coloring e and v3 with their color in γ does not affect̂̀and m̂. We also color u with its color in γ.

88 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

We remove v̂5 from q̂, so that v̂5 becomes disjoint from q̂, hence we can
forget v5 and v3.

Therefore, we obtain |̂̀| = |m̂| = |r̂| = |ŝ| = 2, |̂i| = |̂j| = |k̂| = |n̂| = |ô| =
|p̂| = 3, |â| = |ĉ| = |ĝ| = |q̂| = 4. Moreover, ̂̀= m̂.

Observe that if we color everything but a, i, p with their color in γ, the
only problematic case is when â, î and p̂ are the same list of size 2. Then, any
recoloring of j or o can break this condition.

Note that since ̂̀ = m̂, it is sufficient to color the graph obtained by
identifying the endpoints of ` and m that are not v3 (so that k and n become
incident), and by removing ` and m.

Let α ∈ ĝ 6= ô. We distinguish two cases.

• Assume that {c, j, k, q, r} stays colorable when we remove α from ĉ. If
n̂ 6= ŝ ∪ {γ(k)}, then we color c, j, k, q, r, `,m, so that n̂ 6= ŝ and ô 6= ĝ.
We then color n with a color not in ŝ, then color i arbitrarily. We then
apply Lemma 1.20 to {s, o, p, a, g} since ô 6= ĝ.

Let H be the color shifting graph of {c, j, k, q, r}. By Lemma 1.16, there
exists a strongly connected component C of H stable by predecessor. By
Lemma 1.17, this ensures that |C| > d−(r) = 1.

– If C contains j, then we can recolor j by Lemma 1.15, which now
breaks â = î = p̂ after having colored every other element. Thus we
may assume that C does not contain j.

– If C contains k, then we can recolor k by Lemma 1.15, and the
condition n̂ = ŝ ∪ {γ(k)} does not hold anymore with the new
coloring. Thus we may assume that C does not contain k.

– If C contains some sβ, then it contains j and k.

– Otherwise, C ⊂ {c, q, r}. If q ∈ C, then |C| > 3, which is not
possible.

– Otherwise C ⊂ {c, r}, hence c ∈ C and |C| > 2, which is again
impossible.

Therefore, we may always recolor either j or k, and then extend the
coloring to G.

• Assume that {c, j, k, q, r} is not colorable when we remove α from ĉ.
This means that γ(c) = α. In particular, when coloring {c, j, k, q, r}
with their color in γ, we obtain that ô and ĝ are the same list of size 3.
Since {g, n, o, s} is colorable, there must exist a color in n̂ ∪ ŝ not in ô.
We color n or s (say n, by symmetry) with this color, then s. We then
apply Lemma 1.20 to {i, p, o, g, a}.

Lemma 1.66. The graph G does not contain C17e.

Induction Schemes: From Language Separation to Graph Colorings 89

1.4. Reducing configurations

Proof. We follow here the same approach as for C17b. We use the notation de-
picted in Figure 1.70. By minimality, there exists a coloring γ of G\{a, p, i, v1}.
We uncolor a, . . . , s, v1, . . . , v5 and forget v1, v4.

8
u

8
3
v1

8

4
v4

8
5
v3

8

5 v2

8 5 v5

8
def

g

h
a b

c

m

n

o

p i

j

k
`

r q

s

Figure 1.70 – Notation for Lemma 1.66

By Remark 1.12, we may thus assume that: |̂j| = |k̂| = |r̂| = |ŝ| = |v̂5| = 2,
|̂b| = |d̂| = |f̂ | = |ĝ| = |̂i| = |̂̀| = |m̂| = |n̂| = |ô| = |p̂| = |v̂2| = 4, |q̂| = |û| = 6,
|v̂3| = 7, |ĉ| = 8 and |â| = |ê| = |ĝ| = 10.

For all items except the last one, we remove from û a color in v̂3 \ q̂, so that
if we color everything but q, v3, v5, then q̂ 6= v̂3 if they are lists of size 2. This
means that we can forget about q, v3, v5.

• If b̂ ∩ k̂ 6= ∅, we color b and k with the same color, then j, r, s. Let H
be the graph induced by the remaining elements. We conclude using the
Nullstellensatz: the coefficient of

A8C5DE7F 2G7H2LM2N2O2P 3U3V2

in PH is 8. Using Theorem 1.14, we can find a coloring for H. Therefore,
we may assume that b̂ and k̂ are disjoint.

• If d̂ ∩ ĵ 6= ∅, we color d and j with the same color, then k, `, r, s. Let H
be the graph induced by the remaining elements. We conclude using the
Nullstellensatz: the coefficient of

A8B2C5E6F 2G7H2MN2O2P 3U3V2

in PH is −4. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that d̂ and ĵ are disjoint.

• If d̂ ∩ v̂2 6= ∅, we color d and v2 with the same color (hence not in ĵ),
then k, j, `, r, s. Let H be the graph induced by the remaining elements.
We conclude using the Nullstellensatz: the coefficient of

A8BC4E6F 2G7H2IMN2O2P 3U3

90 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

in PH is −4. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that d̂ and v̂2 are disjoint.

• If b̂ ∩ v̂2 6= ∅, we color b and v2 with the same color (hence not in k̂),
then j, k, r, s. Let H be the graph induced by the remaining elements.
We conclude using the Nullstellensatz: the coefficient of

A8C4DE7F 2G7H2LM2N2O2P 3U3

in PH is −8. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that b̂ and v̂2 are disjoint.

• If k̂ 6⊂ v̂2 or ĵ 6⊂ v̂2, we color k (or j) with a color not in v̂2, then j (or
k), r, s, then forget v2.

Let H be the graph induced by the remaining elements. We conclude
using the Nullstellensatz: the coefficient of

A9BC5D2E8F 3G8H3LM2N2O2P 3U4

in PH is −8. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that k̂ and ĵ are included in v̂2.

• If ĵ 6= k̂, we color j with a color not in k̂, then i, b and s, r. We remove
v̂5 from q̂, so that v̂5 becomes disjoint from q̂, hence we can forget v5 and
v3.

Let H be the graph induced by the remaining elements. We conclude
using the Nullstellensatz: the coefficient of

A7C5D2E7F 2G7H2KL2M2N2O2P 2Q2U4V 2
2

in PH is −6. Using Theorem 1.14, we can find a coloring for H. There-
fore, we may assume that k̂ = ĵ.

Now we have γ(b) ∈ b̂, hence not in ĵ since ĵ ⊂ v̂2 which is disjoint from b̂.
Therefore, γ(b) /∈ ĵ, and similarly, γ(d) /∈ k̂.

We now color h, b, f and d with their color in γ. Since ĵ = k̂ and {j, k, c, v2}
is colorable, coloring c and v2 with their color in γ does not affect ĵ and k̂. We
also color u with its color in γ.

We remove v̂5 from q̂, so that v̂5 becomes disjoint from q̂, hence we can
forget v5 and v3.

Therefore, we obtain |̂j| = |k̂| = |r̂| = |ŝ| = 2, |ô| = |p̂| = |̂i| = |̂̀| = |m̂| =
|n̂| = 3, |â| = |ê| = |ĝ| = |q̂| = 4. Moreover, ĵ = k̂.

Observe that if we color everything but a, i, p with their color in γ, the
only problematic case is when â, î and p̂ are the same list of size 2. Then, any
recoloring of ` or o can break this condition.

Let α ∈ ĝ 6= ô. We distinguish two cases.

Induction Schemes: From Language Separation to Graph Colorings 91

1.4. Reducing configurations

• Assume that {e, `,m, q, r} stays colorable when we remove α from ê. If
n̂ 6= ŝ ∪ {γ(m)}, then we color `,m, q, r, `, k, so that n̂ 6= ŝ and ô 6= ĝ.
We then color n with a color not in ŝ, then color i arbitrarily. We then
apply Lemma 1.20 to {s, o, p, a, g} since ô 6= ĝ.

Let H be the color shifting graph of {e, `,m, q, r}. By Lemma 1.16, there
exists a strongly connected component C of H stable by predecessor. By
Lemma 1.17, this ensures that |C| > d−(r) = 1.

– If C contains `, then we can recolor ` by Lemma 1.15, which now
breaks â = î = p̂ after having colored every other element. Thus we
may assume that C does not contain `.

– If C contains m, then we can recolor m by Lemma 1.15, and the
condition n̂ = ŝ ∪ {γ(m)} does not hold anymore with the new
coloring. Thus we may assume that C does not contain m.

– If C contains some sβ, then it contains m and `.

– Otherwise, C ⊂ {e, q, r}. If q ∈ C, then |C| > 3, which is not
possible.

– Otherwise C ⊂ {e, r}, hence e ∈ C and |C| > 2, which is again
impossible.

Therefore, we may always recolor either ` or m, and then extend the
coloring to G.

• Assume that {e, `,m, q, r} is not colorable when we remove α from ê.
This means that γ(e) = α. In particular, when coloring {e, `,m, q, r}
with their color in γ, we obtain that ô and ĝ are the same list of size 3.
Since {g, n, o, s} is colorable, there must exist a color in n̂ ∪ ŝ not in ô.
We color n or s (say n, by symmetry) with this color, then s. We then
apply Lemma 1.20 to {i, p, o, g, a}.

Lemma 1.67. The graph G does not contain C17f .

Proof. We use the notation depicted in Figure 1.71. By minimality, there
exists a coloring γ of G \ {a, i, p, v1}.

We uncolor a, . . . , s, v1, v2, v3, v4 and forget v1, v4. By Remark 1.12, we
may thus assume that: |ŝ| = |̂j| = |k̂| = 2, |ĥ| = |̂b| = |d̂| = |f̂ | = |ô| =

|p̂| = |̂i| = |̂̀| = |m̂| = |n̂| = |q̂| = |r̂| = |v̂2| = 4, |v̂3| = |û| = 6, |ĉ| = 8,
|â| = |ĝ| = |ê| = 10.

We first prove that we can color G unless n̂ = ŝ ∪ {γ(f), γ(m)}. Indeed,
otherwise, we color every element but {o, p, i, n, a, g, s}, and we obtain |ŝ| =
|̂i| = 2, |ô| = |p̂| = |â| = |ĝ| = 3, and either |n̂| = 3 or |n̂| = 2 and n̂ 6= ŝ. We
focus on the last case (since we may always remove a color from n̂ in the first
case to obtain the second one).

92 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

8
u

8
3
v1

8

4
v4

8
5
v3

8

5 v2

6 6

8
def

g

h
a b

c

m

n

o

p i

j

k
`

r q

s

Figure 1.71 – Notation for Lemma 1.67

• If ô 6= ĝ, we color n with a color not in ŝ, then i, and apply Lemma 1.20
to color {s, o, p, a, g}. Thus we may assume that ô = ĝ.

• Since {o, g, n, s} is colorable, we cannot have both ŝ ⊂ ô and n̂ ⊂ ô. By
symmetry, assume that we can color s with a color not in ô (hence not
in ĝ). Then we color n and apply Lemma 1.20 to color {i, p, o, g, a}.

We uncolor the elements of S = {m, e, `, q, r, v3}. Let H be the color shift-
ing graph of S. By Lemma 1.16, there exists a strongly connected component
C of H such that |C| > maxx∈C d

−(x). By Lemma 1.17, this inequality ensures
that |C| > 1.

• If C containsm, then we can recolorm by Lemma 1.15, and the condition
n̂ = ŝ∪{γ(f), γ(m)} does not hold anymore with the new coloring. Thus
we may assume that C does not contain m.

• If C contains some sα, then C = V (H), hence C contains m.

• Otherwise, C ⊂ {e, `, q, r, v3}. If C contains v3, it has size at least 5,
hence C = {e, `, q, r, v3}. Since C is closed by predecessor, this means
that all the colors of ê, ̂̀, q̂, r̂ and v̂3 are actually in γ({e, `, q, r, v3}).
In particular, we get that the union of these lists has size 5. Since
{m, e, `, q, r, v3} is colorable, this means that we can color m with a color
not in ê ∪ ̂̀∪ q̂ ∪ r̂ ∪ v̂3. We may then color n, s, o, g, p, i, a, e, `, q, r.

• Otherwise, C ⊂ {e, `, q, r}. Since C has size at least two, it contains one
element among e, r, q, hence it has size four and C = {e, `, q, r}.
Similarly to the previous item, this means that the union ê ∪ ̂̀∪ q̂ ∪ r̂
has size 4. Since {m, e, `, q, r, v3} is colorable, this means that we can
color v3 then m with a color not in ê ∪ ̂̀∪ q̂ ∪ r̂. We may then color
n, s, o, g, p, i, a, e, `, q, r.

Induction Schemes: From Language Separation to Graph Colorings 93

1.4. Reducing configurations

Configuration C18

For reducing the remaining configurations, we use the recoloration tech-
nique.

Lemma 1.68. The graph G does not contain C18.

Proof. First, we consider the notation depicted in Figure 1.72. By minimality,
we color G\{a, . . . , f} and uncolor v1, v2. By Observation 1.12, we may assume

8
u

8
3
v1

8

8
3
v2

8

5 v3

jd
k

g c h
i

fe

a b

Figure 1.72 – Notation for Lemma 1.68

that |â| = |̂b| = |ê| = |f̂ | = 2, |ĉ| = |d̂| = 3 and |v̂1| = |v̂2| = 8. We forget
v1, v2. In this situation, note that we can extend the coloring to G if and only
if one of the following conditions is satisfied:

1. â 6= b̂

2. ê 6= f̂

3. ĉ \ â 6= d̂ \ ê

4. |ĉ \ â| 6= 1 or |d̂ \ ê| 6= 1

Indeed, if â 6= b̂ (or similarly ê 6= f̂), we color a with a color not in b̂, then
color e, f, d, c, b. Otherwise, we color a, b, e, f arbitrarily. If one of the last two
conditions holds, then we can color c and d. Therefore, we can extend the
coloring to G. Conversely, if none of these conditions holds, then however we
color a, b, e, f , we obtain ĉ = d̂ = {α} so we cannot produce a coloring of G.

Assume now that none of these conditions holds. We prove that we can re-
color some elements among g, h, j, k. This ensures that one of these conditions
will hold. If we uncolor g, h, i, j, k, u, we may assume that |ĝ| = |ĥ| = |̂j| =

|k̂| = 2, |û| = 3 and |̂i| = 4.
LetH be the color shifting graph of {g, h, i, j, k, u}. Recall that Lemma 1.17

implies that the in-degree of any vertex x 6= sα of H is at least |x̂| − 1. By
Lemma 1.16, there is a strong component C ofH such that |C| > maxx∈C d

−(x).
Note that this inequality ensures that |C| > 1. We show that C contains g, h, j
or k by distinguishing three cases:

94 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

1. If C contains a vertex sα, then we have |C| > d−(sα) = |V (H)| − 1.
Therefore, we have C = V (H), hence C contains g, h, j and k.

2. Otherwise, if C contains i, then we have |C| > |̂i| − 1, so |C| > 4. Hence
C also contains g, h, j or k.

3. Otherwise, if C contains u, then |C| > 3 and C contains g, h, j or k.

We thus obtain that C is a strong component of size at least 2 that contains
g, h, j or k. Therefore, there is a directed cycle containing at least one of these
vertices. Thus, applying Lemma 1.15 gives a valid coloring of {g, h, i, j, k, u}
where the color of g, h, j or k is different from its color in the previous coloring.

With the initial coloring, we had â = b̂ and d̂ = ê. Since we recolored at
least one element among g, h, j, k, we necessarily have â 6= b̂ or d̂ 6= ê with the
new coloring. Thus we can extend it to a, b, c, d, e, f .

Configuration C19

Lemma 1.69. The graph G does not contain C19.

Proof. We use the notation depicted in Figure 1.73. By minimality, we color
G \ {a, . . . , f} and uncolor v1, v2. Note that we may forget v1, v2 and assume

8
u

8
3
v1

8

w1

w2

3v2 8

8
d

j

g c h
i

fe

a b

k

Figure 1.73 – Notation for Lemma 1.69

that |â| = |̂b| = |ê| = |f̂ | = 2 and |ĉ| = |d̂| = 3 by Remark 1.12. As in
Lemma 1.68, our goal is to obtain one of the following conditions:

1. â 6= b̂

2. ê 6= f̂

3. ĉ \ â 6= d̂ \ ê

4. |ĉ \ â| 6= 1 or |d̂ \ ê| 6= 1

Assume that none of them holds. In this case, note that any recoloring of
g, h or i is sufficient to ensure that one of these conditions holds. We uncolor
u, g, h, i, j, k. We have two cases:

Induction Schemes: From Language Separation to Graph Colorings 95

1.4. Reducing configurations

1. If (d(w1), d(w2)) = (4−, 7−), we uncolor and forget w1 and we may assume
that |ĝ| = |ĥ| = |̂i| = |k̂| = 2, |û| = 4 and |̂j| = 6.

2. If (d(w1), d(w2)) = (5−, 6−), we may assume that |ĝ| = |ĥ| = |̂i| = 2,
|û| = |k̂| = 3 and |̂j| = 4.

Denote by H the color shifting graph of {g, h, i, j, k, u}. By Lemma 1.16, there
exists a strongly connected component C of H such that |C| > maxx∈C d

−(x).
By Lemma 1.17, this inequality ensures that |C| > 1. We show that C contains
g, h or i by distinguishing four cases:

1. If C contains a vertex sα, then we have |C| > d−(sα) = |V (H)| − 1.
Therefore, C = V (H), and C contains g, h, i.

2. Otherwise, if C contains j, then it has size at least 4, hence it also
contains g, h or i.

3. Otherwise, if C contains u, then it has size at least 3, hence contains g, h
or i.

4. Otherwise, C ⊂ {g, h, i, k}. If C contains k, then its size is at least 2,
hence it also contains g, h or i.

We thus obtain that C is a strong component of size at least 2 that contains
g, h or i. Therefore, there is a directed cycle containing one of these vertices.
Thus, we can apply Lemma 1.15 to ensure that one the conditions is now
satisfied, hence we can extend the coloring to G.

Configuration C20

Lemma 1.70. The graph G does not contain C20.

Proof. We use the notation depicted in Figure 1.74. By minimality, we color
G\{a, b, c} and uncolor v1, v2, v3. Note that we may forget v1, v2, v3 and assume

8
u

8
3
v1

8

4v2

4v3

7
5

8
d

j g

c

hi

f
e

a b

Figure 1.74 – Notation for Lemma 1.70

96 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

that |â| = |̂b| = |ĉ| = 2 by Remark 1.12.
If â 6= b̂, we can color c arbitrarily, then a and b. Therefore, assume â = b̂.

In this case, note that any recoloring of d or e is sufficient to ensure that â 6= b̂.
Denote by H the color shifting graph of S = {d, e, f, g, h, i, j, u}.

We uncolor the elements of S. Note that we can assume that |f̂ | = 2,
|d̂| = |ê| = |ĝ| = 3, |ĥ| = |û| = 5 and |̂i| = |̂j| = 7.

By Lemma 1.16, there exists a strongly connected component C of H such
that |C| > maxx∈C d

−(x). By Lemma 1.17, this inequality ensures that |C| >
1. We show that C contains d or e by distinguishing five cases:

1. If C contains a vertex sα, then we have |C| > d−(sα) = |V (H)| − 1.
Therefore, C = V (H), and C contains d and e.

2. Otherwise, if C contains i or j, then it has size at least 7, hence it also
contains d or e.

3. Otherwise, if C contains u or h, then it has size at least 5, hence contains
d or e.

4. Otherwise, C ⊂ {d, e, f, g}. If C contains g, then its size is at least 3,
hence it also contains d or e.

5. Otherwise, C ⊂ {d, e, f}. If C contains f , then its size is at least 2,
hence it also contains d or e.

We thus obtain that C is a strong component of size at least 2 that contains
d or e. Therefore, there is a directed cycle containing one of these vertices.
Thus, we can apply Lemma 1.15 to ensure that now â 6= b̂, so that we can
extend the coloring to G.

Configuration C21

To prove that G does not contain C21, we prove that it does not contain
the three following configurations:

• C21a: u has a weak neighbor v1 of degree 3, a (7, 8)-neighbor v2 of degree
4 such that distu(v1, v2) = 2, and neighbor v3 of degree 4.

• C21b: u has a weak neighbor v1 of degree 3, a (8, 8)-neighbor v2 of degree
4 such that distu(v1, v2) = 2, a neighbor v3 of degree 4 and a neighbor v4

of degree 7.

• C21c: u has a weak neighbor v1 of degree 3, a (7, 8)-neighbor v2 of degree
4 such that distu(v1, v2) > 3, and two neighbors of degree 4 and 7.

Lemma 1.71. The graph G does not contain C21a.

Induction Schemes: From Language Separation to Graph Colorings 97

1.4. Reducing configurations

8 u

8
3
v1

8

4
v2

8

7 4 v3

a b

c
g d

e

f

Figure 1.75 – Notation for Lemma 1.71

Proof. We use the notation depicted in Figure 1.75. By minimality, we color
G \ {a, b, c} and uncolor and forget v1, v2, v3. We then uncolor d, e, f, g.

We may thus assume that |̂b| = |ĝ| = 2 and |â| = |ĉ| = |d̂| = |ê| = |f̂ | = 3.
Moreover, we have |d̂ ∪ ê ∪ f̂ ∪ ĝ| > 4 since d, e, f, g were properly colored.

If ĝ is not included in d̂, we color g with a color not in d̂, then b, and apply
Lemma 1.20 to color {f, d, a, c, e}. Therefore, we may assume that ĝ ⊂ d̂, and
similarly, ĝ ⊂ ê.

We may also assume that ĝ ⊂ f̂ . Indeed, otherwise, we color g with a color
not in f̂ , then forget f and apply Lemma 1.20 to {b, a, d, e, c}.

Now, if f̂ 6⊂ d̂, we color f with a color not in d̂ (thus not in ĝ), then color
b and apply Lemma 1.20 to {g, d, a, c, e}. If d̂ 6⊂ f̂ , we color d with a color
not in f̂ , then color a, b, c, e, g, f . Therefore, we may assume that f̂ = d̂ and
similarly f̂ = ê.

This ensures that
|f̂ | = |d̂ ∪ ê ∪ f̂ ∪ ĝ| > 4.

We may thus arbitrarily color a, b, c, g, d, e, f .

Lemma 1.72. The graph G does not contain C21b.

Proof. We use the notation depicted in Figure 1.76. By minimality, we color
G \ {a, b, c}. We uncolor and forget v1, v2, v3. Denote by α the color of d and
β the color of e. We then uncolor d, e, f, g.

8
u

8
3
v1

8

4
v2

8

8 4 v3

7

8

a b

c
g d

e
f

i
h

m

j

k
`

Figure 1.76 – Notation for Lemma 1.72

98 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

We may thus assume that |̂b| = |f̂ | = |ĝ| = 2, |â| = |ĉ| = 3 and |d̂|, |ê| ∈
{3, 4}. Moreover, since d, e, f, g are pairwise incident, they were colored with
at least 4 colors before being uncolored. Therefore, we have |d̂∪ ê∪ f̂ ∪ ĝ| > 4.

• If d̂ = ê, then this means there exists γ ∈ (f̂ ∪ ĝ) \ (d̂∪ ê). We color f or
g with γ, then g, b. The elements {a, c, d, e} induce an even cycle, which
is 2-choosable. We may thus assume that d̂ = ê.

• If f̂ 6= ĝ, we color f with γ /∈ ĝ, so that d̂ 6= ê if |d̂| = |ê| = 2. We may
then color b and apply Lemma 1.20 to {g, d, a, c, e}.

• If |ê \ f̂ | = |d̂ \ f̂ | = 2, then we color f and g and apply Lemma 1.20 to
{b, a, d, e, c}. In particular, we have (|d̂|, |ê|) 6= (4, 4).

• Observe that since f̂ = ĝ and d, e, f, g were colored, we have α, β /∈ f .
Therefore, d and e are forced to be colored α and β. Hence G is not
colorable only if â \ {α} = ĉ \ {β} = b̂.

• Let γ be the color of h. Observe that γ ∈ L(a). Indeed, since h is adjacent
to every colored element incident to a, we could otherwise assume that
|â| = 4, hence forget a, b, c and color d, e, f, g. Similarly, we have γ ∈
L(c).

We show that we can recolor h, i or m and then extend the coloring with the
new available colors of a, b, c, d, e, f, g.

Let H be the color shifting graph of S = {h, i, j, k, `,m, u}. If α appears
on S, we remove the arc sα → h from H, otherwise α appears on x ∈ S, and
we remove the arc x → h in H. We uncolor the vertices of S, and we have
|̂i| = |̂j| = |m̂| = 2, |̂̀| = 3, |ĥ| = 4, |û| = 5 and |k̂| = 7. Observe that
d−(h) = 2.

By Lemma 1.16, there is a strong component C of H such that |C| >
maxx∈C d

−(x). We consider two cases, depending on whether C contains a
vertex sδ.

1. Assume first that C does not contain any vertex sδ.

• If C contains k, then |C| > 7, hence C contains h, i or m.

• Otherwise, if C contains u, then |C| > 7 hence C contains h, i or
m.

• Otherwise, C ⊂ {h, i, j, `,m}. If C contains `, then |C| > 3 hence
C contains h, i or m.

• Otherwise, C ⊂ {h, i, j,m}. If C contains j, then |C| > 2 hence C
contains h, i or m.

Induction Schemes: From Language Separation to Graph Colorings 99

1.4. Reducing configurations

We may thus find a directed cycle in H containing h, i or m and only
vertices of S. Shifting the colors along this cycle as done in Lemma 1.15
yields another coloring of S obtained by permuting the colors. Denote
by x̃ the new list of available colors for the element x after the recoloring
process.

Observe that since we removed an ingoing arc to h, the edge h cannot be
colored with α in the new coloring. This implies that α ∈ d̃. Moreover,
ê = ẽ, hence β ∈ ẽ. We consider three cases, depending on which
elements among {h, i,m} were recolored.

• Assume that h was recolored. We color d with α and e with β. Since
h was recolored, then its former color γ does not appear anymore
on a colored incident element of a. Since γ ∈ L(a), we can color a
with γ. After this, we may assume that |b| = |f | = 1, |c| = |g| = 2,
hence we can color b, c, f, g.

• If h was not recolored, then assume that i was. In this case, we may
still color d with α and e with β, then color f, g. Since we recolored
i, we now have b̃ 6= c̃, hence we can color a, b, c.

• Finally, if we only recolored m, then let δ be the former color of
m. Note that m is incident to e and β ∈ ê, hence δ 6= β. If
δ /∈ L(f), then we could have assumed that |f̂ | = 3, and obtained
the same situation as in Lemma 1.71. Therefore, we may assume
that δ ∈ L(f), hence δ ∈ f̃ \ f̂ . This implies that δ /∈ ĝ.
If δ = α, we color f and a with α, so that we have |̃b| = |c̃| = |d̃| =
|g̃| = 2 and |ẽ| = 3. We then color d, g, e, c, b.
Otherwise, we color f with δ. Afterwards, we have g̃ 6= d̃ or g̃ 6=
ẽ since δ /∈ {α, β}. We then color b and apply Lemma 1.20 to
{g, d, a, c, e}.

2. Assume now that C contains a vertex sδ, ensuring that |C| > |V (H)|−1,
i.e. H is strongly connected. Note that if γ /∈ L(e), then |ê| = 4, hence
|d̂| = 3 so γ ∈ L(d).

We consider a directed path sδ → · · · → h in H where each internal
vertex lies in S. Since h is colored with γ, sγ has no successor in H,
hence we have δ 6= γ. We shift the colors of S along this path, as done
in Lemma 1.15. We may then color c and d with γ (this is possible since
γ ∈ L(d) and γ 6= δ). Note that γ /∈ d̂ ∪ ê, hence γ /∈ ĝ = g̃. Then we
may assume that |f̃ | = 1, |ã| = |̃b| = |g̃| = 2 and |ẽ| = 3. We may thus
color f, g, e, b, a.

If γ ∈ L(e), we again shift the colors along the directed path sδ → · · · →
h, then color a, e with γ and d with α (since the new color of h is not

100 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

α). Again, we have γ /∈ g̃, hence we may assume that |f̃ | = 1 and
|ã| = |̃b| = |g̃| = 2. We may thus color f, g, b, c.

Lemma 1.73. The graph G does not contain C21c.

Proof. We use the notation depicted in Figure 1.77. By minimality, we color
G\{a, b, c}. We uncolor and forget v1, v2, v3. Let α, β be the colors of e and f .
We then uncolor d, e, f, g. We may thus assume that |â| = |̂b| = |ê| = |f̂ | = 2

8
u

8
3
v1

8

7

8 4
v2

4 v3

8

8

a b

c

e

d

f

g

h
i
j

k
`

m

Figure 1.77 – Notation for Lemma 1.73

and |d̂| = |ĝ| = |̂i| = 3. Moreover, since d, e, f, g are pairwise incident, they
were colored with at least 4 colors before being uncolored. Therefore, we have
|d̂ ∪ ê ∪ f̂ ∪ ĝ| > 4.

• If d̂ = ĝ, then this means there exists γ ∈ (ê∪ f̂) \ (d̂∪ ĝ). We color e or
f with γ, then f, a, b, c, g, d. We may thus assume that d̂ = ĝ.

• We also assume that â = b̂. Indeed, otherwise, we color a with a color
not in b̂, then forget b, c, and put back the initial colors on d, e, f, g.

• Let γ be the color of m. Observe that γ ∈ L(c). Indeed, since m
is adjacent to every colored element incident to c, we could otherwise
assume that |ĉ| = 4, hence forget c, b, a and color d, e, f, g.

• We now show that we can recolor h or i. LetH be the color shifting graph
of S = {h, i, j, k, `,m, u}. We uncolor the vertices of S, and we have
|̂j| = 2, |ĥ| = |̂i| = |̂̀| = 3, |m̂| = 4, |û| = 5 and |k̂| = 7. By Lemma 1.16,
there is a strong component C of H such that |C| > maxx∈C d

−(x).

– If C contains a vertex sδ, then |C| = |V (H)|, hence C contains h
and i.

– If C contains k, then |C| > 7, hence C contains h or i.

– Otherwise, if C contains u, then |C| > 5 hence C contains h or i.

Induction Schemes: From Language Separation to Graph Colorings 101

1.4. Reducing configurations

– Otherwise, C ⊂ {h, i, j, `,m}. If C contains m, then |C| > 4 hence
C contains h or i.

– Otherwise, C ⊂ {h, i, j, `}. If C contains `, then |C| > 3 hence C
contains h or i.

– Otherwise, C ⊂ {h, i, j}. If C contains j, then |C| > 2 hence C
contains h or i.

In every case, we can recolor h or i by Lemma 1.15. This allows to
obtain new lists x̃ of available colors for the element x, and we have
ã 6= b̃. However, this may break colorability of d, e, f, g. Proving that
this colorability is actually preserved requires a more careful analysis we
give in the rest of the proof.

• Let δ, ε be the colors of h and i before recoloring. Observe that γ ∈ L(d)

and δ, ε ∈ L(g). Indeed, otherwise, we have |d̂| = 4 or |ĝ| = 4 at the
beginning. After recoloring, we thus have |d̃| = 4 or |g̃| = 4, and ã 6= b̃.
We can therefore extend the coloring to G by coloring a with a color not
in b̃, then forget b, c, and color d, e, f, g.

We may thus assume that γ ∈ L(d) and that δ, ε ∈ L(g).

• Consider the strong component C of H given by Lemma 1.16. We con-
sider two cases, depending on whether C contains a vertex sδ.

– Assume first that C does not contain any vertex sδ. As we saw, C
contains h or i, hence we may find a directed cycle in H containing
h or i and only vertices of S.
The coloring given by applying Lemma 1.15 to this directed cycle
uses the same set of colors (the colors are only permuted). There-
fore, we have c̃ = ĉ and g̃ = ĝ. together with ã 6= b̃.
If m was not recolored, then we also have d̃ = d̂. Hence d̃ and g̃ are
different lists of size at least 3. Otherwise, if m was recolored, then
its former color γ lies now in d̃, but not in g̃ (since color γ is still
present on S).
Therefore, in both cases, we can hence we can color e, f arbitrarily,
then d, g since d̃ 6= g̃, then c, and a, b since ã 6= b̃.

– Assume now that C contains a vertex sζ , ensuring that |C| >
|V (H)| − 1, i.e. H is strongly connected.
We consider a directed path sζ → · · · → h in H where each internal
vertex lies in S. Since m is colored with γ, sγ has no successor in
H, hence we have ζ 6= γ. We shift the colors of S along this path,
as done in Lemma 1.15, so that ã 6= b̃.

102 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

Assume that this path goes through m. Then since m is not the
last vertex of the path, the color γ is still present on some element
of S, hence γ /∈ g̃. However, we have γ ∈ d̃ since γ ∈ L(d) and m is
adjacent to every colored element incident to d. Therefore, we have
d̃ 6= g̃. We can then color e, f, d, g, c, a, b.

– Assume that the path does not go through m. Therefore, the color
of m is still γ after the recoloring. Since the initial color δ of h
lies in L(g), we now have g̃ = (ĝ \ {ζ}) ∪ {δ}. If g̃ 6= d̃, then we
can color a with a color not in b̃, then forget b, c and color e, f, d, g.
Otherwise, we have

(ĝ \ {ζ}) ∪ {δ} = g̃ = d̃ = d̂.

We then apply the same argument to a path sη → · · · → i. Such a
path cannot contain m by the previous item, and we should have

(ĝ \ {η}) ∪ {ε} = d̂.

Therefore, we can extend the new coloring to G unless we have

(ĝ \ {ζ}) ∪ {δ} = (ĝ \ {η}) ∪ {ε} = d̂.

Note that δ and ε are the former colors of h and i, hence they are
different. Therefore we also have ζ 6= η.
Since d̂ and ĝ are different lists of size 3, there exists x ∈ ĝ \ d̂. If
x 6= ζ, then x ∈ ĝ \ {ζ} hence x ∈ d̂, a contradiction. Otherwise
x = ζ, so x 6= η and x ∈ ĝ \ {η}. Therefore x ∈ d̂ and we also get a
contradiction. This implies that we can extend the new coloring to
G.

Configuration C22

By definition of C22, if G contains C22, then G contains one of the following:

• C22a: u has three semi-weak neighbors v1, v2, v3 of degree 3 and a neighbor
v4 of degree 7.

• C22b: u has two semi-weak neighbors v1, v2 of degree 3, two neighbors
w1, w2 of degree 4 and a neighbor w3 of degree 7.

We dedicate a lemma to each of these configurations.

Lemma 1.74. The graph G does not contain C22a.

Induction Schemes: From Language Separation to Graph Colorings 103

1.4. Reducing configurations

8
u

3
v17

87v4

8 8

8
8

3
v3

8 3
v2

k

n
cj

f

d

e

a
b

m

i
`

h
g

Figure 1.78 – Notation for Lemma 1.74

Proof. We use the notation depicted in Figure 1.78. By minimality, we color
G \ {a, . . . , i} and uncolor v1, v2, v3. By Remark 1.12, we may assume that
|â| = |̂b| = |d̂| = |ê| = |ĝ| = |ĥ| = 2, |ĉ| = |f̂ | = |̂i| = 4 and |v̂1| = |v̂2| =

|v̂3| = 7. We forget v1, v2, v3. We assume that â = b̂, d̂ = ê, ĝ = ĥ, and
ĉ \ â = f̂ \ d̂ = î \ ĝ have size 2 (otherwise, we can already extend the coloring
to G). Note that any recoloring of j, k or ` is sufficient to ensure that this
hypothesis does no longer hold. We uncolor j, k, `,m, n, u. We may assume
that |m̂| = 2, |n̂| = |̂j| = |k̂| = |̂̀| = 3 and |û| = 5.

Denote byH the color shifting graph of S = {j, k, `,m, n, u}. By Lemma 1.16,
there exists a strong component C of H such that |C| > maxx∈C d

−(x). Note
that this inequality ensures that |C| > 1. We show that C contains j, k or `
by distinguishing four cases:

1. If C contains a vertex sα, then we have |C| > d−(sα) = |V (H)| − 1.
Therefore, C = V (H), and C contains d, e.

2. Otherwise, if C contains u, then it has size at least 5, hence it also
contains j, k or `.

3. Otherwise, if C contains n, then its size is at least 3, hence it also contains
j, k or `.

4. Otherwise, C ⊂ {j, k, `,m}. Then, if C contains m, its size is at least 2,
hence it also contains j, k or `.

We thus obtain that C is a strong component of size at least 2 that contains
j, k or `. Therefore, there is a directed cycle containing one of these vertices.
Thus, we can apply Lemma 1.15 to ensure that the starting hypothesis does
not hold anymore, hence we can extend the coloring to G.

Lemma 1.75. The graph G does not contain C22b.

Proof. We use the notation depicted in Figure 1.79. By minimality, we color
G \ {a, . . . , f} and uncolor v1 and v2. Note that we may assume that |â| =

|̂b| = |ê| = |f̂ | = 2, |ĉ| = |d̂| = 3 and |v̂1| = |v̂2| = 7. We forget v1, v2. As in

104 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

8
u

3
v18

8

7
w3

3
v2

8

4w1

4w2 8h

c
g

d e
f

a
b

k

j
i

Figure 1.79 – Notation for Lemma 1.75

Lemma 1.68, we assume that â = b̂, ê = f̂ and ĉ \ â = d̂ \ ê = {α} (otherwise,
we can already extend the coloring to G). Note that any recoloring of g or
h is sufficient to ensure that this hypothesis does no longer hold. We uncolor
g, h, i, j, k, u, w1, w2, then forget w1, w2.

We may assume that |ĝ| = |ĥ| = |k̂| = 2, |û| = 5, and |̂i| = |̂j| = 6.
Denote by H the color shifting graph of S = {g, h, i, j, k, u}. By Lemma 1.16,
there exists a strong component C of H such that |C| > maxx∈C d

−(x). Note
that this inequality ensures that |C| > 1. We show that C contains g or h by
distinguishing three cases:

1. If C contains a vertex sα, then we have |C| > d−(sα) = |V (H)| − 1.
Therefore, C = V (H), and C contains g, h.

2. Otherwise, if C contains u, i or j, then it has size 5, hence it also contains
g or h.

3. Otherwise, C ⊂ {g, h, k}. If C contains k, then its size is at least 2,
hence it also contains g or h.

We thus obtain that C is a strong component of size at least 2 that contains
g or h. Therefore, there is a directed cycle containing one of these vertices.
Thus, we can apply Lemma 1.15 to ensure that we can extend the coloring to
G.

1.5 Discharging process

We now strive to reach a contradiction using a double counting argument.
To this end, we give an initial weight to every vertex and face such that the
total weight is negative. We then introduce a set of discharging rules. Finally,
we reach a contradiction by showing that the final weight of each element is
non-negative.

Induction Schemes: From Language Separation to Graph Colorings 105

1.5. Discharging process

1.5.1 The rules

We start with the definition of the initial weighting ω: we set ω(v) = d(v)−6
and ω(f) = 2`(f)− 6 for each vertex v and face f . Using Euler’s formula, the
total weight is −12.

We then introduce several discharging rules, see Figure 1.80:

• For any 4+-face f ,

(R1) If f is incident to a 5−-vertex u, then f gives 1 to u.

(R2) If f has a vertex v such that d(v) = 8 and the neighbors u,w of v
along f satisfy d(u) = 3 and d(w) > 6, then f gives 5

12
to v.

(R3) If f has a vertex v such that d(v) = 7 and the neighbors u,w of v
along f both have degree at least 6, then f gives 1

3
to v if d(u) = 6

or d(v) = 6, and 1
12

otherwise.

(R4) If f has a vertex v such that d(v) = 7 and the neighbors u,w of
v along f both have degree 5 and 6, then f gives 1

6
to v, except if

`(f) = 4 and the last vertex of f has degree 5.

• For any 8-vertex u,

(R5) If u has a weak neighbor v of degree 3, then u gives 1 to v.

(R6) If u has a semi-weak neighbor v of degree 3, then u gives 1
2
to v.

(R7) If u has a (p, q)-neighbor v of degree 4, then u gives ω to v where:

ω =


2
3

if p = q = 7,
7
12

if p = 7 and q = 8,
1
2

if p = q = 8,

0 otherwise.

(R8) If u has a semi-weak neighbor v of degree 4 and a neighbor w of
degree 7 such that uvw is a triangular face, then u gives 1

12
to v.

(R9) If u has a (p, q)-neighbor v of degree 5 such that p, q > 5, then u
gives ω to v where

ω =



1
2

if p = 5 and q = 6,
1
6

if p = 5 and q > 6,
2
3

if p = q = 6,
1
3

if v is an E3-neighbor,
1
4

otherwise.

• For any 7-vertex u,

106 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

(R10) If u has a (p, q)-neighbor v of degree 4, then u gives ω to v where

ω =


1
2

if p = q = 7,
5
12

if p = 7 and q = 8,
1
3

if p = q = 8,

0 otherwise.

• For any 7-vertex u with a weak neighbor v of degree 5,

(R11) If v is an (5, 6)-neighbor of u, then u gives 1
2
to v.

(R12) If v is an S3-neighbor of u, then u gives 1
3
to v.

(R13) If v is an S5-neighbor of u, then u gives 1
5
to v.

(R14) If v is not an (5, 6)-, S3-, nor S5-neighbor of u, then u gives 1
6
to v.

5−f
1

R1 3

8

6+

f
5
12

R2 6+

7

6+

f ω

R3 5

7

6

f
1
6

R4

8 3
1

R5

8 3

1
2

R6

8 4

p

q

ω

R7

8 4

7

1
12

R8

8 5 weak

p

q

ω

R9

7 4

p

q

ω

R10

7 5

5

6

1/2

R11

7 5 S3

1
3

R12

7 5 S5

1
5

R13

7 5 S6

1
6

R14

Figure 1.80 – The discharging rules

It then remains to prove that each element ends up with non-negative
weight. We first handle the faces, and then distinguish several cases for the
vertices, depending on their degree. First note that due to C1, the minimum
degree of G is 3. Moreover, only vertices of degree 7 or 8 lose weight.

1.5.2 Faces

Note that only faces of length at least 4 lose weight. Consider a 4+-face f .
We distinguish some cases, depending on its length ` and the minimal degree
δ of its incident vertices.

Induction Schemes: From Language Separation to Graph Colorings 107

1.5. Discharging process

1. ` > 6: By rules R1, R2, R3 and R4, the face f loses at most 1 for each of
its vertices, hence

ω′(f) > 2`− 6− ` = `− 6 > 0

2. δ = 3 and ` = 4: Let f = uu1vu2 where d(u) = 3. By C1, both u1 and
u2 are 8-vertices. Consider the other neighbor v of these 8-vertices. If v
is a 6-vertex or a 8-vertex, then f loses 2 × 5

12
on u1 and u2 by R2 and

f does not lose anything on v since R2, R3 and R4 do not apply.

If v is a 7-vertex, then f loses 2× 5
12

on u1 and u2 by R2 and 1
12

on v by
R3.

Otherwise, v is a 5−-vertex and f loses 1 on v by R1 but nothing on
u1, u2. Thus the final weight of f is at least 2− 1− 1 = 0.

3. δ = 3 and ` = 5: Let f = uu1v1v2u2 where d(u) = 3. By C1, we have
d(u1) = d(u2) = 8. By R2, the vertices u1 and u2 receive at most 5

12
.

The three remaining vertices receive at most 1 by R1, R2, R3 and R4.
Therefore, the final weight of f is at least 4− 3× 1− 2× 5

12
= 1

6
> 0.

4. δ = 4: By C1, any 4-vertex is adjacent to 7+-vertices. These vertices do
not receive any weight from f . Therefore, f loses at most (`− 2)× 1 by
R1, R2, R3 and R4. Hence ω′(f) = 2`− 6− (`− 2) = `− 4 > 0.

5. δ = 5 and ` = 4: If there is only one 5-vertex u, then f gives 1 to u and
at most 3× 1

3
to the other vertices by R1, R3 and R4.

Otherwise, by C4, there are two 5-vertices and the two other vertices
have degree at least 6. Thus only R1 applies, and f loses 2, giving a final
weight of 2− 2 = 0.

6. δ = 5 and ` = 5. By C4, there are at most three 5-vertices. If there are
three such vertices, then R3 and R4 do not apply and the final weight of
f is 4 − 3 × 1 = 1 > 0. If f has two vertices of degree 5, f gives 2 × 1
to these vertices by R1 and at most 3 × 1

3
to the others by R3 and R4.

Therefore, the final weight is at least 4− 2× 1− 3× 1
3

= 1 > 0.

7. δ > 5: Only R3 applies, so f loses at most ` × 1
3
. The final weight is

2`− 6− `
3
> 0 since ` > 4.

1.5.3 3-vertices

Let u be a 3-vertex. Note that due to C1, each neighbor of u is an 8-
vertex. We consider four cases depending on the number nt of triangular faces
containing u. In each case, we show that u receives a weight of 3 during the
discharging procedure, so its final weight is 0.

108 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

1. nt = 0: by R1, the vertex u receives 1 from each incident face.

2. nt = 1: the vertex u receives 2 by R1. Moreover, u is a semi-weak
neighbor of two 8-vertices. By R6, it receives 2× 1

2
.

3. nt = 2: the vertex u receives 1 by R1. Moreover, u is a semi-weak
neighbor of two 8-vertices, and a weak neighbor of another 8-vertex. By
R5 and R6, it receives 1 + 2× 1

2
.

4. nt = 3: the vertex u is a weak neighbor of three 8-vertices. By R5, it
receives 3× 1.

1.5.4 4-vertices

Similarly to the previous subsection, we take a 4-vertex u and consider
several cases considering the number nt of triangular faces incident with u.
In each case, we show that u receives at least a weight of 2, so ends up with
non-negative weight. Recall that, due to C1, every neighbor of u has degree at
least 7.

1. nt 6 2: By R1, the vertex u receives (4−nt)× 1 > 2 from incident faces.

2. nt = 3: In this case, u receives 1 by R1. Moreover, u is a weak neighbor
of two vertices w1 and w2 and a semi-weak neighbor of two other ones s1

and s2.

(a) If d(w1) = d(w2) = 8 then both w1 and w2 give at least 1
2
to u by

R7, hence u receives 1.

(b) If d(w1) = d(w2) = 7, then for 1 6 i 6 2, either d(si) = 7 and wi
gives 1

2
to u by R10, or d(si) = 8 and u receives 5

12
+ 1

12
from si and

wi by R10 and R8. In both cases, u receives 2× 1
2

= 1.

(c) If d(w1) = 7 and d(w2) = 8 (the other case is similar), then w2 gives
at least 7

12
to u by R7. Moreover, if d(s1) = 7, the vertex u receives

5
12

from w1 by R10. Otherwise, d(s1) = 8, and u receives 1
3

+ 1
12

from
w1 and s1 by R10 and R8. In both cases, u receives 7

12
+ 5

12
= 1.

3. nt = 4: In this case, u is a weak neighbor of four 7+-vertices, say
w1, . . . , w4, sorted by increasing degree. We show that applying R7

and/or R10 gives a weight of 2 to u in any case.

(a) If d(w1) = 8, or d(w4) = 7, then each wi gives 1
2
, hence u receives

4× 1
2

= 2.

(b) If d(w1) = 7 and d(w2) = 8, then w1 gives 1
3
, its two neighbors

among {w1, . . . , w4} give 2× 7
12

and the remaining vertex gives 1
2
.

Induction Schemes: From Language Separation to Graph Colorings 109

1.5. Discharging process

(c) If d(w2) = 7 and d(w3) = 8, then if w3w4 ∈ E(G), u receives 2× 7
12

from w3 and w4, and 2× 5
12

from w1 and w2. Otherwise, u receives
2× 2

3
from w3 and w4 and 2× 1

3
from w1 and w2.

(d) If d(w3) = 7 and d(w4) = 8, then w4 gives 2
3
to u, its neighbors

among the wi’s gives 2× 5
12

and the last neighbor of u gives 1
2
.

1.5.5 5-vertices

Take a 5-vertex u. If u is incident to a non-triangular face, then it receives
1 by R1. Thus, we only have to consider the case where u is triangulated. We
denote by v1, . . . , v5 the consecutive neighbors of u in the chosen embedding
of G.

Note also that due to C1, the minimum degree δ of the neighborhood of u
is at least 5. We distinguish three cases depending on δ. In each case, we show
that u receives a weight of at least 1, hence ends up with non-negative weight.

1. If δ > 7: denote by n8 the number of 8-vertices adjacent to u. By R9,
the vertex u receives at least n8 × 1

3
. We thus may assume that n8 < 3.

(a) If n8 = 0, by R13, the vertex u receives 5× 1
5

= 1.
(b) If n8 = 1, we may assume that d(v1) = 8. Then u is an S6-neighbor

of v2, v3, v4 and v5. By R14, it receives 1
6
from each of these vertices.

At the end, the received weight is thus 1
3

+ 4× 1
6

= 1.
(c) If n8 = 2, then each of them gives at least 1

4
, while the other neigh-

bors give 1
6
. Thus u receives at least 2× 1

4
+ 3× 1

6
= 1.

(d) If n8 > 3, then u receives at least n8 × 1
4

+ (5− n8)× 1
6
> 1.

2. If δ = 6, we consider different cases depending on the number n6 of
6-vertices in the neighborhood of u. Note that n6 6 3 because of C6.

(a) If n6 = 3, then denote by x and y the two neighbors of u of degree
at least 7. Due to C6, the vertices x and y are not consecutive
neighbors of u, and moreover, we cannot have d(x) = d(y) = 7. We
may thus assume that d(x) = 8. Therefore, u receives 2

3
from x by

R9 and at least 1
3
from y by R12 or R9.

(b) If n6 = 2, then for any i such that d(vi) > 6, u is either an S3 or an
E3-neighbor of vi. Thus, by R12 or R9, the vertex u receives 3 × 1

3

from them.
(c) If n6 = 1, then we may assume that d(v1) = 6. Thus, for i = 2, 5,

u is an S3-neighbor or an E3-neighbor of vi. Thus, by R9 or R12, u
receives 2 × 1

3
from v2 and v5. Moreover, u receives at least 2 × 1

6

by R14 and R9 from v3 and v4. In any case, u receives at least
2× 1

3
+ 2× 1

6
= 1.

110 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

3. If δ = 5, note that u is adjacent to only one 5-vertex (due to C4). We
may thus assume that d(v1) = 5 and d(vi) > 5 for 2 6 i 6 5. Moreover,
we have d(v2) > 6 and d(v5) > 6 due to C3. We show that v2 and v3 give
together at least 1

2
to u. By symmetry, u will receive at least 2× 1

2
from

v2, v3, v4 and v5.

(a) If d(v3) = 6, then u is an (5, 6)-neighbor of v2. Thus, u receives 1
2

by R9 or R11.

(b) Otherwise, u is either an S3-neighbor or an E3-neighbor of v3.
Therefore, u receives 1

3
from v3 by R9 or R12, and at least 1

6
from

v2 by R9 or R14.

1.5.6 6-vertices

Note that 6-vertices do not give nor receive any weight. Moreover, their
initial weight is 0. Thus their final weight is 0, hence non-negative.

1.5.7 7-vertices

Let u be a 7-vertex, and denote by v1, . . . , v7 its consecutive neighbors in
the chosen planar embedding of G.

Note that, due to C1, the neighbors of u have degree at least 4. Observe
also that u gives weight only to its weak neighbors of degree 4 or 5. We show
that u loses at most 1 during the discharging phase, thus ends up with a non-
negative weight. We distinguish cases depending on several parameters, like
the minimum degree δ of the vi’s, or the number of weak neighbors of u of
given degree. Note that we may thus assume that δ is 4 or 5. Moreover, due
to C1 and C4, there are at most four weak neighbors of u.

1. Assume that all the weak neighbors of u have degree 5. We separate
three cases depending on the number of triangular faces containing u
and two of these neighbors.

(a) Assume that there are two such triangular faces. Then we may
assume that v2, v3, v5 and v6 have degree 5, and the other neighbors
have degree at least 6. By C5, we have d(v4) > 6, thus v3 and v5

are S6-neighbors of u. Hence u gives 2× 1
6
to them by R14.

If d(v1) = d(v7) = 6 then by C5, we have v1v7 /∈ E(G). Therefore,
u gives at most 1

2
to v2 and v6 by R11, and receives 1

3
from the face

containing v1 and v7 by R3. The final weight loss is then at most
2× 1

6
+ 2× 1

2
− 1

3
= 1.

Otherwise, we may assume that d(v1) > 6. In this case, u gives at
most 1

6
to v2 by R14 and at most 1

2
to v6 by R11, for a total loss of

2× 1
6

+ 1
6

+ 1
2

= 1.

Induction Schemes: From Language Separation to Graph Colorings 111

1.5. Discharging process

(b) Assume that there is only one triangular face containing u and two
of its weak neighbors of degree 5 (say v2 and v3).

i. Assume that there are two more weak neighbors of degree 5.
Due to C4, the other vertices of degree 5 are v5 and v7. By C5,
we have d(v1) > 6 and d(v4) > 6. Then, u gives 2× 1

6
to v2 and

v3 by R14, and at most 2× 1
3
to v5 and v7 by R12 or R14. The

total loss is then at most 2× 1
6

+ 2× 1
3

= 1.
ii. Assume that there is only one other weak neighbor of u of

degree 5. Due to C5, then either v1 or v4 (say v1, by symmetry)
has degree at least 7 (otherwise v2 and v3 would be adjacent
(5, 6)-neighbors of u).
If the other weak neighbor of u of degree 5 is not a (5, 6)-
neighbor, then u gives at most 1

3
to it, and at most 2

3
to v2 and

v3 by R11 and R14, for a total loss of 1.
Therefore, assume that the other weak neighbor of u is a (5, 6)-
neighbor. Then, it has to be v6 by C5. If d(v4) > 6, then u
gives at most 2× 1

6
to v2, v3 by R14, and 1

2
to v6, for a total loss

of 5
6
< 1.

In this case, we may assume that d(v4) = 6 and (d(v5), d(v7)) =
(6, 5) or (5, 6). In the first case, note that v4v5 /∈ E(G) due to
C5. Then, by R3, u receives 1

3
. The total loss is then 2

3
+ 1

2
− 1

3
=

5
6
< 1.

Otherwise, we have d(v5) = 5 and d(v6) = 6. Again due to
C5, v4v5 /∈ E(G). By R4, u receives 1

6
, and the total loss is

2
3

+ 1
2
− 1

6
= 1. This holds except if the face containing u, v4

and v5 is a 4-face and the last vertex y of this face has degree
5. Due to C4, this means that y = v6, which creates C5.

iii. Assume that there is no other weak neighbor of degree 5. Then
u only gives weight to its two weak neighbors of degree 5, hence
loses at most 2× 1

2
= 1 by R11.

(c) Assume that there is no triangular face containing u and two of its
weak neighbors of u of degree 5. If u has two (5, 6)-neighbors of
degree 5, then by C5, u does not give weight to any other neighbor.
Thus, by R11, the total loss is 2× 1

2
= 1.

If u has one (5, 6)-neighbor, say v2, so that d(v1) = 5 and d(v3) =
6, then v4, v7 cannot be weak neighbors of degree 5 of u by C5.
Therefore, by assumption, v5 and v6 cannot be both weak neighbors
of u. Hence, there are only two weak neighbors of u: v2 and either
v5 or v6. The loss is then at most 1

2
+ 1

3
= 5

6
< 1.

If u has no (5, 6)-neighbors, then R11 never applies and u loses at
most 1

3
for each of its (6+, 6+)-neighbors. Note that u has degree 7,

hence there are at most three such neighbors. The total weight loss

112 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

of u is thus at most 3× 1
3

= 1.

2. Assume that u has only one weak neighbor of degree 4, say v4. By C7,
there is no (5, 6)-neighbor of u of degree 5, hence R11 never applies.

(a) If d(v3) = d(v5) = 8, then u gives 1
3
to v4 by R10, and at most 1

3
to

the weak neighbors of degree 5 among v1, v2, v6 and v7 by R12, R13 or
R14. Moreover, due to C4, there are at most three such neighbors.
Therefore, if u has at most two weak neighbors of degree 5, then u
loses at most 1

3
+ 2 × 1

3
= 1 by R10 and R12. Otherwise, there are

three weak 5-neighbors of u among v1, v2, v5 and v6, and due to C5,
the remaining vertex has degree at least 7. In this case, u loses at
most 1

3
+ 1

3
+ 2× 1

6
= 1 by R10, R12 and R14.

(b) Assume that d(v3) = 7 and v2 is a weak neighbor of u of degree 5.
i. Assume first that v1 is a weak neighbor of u of degree 5. In

this case, u gives at most 1
2
to v4 by R10. Moreover, by C7, we

have d(v7) > 6. Therefore, u gives 2 × 1
6
to v1 and v2 by R14.

By C1, we have d(v5) > 6. If v6 is weak neighbor of u of degree
5, then it is not a (5, 6)-neighbor since d(v5) and d(v7) are at
least 7. Moreover, by C9, it is not an S3 nor S5-neighbor of u.
Therefore, by R14, u gives at most 1

6
to v6. Therefore, the total

loss is at most 1.
ii. Assume that v1 is not a weak neighbor of u of degree 5. If

there is no other neighbor of u of degree 5, then u loses at most
1
2

+ 1
3

= 5
6
< 1 by R10 and R12. Otherwise, recall that u has no

(5, 6)-neighbor of degree 5, hence by C8, the vertex v2 is not an
S3-neighbor of u. Thus d(v1) > 6 and u gives at most 1

5
to v2

by R13 or R14.
If d(v7) > 5, then either d(v5) = 8 and u loses at most 5

12
+ 1

5
+

1
3

= 57
60
< 1 by R10, R13 and R12, or d(v5) = 7, hence by C8,

the vertex v6 is not an S3-neighbor of u. Thus u loses at most
1
2

+ 1
5

+ 1
5

= 9
10
< 1 by R10 and R13.

If d(v7) = 5, then by C9, the vertex v2 is not an S5-neighbor of
u, hence u gives at most 1

6
to v2 by R14. Since d(v1) > 6, the

vertex u gives at most 1
3
to v6 and v7 by R12, R13 or R14. The

total loss is then at most 1
2

+ 1
6

+ 1
3

= 1

(c) Assume that d(v3) = 7 and v2 is not a weak neighbor of u.
i. If v1 and v6 are weak neighbors of u of degree 5, then by C4, we

have d(v7) > 5. If d(v5) = 8, then by C9, the vertex v6 is not an
S3-neighbor of u, thus u loses at most 5

12
+ 1

3
+ 1

5
= 57

60
< 1 by

R10, R13 and R12. If d(v5) = 7, then by C9, the vertex v6 is not
an S3 nor an S5-neighbor of u, thus u loses at most 1

2
+ 1

6
+ 1

3
= 1

by R10, R14 and R12.

Induction Schemes: From Language Separation to Graph Colorings 113

1.5. Discharging process

ii. If v1 is a weak neighbor of u of degree 5 but v6 is not, then we
may assume that v7 is also a weak neighbor of u of degree 5,
otherwise u gives at most 1

2
to v4 by R10 and at most 1

3
to v1

by R12, for a total loss of at most 5
6
.

By C7, we must have d(v2) > 6 and d(v6) > 6. Thus, u gives
2 × 1

6
to v1 and v7 by R14 and 1

2
to v4 by R10 so the total loss

is at most 5
6
.

iii. If v1 is not a weak neighbor of degree 5 of u, then we may
assume that v6 and v7 are weak neighbors of u of degree 5,
otherwise, u gives at most 1

2
to v4 and at most 1

3
to v6 and v7,

for a loss of at most 5
6
.

In this case, by C7, we must have d(v1) > 6, therefore u gives
2× 1

6
to v6 and v7, and again the total loss is at most 5

6
.

3. Assume that u has exactly two weak neighbors of degree 4, and that they
are at triangle-distance 2 in the neighborhood of u, say v2 and v4. By
C2, we have d(v3) = 8. If there is no weak neighbor of u of degree 5,
then the total loss is at most 2 × 1

2
= 1 by R10. By symmetry, we may

thus assume that v6 is a weak neighbor of u of degree 5. Note that, by
C1, we have d(v1) > 7, hence by C11, we have d(v5) = 8.

(a) If d(v1) = 8, then u gives 2 × 1
3
to v2 and v4 by R10. Moreover,

either d(v6) = d(v7) = 5 and u loses 2 × 1
6
by R14, or u gives 1

3
to

v6 by R12, R13 or R14. The total loss is thus 2× 1
3

+ 1
3

= 1.

(b) If d(v1) = 7 and v1v7 ∈ E(G), then by C11, we have d(v7) > 5 and
v5 is not an S3-neighbor of u. Therefore, u gives 1

3
to v4, 5

12
to v2

and at most 1
5
to v6 by R10 and R13 or R14. The final loss is thus

at most 1
3

+ 5
12

+ 1
5

= 57
60
< 1.

(c) If d(v1) = 7, v1v7 /∈ E(G) and d(v7) = 5, then u does not give any
weight to v7 since it is not a weak neighbor. The loss for u can be
decomposed as 1

3
for v4 by R10, 5

12
for v2 by R10 and 1

6
for v6 by R14,

for a total loss of at most 11
12
< 1.

(d) If d(v1) = 7, v1v7 /∈ E(G) and d(v7) > 5, then u receives 1
12

by R3.
Moreover, u gives 1

3
+ 5

12
to v2 and v4 by R10 and 1

3
to v6 by R12, R13

or R14. The final loss is then at most 1
3

+ 5
12

+ 1
3
− 1

12
= 1.

4. Assume that u has exactly two weak neighbors of degree 4, and that they
are at triangle-distance at least 3 in the neighborhood of u, say v2 and
v6. By C1, the vertices v1, v3, v5 and v7 have degree at least 7. We may
assume that v4 is a weak neighbor of u of degree 5, since otherwise u
gives at most 2× 1

2
to v2 and v6 by R10 and 0 to its other neighbors. Due

to C12, we also know that v2 and v6 are (7+, 8)-neighbors of u, hence u
gives them at most 2× 5

12
by R10.

114 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

(a) If v2 (or similarly v6) is a (7, 8)-neighbor of u, then v4 is not an S3

nor an S5-neighbor (by C12), hence u loses at most 2 × 5
12

+ 1
6

= 1
by R10 and R14.

(b) Otherwise, v2 and v6 are (8, 8)-neighbors of u, hence u gives 2 × 1
3

to v2 and v6 by R10 and at most 1
3
to v4 by R12. The total loss is

thus at most 3× 1
3

= 1.

5. Assume that u has three weak neighbors of degree 4, say v2, v4 and v6.
Due to C10, the vertices v1, v3, v5 and v7 all have degree 8. By R10, the
vertex u gives 3× 1

3
to v2, v4 and v6, for a total loss of 1.

1.5.8 8-vertices

Let u be an 8-vertex, and denote by v1, . . . , v8 its neighbors in consecutive
order in the chosen planar embedding of G. We show that u loses at most
2 during the discharging phase, thus ends up with non-negative weight. We
distinguish several cases depending on the minimum degree δ (resp. δw) of the
neighbors of u (resp. weak neighbors of u), and several parameters like the
number of weak/semi-weak neighbors of u of given degree. Note that δ(G) = 3
and u gives weight only to its weak or semi-weak neighbors, so we may thus
assume that δ is 3, 4 or 5.

1. Assume that δw = 5 and δ > 4. We consider several cases depending on
the neighbors of u of degree 5.

(a) If u has at most two weak neighbors of degree 5, then there is room
for at most three semi-weak neighbors of degree 4. Hence u loses at
most 2× 2

3
+ 3× 1

12
= 19

12
< 2 by R9 and R8.

(b) If u has three weak neighbors of degree 5 then there is room for at
most two semi-weak neighbor of degree 4. We may assume that at
least one of them shares a neighbor of degree 7 with u, otherwise,
u does not give them any weight and u loses at most 3× 2

3
= 2 by

R9.
Therefore, at least one of the weak neighbors of degree 5 is not a
(6, 6)-neighbor of u, hence u loses at most 2 × 2

3
+ 1

2
+ 2 × 1

12
= 2

by R9 and R8.

(c) If u has four neighbors of degree 5, all being weak, and such that at
least two of them are (6, 6)-neighbors, then by C13, the vertex u has
a neighbor of degree at least 7. This implies that u has exactly two
(6, 6) neighbors, and either two (6, 7+)-neighbors, or a (5, 6)- and a
(5, 7+)-neighbor of degree 5. Then, u loses at most 2× 2

3
+2× 1

3
= 2

or 2× 2
3

+ 1
2

+ 1
6

= 2 by R9.

Induction Schemes: From Language Separation to Graph Colorings 115

1.5. Discharging process

(d) Assume that u has four neighbors of degree 5, all being weak, and
such that at most one them is a (6, 6)-neighbor. Note that there
are zero or two (5, 6+)-neighbors of u of degree 5. In the first case,
the vertex u loses at most 2

3
+ 3× 1

3
= 5

3
< 2. In the latter one, the

vertex u loses 2
3

+ 2× 1
2

+ 1
3

= 2 by R9.

(e) If u has at least five neighbors of degree 5 and at least four of them
are weak, then by C4, we may assume that d(v1) = d(v2) = d(v4) =
d(v6) = d(v7) = 5. If v4 is not weak, then u gives at most 4× 1

2
= 2

to v1, v2, v6 and v7 by R9. Otherwise, by C13, at least one vertex
among v3, v5 and v8 must have degree at least 7.

i. If d(v3) > 6 (or similarly if d(v5) > 6), then by R9, the vertex
u gives at most 3 × 1

2
to v1, v6 and v7, 1

3
to v4 and 1

6
to v2, for

a total loss of at most 2.
ii. Otherwise, d(v8) > 6 and, by R9, u gives 2

3
to v4, 2 × 1

2
to v2

and v6 and 2× 1
6
to v1 and v7, for a total loss of 2.

2. If δ = δw = 4 and u has four weak neighbors of degree 4, then by C14,
they all are (8, 8)-neighbors of u. Thus u gives them 4× 1

2
= 2 by R7.

3. If δ = δw = 4 and u has three weak neighbors of degree 4, then we
may assume that there is also a weak neighbor of degree 5 or a semi-
weak neighbor of degree 4 whose common neighbor with u has degree 7,
otherwise u gives at most 3 × 2

3
= 2 by R7. We may thus assume that

d(v1) = d(v3) = d(v5) = 4 and d(v7) = 4 or 5. Moreover, by C14, we may
assume that d(v2) = 8.

If d(v4) = 8, then u gives 1
2
to v3, at most 2× 7

12
to v1 and v5 by R7, and

either 1
12

or 1
3
to v7 by R8 or R9. The total loss is thus at most 2.

Otherwise, if v7 is a semi-weak neighbor of u of degree 4, then u gives at
most 2 × 7

12
to v1 and v3, 2

3
to v5 by R7 and 1

12
to v7 by R8, for a total

loss of 23
12
< 2.

Otherwise, v7 is a weak neighbor of u of degree 5. By C14, we have
d(v6) = 8 and d(v8) = 8. Thus u gives 1

2
to v1, at most 2× 7

12
to v3 and

v5 by R7 and 1
3
to v7 by R9. The total loss is again at most 2.

4. If δ = δw = 4 and u has two weak neighbors of degree 4. Then u gives
them at most 2 × 2

3
by R7. Moreover, u gives weight to at most two

other vertices, which could be either semi-weak neighbors of degree 4 or
weak neighbors of degree 5. Assume that u gives more than 1

3
to one of

them. Then it is a (6−, 6)-neighbor of u. By C1, there can be only one
such neighbor, in which case u loses at most 2

3
by R9. Therefore, in each

case, u loses at most 2× 2
3

+ 2
3

= 2.

116 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

5. If δ = δw = 4, and u has one weak neighbor of degree 4 say v2. Note
that u has at most four weak neighbors of degree 5.

(a) If u has four weak neighbors of degree 5, then we may assume they
are v4, v5, v7 and v8. The vertices v4 and v8 are not weak or (5, 7+)-
neighbors of u, and v5 and v7 are not weak or (5, 6+)-neighbors of
u. Thus u loses at most 2

3
+ 2× 1

6
+ 2× 1

2
= 2 by R7 and R9.

(b) If u has three weak neighbors of degree 5 that do not form a trian-
gular face with u, then they are necessarily v4, v6 and v8. Then v4

and v8 are (5+, 7+)-neighbors of u and v6 is a (5+, 6+)-neighbor of
u. Thus u loses at most 2

3
+ 2× 1

3
+ 2

3
= 2 by R7 and R9.

(c) If u has three weak neighbors of degree 5 and there is a triangular
face containing u and two of them, then we may assume up to
symmetry that v4 is one of these vertices. Then, if v5 is also a weak
neighbor of u of degree 5, thus u gives 1

6
to v4, at most 1

2
to v5 and

at most 2
3
to the remaining neighbor by R9. Otherwise, if v4 is a

(5, 6)-neighbor of u, then v7 and v8 are weak neghbors of degree 5
of u. Then u gives at most 2× 1

2
to v4, v7 and at most 1

6
to v8, for a

total loss of 11
6
< 2. Otherwise, u gives at most 1

3
to v4 and at most

2× 1
2
to the other neighbors by R9. In each case, the total loss for

u is at most 2
3

+ 4
3

= 2.

(d) If u has at most two weak neighbors of degree 5 and they are both
(6, 6)-neighbor of u, then u loses at most 2

3
+ 2× 2

3
= 2 by R7 and

R9 since there is no room for another weak or semi-weak neighbor.
If only one of them is a (6, 6)-neighbor, then there is room for one
semi-weak neighbor of degree 4, hence u loses at most 2

3
+ 2

3
+ 1

2
+ 1

12
=

23
12
< 2.

(e) If u has at most two weak neighbors of degree 5 that are not (6, 6)-
neighbors. Then u gives them at most 2× 1

2
by R9. Moreover, the

neighborhood of u has room for at most two semi-weak vertices of
degree 4. The final loss of u is thus at most 2

3
+2× 1

2
+2× 1

12
= 11

6
< 2

by R7 and R9.

6. If δ = 3 and u has two weak neighbors of degree 3, then by C18, the
vertex u has no other neighbor of degree at most 5. Therefore, the total
loss is 2× 1 = 2 by R5.

7. If δ = 3 and u has one weak neighbor of degree 3 and at least one semi-
weak neighbor of degree 3, then u gives them 1+ 1

2
by R5 and R6. By C19,

we know that u gives weight to at most one other vertex v. Moreover,

(a) if d(v) = 3, it is not a weak neighbor of u by hypothesis, hence u
gives at most 1

2
to v by R6.

Induction Schemes: From Language Separation to Graph Colorings 117

1.5. Discharging process

(b) if d(v) = 4, then by C19, the other neighbors of u have degree 8,
hence u gives at most 1

2
to v by R7.

(c) if d(v) = 5, then by C19, the other neighbors of u have degree at
least 7, hence u gives at most 1

3
to v by R9.

The total loss of u is thus at most 1 + 1
2

+ 1
2

= 2.

8. Assume that δ = 3 and u has one weak neighbor of degree 3, no semi-
weak neighbor of degree 3 and at least one neighbor v of degree 4.

If u has another weak neighbor of degree 4, then C21 ensures that all the
other neighbors of u have degree 8. Therefore, u loses 1 + 2× 1

2
= 2 by

R5 and R7. We may thus assume that u has a single weak neighbor of
degree 4.

Note that due to C4, u has at most two weak neighbors of degree 5.

(a) If u has two weak neighbors of degree 5 w1, w2, these are not (6−, 6)-
neighbors of u by C17. Assume that they form a triangular face with
u.
Therefore, then u gives at most 2× 1

6
to them by R9. Moreover, there

is no room for another semi-weak neighbor of degree 4. Therefore,
the total loss is 1 + 2

3
+ 2× 1

6
= 2 by R5, R7 and R9.

(b) If u has two weak neighbors of degree 5 w1, w2, that do not form a
triangular face with u. By C16, v is an (8, 8)-neighbor of u, hence
receives 1

2
from u. Moreover, by C17, none of w1, w2 are (6−, 6)-

neighbors or u, nor E3-neighbors, hence they receive at most 2× 1
4
.

The total loss is then 1 + 1
2

+ 2× 1
4

= 2.

(c) If u has a single weak neighbor of degree 5, then it is not a (5, 6)-
nor a (6, 6)-neighbor of u by C17. Moreover, if u has a semi-weak
neighbor of degree 4, then by C20, every other neighbor of u has
degree 8. Hence R8 does not apply, and the total loss is 1 + 1

2
+ 1

3
=

11
6
< 2 by R5, R7 and R9.

If u has no semi-weak neighbor of degree 4, then u loses 1+ 2
3
+ 1

3
= 2

by R5, R7 and R9.

(d) If u has no weak neighbor of degree 5, then it may give weight only
to its semi-weak neighbors of degree 4. There are at most three of
them, hence u loses at most 1 + 2

3
+ 3× 1

12
= 23

12
< 2.

9. Assume that δ = 3 and u has one weak neighbor of degree 3 (say v2) but
no semi-weak neighbor of degree 3, and no neighbor of degree 4.

(a) If u has only one weak vertex of degree 5, then u loses at most
1 + 2

3
= 5

3
< 2 by R5 and R9.

118 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

(b) If u has at most two weak vertices x and y of degree 5, and x is
a (6, 6)-neighbor of u, then by C15, the vertex y is not a (6−, 6)-
neighbor of u. Thus u loses at most 1 + 2

3
+ 1

3
= 2 by R5 and

R9.

(c) If u has at most two weak vertices x and y of degree 5 and none of
them is a (6, 6)-neighbor of u, then both receive at most 1

2
by R9.

Therefore, u loses 1 + 2× 1
2

= 2.

(d) If u has three weak vertices of degree 5, then by C15, none of them
is a (6, 6)-neighbor of u. If none of them is a (5, 6)-neighbor of u,
then the total loss of u is at most 1 + 3 × 1

3
= 2 by R5 and R9.

Otherwise, note that d(v1) = d(v3) = 8 by C1, hence v4 and v8 are
not (5, 6)-neighbors of u.

i. If v6 is a (5, 6)-neighbor of u, then we may assume that d(v4) =
d(v6) = d(v7) = 5, d(v5) = 6 and vivi+1 ∈ E(G) for 1 6 i 6 7.
By C15, we have d(v8) > 6, so u gives 1

2
to v6, 1

3
to v4 and 1

6
to

v7 by R9.
ii. Assume that v5 (or v7 by symmetry) is a (5, 6)-neighbor of u

and (d(v4), d(v6)) = (5, 6). Note that due to C15, v7 is not a
(5, 6)-neighbor of u, thus v4 is a weak neighbor of u. Indeed,
otherwise, the three weak neighbors of u of degree 5 would be
v5, v7 and v8 so v7 would be a (5, 6)-neighbor of u. Thus u gives
1
6
to v4, 1

2
to v5 and 1

3
to v7 or v8 by R9.

iii. Otherwise, v5 is a (5, 6)-neighbor of u and we have d(v6) = 5
and d(v4) = 6. Then v6 and v8 must be weak neighbors of u of
degree 5. By C15, we have d(v7) > 6. Therefore, u gives 1

2
to

v5, 1
6
to v6 and 1

3
to v8 by R9.

Therefore, in each case, the total loss for u is 1 + 1
2

+ 1
3

+ 1
6

= 2.

(e) If u has four weak vertices of degree 5, then by C4 we may assume
that v1 · · · v8 is a cycle in G and that d(v1) = d(v3) = 8, d(v2) = 3
and d(v4) = d(v5) = d(v7) = d(v8) = 5. By C15, we have d(v6) > 6,
hence u loses 1 + 4× 1

6
< 2 by R5 and R9.

10. Assume that δ = 3 and u has no weak neighbor of degree 3. By C22, if
the vertex u has three semi-weak neighbors of degree 3, then every other
neighbor of u has degree 8. In this case, u loses at most 3× 1

2
= 3

2
< 2.

We may thus assume that u has at most two semi-weak neighbors of
degree 3. Moreover, due to C2, two semi-weak neighbors of u of degree
3 are at triangle-distance at least 3 in the neighborhood of u.

(a) If u has two semi-weak neighbors of degree 3, then by C22, the
vertex u has at most two neighbors of degree 4. Moreover, if there

Induction Schemes: From Language Separation to Graph Colorings 119

1.5. Discharging process

are exactly two such vertices, the other neighbors of u have degree
8.

i. If u has two neighbors of degree 4, then u loses at most 2× 1
2

+
2× 1

2
= 2 by R6 and R7.

ii. Otherwise, if u has exactly one weak neighbor of degree 4, at
triangle-distance 2 from both semi-weak neighbors of degree 3,
then we may assume that d(v1) = d(v5) = 3, d(v2) = d(v4) = 8,
d(v3) = 4, v8v1 /∈ E(G), v5v6 /∈ E(G) and vivi+1 ∈ E(G) for
1 6 i 6 4. By (i), u has no other neighbor of degree 4.
Observe that only v7 can be a weak neighbor of u, and in this
case it has degree 5. If v7 is a (6−, 6)-neighbor of u, then u
gives at most 2

3
to v7 by R9 but receives 5

12
by R2 thus u loses

2× 1
2

+ 1
2

+ 2
3
− 5

12
= 7

4
< 2. Otherwise, u gives at most 1

3
to v7

by R9 for a total loss of 5
3
< 2.

iii. If u has exactly one weak neighbor of degree 4, at triangle-
distance at least 3 from one of the semi-weak neighbors of degree
3, then u gives weight to at most two other vertices. Either
there is only one such vertex and it is a (6+, 7+)-neighbor of
degree 5, or there are two such vertices and they are (5, 7+)-
neighbors of degree 5. In both cases, u loses at most 2 × 1

2
+

2
3

+ 1
3

= 2 by R6, R7 and R9.
iv. If u has no weak neighbor of degree 4 and three weak neighbors

of degree 5, then they are a (5, 8)-, a (5, 6+)- and a (6+, 8)-
neighbor of u. Then u loses at most 2× 1

2
+ 1

6
+ 1

2
+ 1

3
= 2 by

R6 and R9.
v. Assume that u has no weak neighbor of degree 4 and two weak

neighbors of degree 5. If u has no (6, 6)-neighbor, it loses at
most 2 × 1

2
+ 2 × 1

2
= 2 by R6 and R9. Otherwise u has a

(6, 6)-neighbor and the other weak neighbor of degree 5 is a
(5+, 8)-neighbor of u so u loses at most 2 × 1

2
+ 2

3
+ 1

3
= 2 by

R6 and R9.
vi. If u has no weak neighbor of degree 4 and at most one weak

neighbor of degree 5, then u gives at most 2 × 1
2

+ 2
3

= 5
3
< 2

by R6 and R9.

(b) If u has one semi-weak neighbor of degree 3 and three weak neigh-
bors of degree 4, then one of them is a (7+, 8)-neighbor of u and the
two others are (7+, 7+)-neighbors, hence u gives at most 1

2
+ 7

12
+2× 2

3

by R6 and R9 but receives 5
12

by R2, hence the total loss is at most
2.

(c) If u has one semi-weak neighbor of degree 3 and two weak neighbors
w1 and w2 of degree 4, then there is room for only one other vertex

120 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

v receiving weight from u. If there is no such vertex or if it is a semi-
weak neighbor of u, then u loses at most 1

2
+ 2 × 2

3
+ 1

12
= 23

12
< 2

by R6 and R9.
Otherwise, v is a weak neighbor of u. If w1 and w2 are (7, 7)-
neighbors of u, then v is a (7, 8)-neighbor of u and moreover R2

applies. Therefore, the total loss is 1
2

+ 2× 2
3

+ 1
3
− 5

12
= 21

12
< 2.

Otherwise, w2 is a (7+, 8)-neighbor of u. so u gives at most 7
12

+ 2
3

to w1, w2 by R7.
Note that v cannot be a (6−, 6)-neighbor of u. If it is not a (5, 7+)-
neighbor of u, then u gives it 1

3
by R9 but receives 5

12
by R2. Other-

wise, u gives 1
6
by R9. In both cases, u gives at most 1

2
+ 7

12
+ 2

3
+ 1

6
=

23
12
< 2.

(d) If u has one semi-weak neighbor x of degree 3 and one weak neighbor
of degree 4 at triangle-distance 2 from x, then there are at most
two weak neighbors of u of degree 5. Moreover, if there is one such
neighbor, then u has at most one semi-weak neighbor of degree 4
hence u loses at most 1

2
+ 7

12
+ 2

3
+ 1

12
= 11

6
< 2 by R6, R7, R9 and

R8.
If there is no weak neighbor of u of degree 5, then u has at most
two semi-weak neighbors of degree 4 hence u loses at most 1

2
+ 7

12
+

2× 1
12

= 5
4
< 2 by R6, R7 and R8. We may thus assume that there

are two weak neighbors of u of degree 5.

i. If one of them is a (6, 6)-neighbor of u, then the other one is
a (6, 7+)-neighbor and there is no semi-weak neighbor of u of
degree 4, hence u loses 1

2
+ 7

12
+ 2

3
+ 1

3
by R6, R7 and R9 and

receives 5
12

by R2, for a total loss of at most 5
3
< 2.

ii. If both of them are (5, 6)-neighbors of u, then u has no semi-
weak neighbor of degree 4, hence it loses at most 1

2
+ 7

12
+ 2× 1

2

by R6, R7 and R9 and receives 5
12

by R2, for a total loss of
5
3
< 2.

iii. If one of them is a (5, 6)-neighbor of u, and the other one is a
(5, 7+)-neighbor of u. Then it gives at most 1

2
+ 1

6
to them by

R9, and there is at most one semi-weak neighbor of u of degree
4. The total loss is thus at most 1

2
+ 7

12
+ 1

2
+ 1

6
+ 1

12
= 11

6
< 2.

If the other one is a (6, 7+)-neighbor, then there is no room for
a semi-weak vertex of degree 4, hence the total loss is 1

2
+ 7

12
+

1
2

+ 1
3

= 23
12
< 2.

iv. Otherwise, both of them are (6, 7+)-neighbors of u, so u has no
semi-weak neighbor of degree 4, hence it loses at most 1

2
+ 7

12
+

2× 1
3

= 7
4
< 2 by R6, R7 and R9.

(e) If u has one semi-weak neighbor x of degree 3 and one weak neighbor

Induction Schemes: From Language Separation to Graph Colorings 121

1.5. Discharging process

y of degree 4 at triangle-distance at least 3 from x, then u has at
most two other weak neighbors of degree 5, and moreover, they are
not both (5, 6)-neighbors of u.
i. If u has a (6, 6)-neighbor of degree 5, then u gives weight only

to x, y and this vertex, and the loss is at most 1
2
+ 2

3
+ 2

3
= 11

6
< 2

by R6, R7 and R9.
ii. If u has a (5, 6)-neighbor of degree 5, then the other weak neigh-

bor of u of degree 5 is a (5, 7+)-neighbor. Hence u loses at most
1
2

+ 2
3

+ 1
2

+ 1
6

= 11
6
< 2 by R6, R7 and R9.

iii. Otherwise, u gives at most 2× 1
3
to its weak neighbors of degree

5. Moreover, if u has two such neighbors, then it has no semi-
weak neighbor of degree 4, hence u loses at most 1

2
+ 2

3
+2× 1

3
=

11
6
< 2 by R6, R7 and R9.

If u has only one weak neighbor of degree 5, then it has at
most one semi-weak neighbor of degree 4, hence it loses at most
1
2

+ 2
3

+ 1
3

+ 1
12

= 19
12
< 2 by R6, R7, R8 and R9.

Finally, if u has no weak neighbor of degree 5, it has at most
three semi-weak neighbors of degree 4, hence it loses at most
1
2

+ 2
3

+ 3× 1
12

= 17
12
< 2 by R6, R7 and R8.

(f) If u has one semi-weak neighbor of degree 3 and no weak neighbor
of degree 4, then note that u has at most four weak neighbors of
degree 5.
i. If u has at most one weak neighbor of degree 5, then it has

at most four semi-weak neighbors of degree 4, for a loss of
1
2

+ 2
3

+ 4× 1
12

= 3
2
< 2 by R6, R8 and R9.

ii. If u has two weak neighbors of degree 5, then u has at most
two semi-weak neighbors of degree 4, hence u loses at most
1
2

+ 2× 2
3

+ 2× 1
12

= 2 by R6, R8 and R9.
iii. If u has three weak neighbors of degree 5 such that there is

no triangular face containing u and two of them, then we may
assume that d(v1) = 3, d(v2) = 8, d(v3) = d(v5) = d(v7) = 5
and vivi+1 ∈ E(G) for 1 6 i 6 7.
Then u gives 1

2
to v1 by R6, at most 1

3
to v3 and at most 2

3
to

v5 by R9. Moreover, if d(v8) = 5, then u gives at most 1
2
to v7

by R9, hence the total loss is at most 2. Otherwise, u gives at
most 2

3
to v7 by R9, but receives 5

12
by R2, for a total loss of at

most 7
4
< 2.

iv. If u has three weak neighbors of degree 5 such that there is a
triangular face containing u and two of them, then u has at
most one semi-weak neighbor of degree 4.
If u has such a neighbor, then we necessarily have d(v1) = 3,
d(v2) = 8, d(v3) = d(v6) = 5, d(v8) = 4 and either d(v4) = 5 or

122 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

d(v5) = 5. In the first case, u gives 1
2
to v1 by R6, 1

2
to v4, 1

6

to v3, at most 2
3
to v6 by R9 and at most 1

12
to v8 by R8, for a

total loss of 23
12
< 2. In the latter case, u gives 1

2
to v1 by R6,

at most 1
3
to v3, at most 2× 1

2
to v5 and v6, by R9 and at most

1
12

to v8 by R8, for a total loss of 23
12
< 2.

The only case remaining is when u has no semi-weak neighbor
of degree 4. Consider the non-triangular face containing u and
its semi-weak neighbor of degree 3. If the next neighbor (say
v8) has degree at least 6, then u receives 5

12
by R2. In this case,

the loss of u is at most 1
2

+ 2
3

+ 2× 1
2
− 5

12
= 7

4
< 2 by R6 and

R9.
Note that if d(v8) < 6 and u has a (6, 6)-neighbor, then we
must have d(v1) = 3, d(v2) = 8, d(v3) = d(v4) = d(v6) = 5,
d(v5) = d(v7) = 6 and vivi+1 ∈ E(G) for 1 6 i 6 7. Thus u
gives 1

2
to v1 by R6, 1

6
to v3, at most 1

2
to v4 and 2

3
to v6 by R9.

The total loss is then at most 11
6
< 2.

If d(v8) < 6 and u has no (6, 6)-neighbor, then u gives 1
2
to v1

by R6 and at most 3 × 1
2
to its weak neighbors of degree 5 by

R9. The total loss is at most 4× 1
2

= 2.
v. If u has four weak neighbors of degree 5, then we may assume

that d(v1) = 3, d(v2) = 8, d(v3) = d(v4) = d(v6) = d(v7) = 5
and that for 1 6 i 6 7, vivi+1 ∈ E(G).
Then u gives 1

2
to v1 by R6, 1

6
to v3 and at most 1

2
to v4, v6 and

v7 by R9. Moreover, by R2, u receives 5
12
, for a total loss of at

most 7
4
< 2.

(g) Assume that u has no semi-weak neighbor of degree 3. Since δ = 3,
there is a neighbor of u of degree 3, but it is not weak nor semi-
weak. Therefore, there are at most three weak neighbors of u of
degree 4.

i. If u has three weak neighbors of degree 4, then there is no
other weak or semi-weak neighbor of u, hence u loses at most
3× 2

3
= 2.

ii. If u has two weak neighbors of degree 4, then there is room
for one weak vertex of degree 5 or two semi-weak neighbors of
degree 4. In both cases, the total loss is at most 2× 2

3
+ 2

3
= 2

or 2× 2
3

+ 2× 1
12

= 3
2
< 2.

iii. If u has one weak neighbor of degree 4, there are at most two
weak neighbors of u of degree 5, and one of them is not a
(6, 6)-neighbor by C1. Moreover, there can be at most one
semi-weak neighbor of degree 4. Therefore, u loses at most
2
3

+ 2
3

+ 1
2

+ 1
12

= 23
12
< 2.

iv. If u has no weak neighbor of degree 4, by C4, there are at most

Induction Schemes: From Language Separation to Graph Colorings 123

1.6. Open questions

four weak neighbors of u of degree 5.
A. If there are four of them, they cannot be (6, 6)-neighbors

and there is no room for any semi-weak neighbor, hence the
total loss is 4× 1

2
= 2.

B. If there are three weak neighbors of degree 5, and at least
two of them are (6, 6)-neighbors, then there is no room for
another semi-weak neighbor, hence the total loss is 3× 2

3
=

2.
C. If there are three weak neighbors of degree 5, and one of

them is a (6, 6)-neighbor, then there is room for a single
semi-weak vertex, hence the total loss is at most 2

3
+ 2 ×

1
2

+ 1
12

= 7
4
< 2.

D. If there are three weak neighbors of degree 5 that are not
(6, 6)-neighbors, there are at most four semi-weak neighbors
of degree 4, for a total loss of at most 3× 1

2
+4× 1

12
= 11

6
< 2.

E. If there are at most two weak neighbors of degree 5, then
there are at most five semi-weak neighbors of degree 4, for
a total loss of at most 2× 2

3
+ 5× 1

12
= 21

12
< 2.

1.6 Open questions
To prove our result, we used the discharging method. In this case, we had

a lot of configurations to reduce. The key ideas came from the two approaches
we used to reduce them. While the Combinatorial Nullstellensatz and recol-
oring approach have already been used many times in discharging proofs, the
framework we present here (the so-called color shifting graph) seems to be
quite new. To our knowledge, it was first used in [Bonamy, 2015]. Here we
designed a more generic framework to use this idea. This allowed us to reduce
some configurations we could not tackle in an usual way. However, it has still
limited use since we designed a framework that allows us to recolor only a set
of pairwise adjacent elements. It would be interesting to improve it to get
rid of this limitation. Moreover, while total 9-choosability seems out of reach
from a reasonable discharging proof, it would also be interesting to see if the
methods we introduced here can help to prove that χ′′` = ∆ + 1 for planar
graphs when ∆ can be less than 12.

We may also wonder whether our methods may apply to more generic
colorings like correspondence coloring. First, the polynomials we designed
for the Nullstellensatz approach are designed specifically for list coloring: we
handle the colors globally. Indeed, we evaluate the variables on the colors
(represented by integers), which means that all the vertices have to agree
on which color is represented by each integer. This is something we cannot
use for correspondence coloring, since the vertices agree only locally on the

124 Théo Pierron

1. An example of what (not) to do: the raw power of discharging

definition of the colors. Thus, our polynomial approach does not directly
extend to other colorings. However, if we consider other polynomials, we may
succeed in encapsulating the new constraints. The price to pay comes from
the degree of such polynomials, which may lead to too heavy computations,
making this method useless. The recoloring approach suffers from the same
kind of “localization” problems in its current definition. However, since we
use only local constraints to define color shifting graphs, the definition should
extend to the correspondence coloring setting.

From a more algorithmic point of view, we can observe that, like most of the
discharging proofs, our result comes along with a linear-time algorithm to find
a proper coloring of a graph G given a list assignment. Indeed, we first apply
the discharging rules to G in linear time. Using the elements with negative
final weight, we can identify the reducible configurations in G. Then, we
color recursively the graph obtained by removing one reducible configuration.
However, instead of moving again the weights, we keep track of what happens
when we remove the configuration.

To extend the obtained coloring, observe that both the case analysis and
the recoloring approaches lead to a constant time process. For the Nullstel-
lensatz approach, it is trickier since the proofs are not constructive. However,
we can use a preprocessing step that compute a proper coloring for each con-
figuration and for each list assignment just by brute-force. Since the sizes of
the configurations are bounded by a constant (except for C2, but we only used
it for removing some cycles of length 4), this also takes constant time. Each
recursive step thus takes constant time and we have at most one such step for
each element of G. Therefore, if we add the initial discharging phase (which
also takes linear time), we obtain a linear time algorithm.

Induction Schemes: From Language Separation to Graph Colorings 125

1.6. Open questions

126 Théo Pierron

Chapter 2

Discharging without discharging:
the power of pigeons

Contents
2.1 Introduction . 128

2.2 A Brooks-like result on graph powers 135

2.2.1 First structural results 135

2.2.2 Bounding the diameter 137

2.3 Coloring squares of planar graphs 140

2.4 Small reducible configurations 141

2.5 Reducing regions . 144

2.5.1 Terminology . 144

2.5.2 Structural properties of regions 146

2.5.3 Large regions are reducible 148

2.6 Finding a large region 153

2.7 Extension to correspondence coloring 156

2.7.1 Correspondence coloring 156

2.7.2 Theorem 2.15 revisited 157

2.8 Open questions . 160

This chapter contains two results. The first one is a sole-author result
([Pierron, 2019]). We study the girth and the diameter of any graph not
satisfying the corresponding bound, in the spirit of [Bonamy and Bousquet,
2014]. However, to improve their result, we consider more relaxed configura-
tions, which require more precise arguments. The second result is joint work
with Ilkyoo Choi and Daniel W. Cranston ([Choi et al., 2018]). The case of
planar graphs of girth at least 5 was settled by [Bonamy et al., 2019a], here

127

2.1. Introduction

we consider C4-free planar graphs. We adapt their approach to allow triangles:
the general proof scheme is similar. To handle triangles, we introduce new
configurations. We then provide a more careful structural analysis of the re-
gions: both to find large ones (loops are now possible) and to be able to reduce
them.

2.1 Introduction

Graph colorings have classic but still important applications in telecom-
munication networks optimization. Such a network can be represented by a
graph whose vertices are elements (phones, antennas. . .), and two elements
are adjacent if they are able to communicate directly. In this model, all the
elements send their messages using some frequencies. However, to avoid inter-
ferences, there must be a condition on the distance between two elements using
the same frequency. Minimizing the total number of frequencies (and hence
the cost of the network) then corresponds to solving a well-designed coloring
problem on the graph that models the network.

Several parameters have an influence on interferences. We are interested
in two such parameters: the distance between the antennas, and the gap be-
tween frequencies. Depending on the distance conditions we require, we obtain
several coloring problems. For example, in the original coloring problem, we
forbid two adjacent vertices to receive the same color, which corresponds to
forbidding interferences at distance 1. A natural refinement of this problem
is to forbid interferences at distance k, meaning that any two vertices within
distance k of each other have to receive different colors. When the value of k
is 2, we obtain the so-called square coloring problem. The name comes from
the fact that it is equivalent to finding a proper vertex coloring of the square
of the network, i.e. the graph obtained by adding an edge between every pair
of non-adjacent vertices sharing a common neighbor. More generally, we can
define the k-th power Gk of a graph G, by adding edges between every pair of
vertices within distance k in G.

In this chapter, we are interested in colorings of graph powers. First note
that the chromatic numbers of powers of paths and cycles are already known
(see [Prowse and Woodall, 2003]), hence we may always assume that ∆(G) > 3
when coloring powers of G.

For coloring squares of graphs, note that ∆(G2) 6 ∆(G)2, hence Brooks’
theorem (Theorem 1.1) shows that χ(G2) 6 ∆(G)2, except when G2 is a clique.
Graphs G such that G2 is a clique on ∆(G)2 + 1 vertices are known as Moore
graphs, and there are only finitely many of them (see [Hoffman and Singleton,
1960], or [Hoffman and Singleton, 2003] for a more recent version). This ∆(G)2

bound has been improved by one, first for subcubic graphs [Cranston and Kim,
2008] and then in the generic case, as stated below in the more general setting

128 Théo Pierron

2. Discharging without discharging: the power of pigeons

of list coloring.

Theorem 2.1 ([Cranston and Rabern, 2016]). If G is not a Moore graph, then
χ`(G

2) 6 ∆(G)2 − 1.

We thus obtain a gap of 2 from the upper bound ∆(G)2 + 1, except for at
most four graphs. For higher values of k, say k > 3, the maximum possible
value of ∆(Gk) is the number of nodes of a tree of height k whose internal nodes
have degree ∆(G), without counting its root (see Figure 2.1). We denote this
number by f(k,∆(G)), where

f(k,∆) = ∆
k−1∑
i=0

(∆− 1)i = ∆
(∆− 1)k − 1

∆− 2
.

Figure 2.1 – A 4-ary tree of height 3, with f(4, 3) = 52 non-root nodes.

By Brooks’ theorem, f(k,∆) colors are sufficient to color the k-th power
of any graph G with maximum degree ∆, as soon as it is not a generalized
Moore graph, i.e. Gk is not a clique on f(k,∆) + 1 vertices. However, such a
graph does not exist when k > 3 [Hoffman and Singleton, 1960]. Therefore,
the bound χ(Gk) 6 f(k,∆) always holds, ensuring a gap of one from the upper
bound f(k,∆) + 1. Moreover, a wider gap of 2 colors holds, see [Bonamy and
Bousquet, 2014].

When k = 2, note that f(2,∆) = ∆2. Hence, together with Theorem 2.1,
this result settles a conjecture of [Miao and Fan, 2014], stating that two colors
can be spared from the naive upper bound f(k,∆) + 1 (i.e. the gap is at
least two), except when k = 2 and G is a Moore graph. In [Bonamy and
Bousquet, 2014], the authors conjecture that we can improve this result further,
by obtaining a gap of k colors for higher values of k, except for a finite number
of graphs.

Conjecture 2.2 ([Bonamy and Bousquet, 2014]). For every k > 2, all but
finitely many graphs G satisfy χ(Gk) 6 f(k,∆(G)) + 1− k.

Induction Schemes: From Language Separation to Graph Colorings 129

2.1. Introduction

As a warm-up, we prove in Section 2.2 the following theorem, stating that
most of the time, k − 2 colors can be spared.

Theorem 2.3. For every integer k ∈ N∗ and every ∆ > 3, the k-th power
of every graph of maximum degree ∆ is (f(k,∆) + 3− k)-colorable, except for
finitely many of them.

Note that even if we consider a counterexample (i.e. a graph of maximum
degree ∆ > 3 whose k-th power is not (f(k,∆) + 3− k)-colorable) and prove
that it does not contain some configurations, the proof of Theorem 2.3 does
not use induction whatsoever: for each configuration, instead of extending a
coloring of a subgraph, we actually color the whole graph from scratch. The
main result of this chapter is actually introduced hereafter.

When considering the frequency assignment problem, the distance between
antennas is not the only parameter to be taken into account. Indeed, the
interference between two signals with different frequencies depends on how
close the frequencies are. Thus, we may also require the frequencies assigned
to close enough vertices to differ by a constant gap. Thus, coloring powers of
graphs can be seen as a special instance of the so-called L(p1, . . . , pn)-labeling
problem, introduced for n = 2 in the seminal paper [Griggs and Yeh, 1992]. In
this generalization, we ask for a vertex labeling where the labels of every pair
of vertices at distance exactly i have to differ by at least pi. The parameter
we study is then the span of the labeling, i.e. the difference between the
maximum label and the minimum one. Given some non-negative real numbers
p1, . . . , pn and a graph G, we denote by λG(p1, . . . , pn) the minimum span of an
L(p1, . . . , pn)-labeling of G. Such a labeling exists for every finite graph (even
for infinite graphs with bounded maximum degree, see [Griggs et al., 2009]).
Observe that, in this coloring, colors are integers, and we are interested in
their difference. Therefore, colors are not symmetrical anymore: permuting
the colors of a valid coloring may result in an invalid one.

Most of the results about L(p1, . . . , pn)-labeling are limited to the case when
n = 2 and p1, p2 are non-negative integers. We refer to [Griggs et al., 2009] for
more results about the generic case. Note that the notion of L(1, 0)-labeling
coincides with proper vertex coloring and, similarly, L(1, 1)-labeling is equiva-
lent to square coloring. The case of L(0, 1)-labeling has also been studied: for
triangle-free graphs, it corresponds to the notion of injective coloring, intro-
duced in [Hahn et al., 2002] with some applications to error-correcting codes.
An injective coloring is a vertex coloring which is not necessarily proper, but
where every pair of vertices with a common neighbor receive different colors.
This means that no vertex has two neighbors with the same color. The motiva-
tion for studying such a coloring does not come from interferences, but rather
from the communication problem of identifying the sender of a message. With
such a coloring, each vertex can identify which of its neighbors sent a message,
only by considering its frequency. Many results are known about injective col-

130 Théo Pierron

2. Discharging without discharging: the power of pigeons

oring (see [Doyon et al., 2010; Chen et al., 2012; Bu et al., 2009; Lužar et al.,
2009; Bu et al., 2015]). However, note that a square coloring is an injective
coloring. Hence, most of these results can be strengthened using the results
about square coloring we cite below.

Consider two signals with close frequencies. If they are emitted from close
enough antennas, they will interfere. However, the further away the antennas
are, the less they interfere. This is why we often ask for stronger conditions on
closer vertices (with the main exception of injective coloring, where the problem
does not come from interferences, but from identification of the sender). Apart
from the standard coloring, square coloring and injective coloring problems,
the most studied L(p, q)-labeling is L(2, 1)-labeling, also called radiocoloring.
This problem has a long-standing history, and many results bound λG(p, q)
with respect to several parameters of G, like its maximum degree ∆ or its
chromatic number χ, see for example [Griggs and Yeh, 1992; Jonas, 1993;
Chang and Kuo, 1996; Král’ and Škrekovski, 2003; Gonçalves, 2008; Havet
et al., 2012]. Just to cite a few results, we have, for any graph G,

λG(2, 1) 6 χ(G) + |V (G)| − 2,

which is tight for complete k-partite graphs [Griggs and Yeh, 1992]. Moreover,
λG(2, 1) 6 ∆2 + ∆−2 when ∆ > 3 [Gonçalves, 2008]. We can even strengthen
this result by considering L(p, 1)-labeling [Havet et al., 2012]:

λG(p, 1) 6 ∆2 + Cp

where Cp is a constant depending only on p. Moreover, we can take Cp = 0
as soon as ∆ > ∆p, where ∆p only depends on p [Havet et al., 2012]. The
bound O(∆2) is tight: for every ∆, there exist some graphs all of whose L(2, 1)-
labelings span at least ∆2 −∆ labels, see [Griggs and Yeh, 1992].

Many results are also known for subclasses of graphs, (chordal [Sakai, 1994],
outerplanar [Lih et al., 2006], planar [Wegner, 1977; Jonas, 1993; Cranston and
West, 2017; Wong, 1996; van den Heuvel and McGuinness, 2003; Agnarsson
and Halldórsson, 2003; Borodin et al., 2002; Molloy and Salavatipour, 2005;
Amini et al., 2013]. . .), see [Calamoneri, 2011] for a detailed survey. In this
chapter, we also consider colorings of planar graphs. The first known re-
sult about L(p, q)-coloring of planar graphs comes from [van den Heuvel and
McGuinness, 2003], with the upper bound

λG(p, q) 6 (4q − 2)∆ + 10p+ 38q − 24

when p > q, as well as a construction giving a 3q∆
2

+O(p, q) lower bound. This
has been refined several times in [Borodin et al., 2002; Molloy and Salavatipour,
2005] up to the actual best known result

λG(p, q) 6 q

⌈
5∆

3

⌉
+ 18p+ 77q − 18.

Induction Schemes: From Language Separation to Graph Colorings 131

2.1. Introduction

Since χ(G2) = 1 + λG(1, 1), we can rewrite these results for the square
coloring problem:

χ(G2) 6

⌈
5∆

3

⌉
+ 78.

However, in this case, this bound can be improved. For example, the constant
78 can be decreased to 25 for large enough ∆ [Molloy and Salavatipour, 2005].
This is still far from the conjectured result of [Wegner, 1977].

Conjecture 2.4 ([Wegner, 1977]). If G is planar, then

χ(G2) 6


7 if ∆ = 3

∆ + 5 if 4 6 ∆ 6 7

b3∆
2
c+ 1 otherwise

Except for the case ∆ = 3 proved in [Thomassen, 2018], this conjecture
remains widely open. However, for large enough ∆, the previous bound has
been improved in [Amini et al., 2013; Havet et al., 2007] to the following result.

Theorem 2.5 ([Amini et al., 2013; Havet et al., 2007]). For every surface S,
every graph embeddable in S satisfies χ`(G2) 6 3

2
∆ + o(∆).

This result thus proves the conjecture for large enough ∆. Moreover, this
bound is tight, as shown by the following construction [Wegner, 1977], known
as Shannon’s triangle.

Figure 2.2 – Wegner’s construction

To our knowledge, the Shannon triangles seem to be the only family of
graphs with unbounded maximum degree achieving the 3∆

2
bound. An interest-

ing question is then whether a better upper bound can be achieved when con-
sidering some subclasses of planar graphs. When dealing with planar graphs,
natural subclasses are obtained by considering girth restrictions. Wegner’s
construction has girth 4, then considering triangle-free planar graphs is not
enough. However, for higher girths, it is possible to prove that ∆+O(1) colors
are sufficient, as shown in [Wang and Lih, 2003]:

132 Théo Pierron

2. Discharging without discharging: the power of pigeons

Theorem 2.6 ([Wang and Lih, 2003]). If G is planar of girth g, then

• χ(G2) 6 ∆ + 5 when g > 7,

• χ(G2) 6 ∆ + 10 when g > 6,

• χ(G2) 6 ∆ + 16 when g > 5.

These results can be refined for large enough ∆: for g > 7, we have χ(G2) =
∆ + 1 if ∆ > 30 [Borodin et al., 2004]. Some examples of graphs of girth 5
and 6 are known to require at least ∆ + 2 colors, see Figure 2.3.

··
·

· · ·

· · ·
· · ·

· · · · · ·

· · ·· · ·
· · ·

··
·

··
· ·
··

··
·

Figure 2.3 – Planar graphs with girth 5 and 6 such that χ(G2) > ∆ + 1.

However, it is proved in [Dvořák et al., 2008; Borodin and Ivanova, 2009a;
Bonamy et al., 2019a] that ∆ + 2 are sufficient for planar graphs with girth
5 and 6 and large enough maximum degree, even when considering list color-
ing [Borodin and Ivanova, 2009b; Bonamy et al., 2019a]. These results have
been extended in [Bonamy et al., 2014], by considering restrictions on the
maximum average degree instead of the girth.

Some results are known when considering some other cycle obstructions.
For example, for planar graphs without C4 and C5, a ∆ + 7 upper bound
holds, see [Zhu et al., 2012], which can be strengthened to ∆ + 2 for large
enough ∆ [Dong and Xu, 2017]. When only cycles of length 4 are forbidden,
∆ + O(1) colors are sufficient, see [Wang and Cai, 2008]. This bound was
extended for list coloring in [Choi et al., 2018] using the discharging method.

Proposition 2.7 ([Choi et al., 2018]). The square of every C4-free planar
graph G is (∆ + 72)-degenerate, and hence χ`(G2) 6 ∆ + 73.

Looking for cycle obstructions is not a new concept. For example, for
proper vertex coloring of planar graphs, four colors are known to be suf-
ficient [Appel et al., 1977]. However, many attempts have been made for
finding cycle obstructions to break down this bound to 3. A seminal result

Induction Schemes: From Language Separation to Graph Colorings 133

2.1. Introduction

comes from [Grötzsch, 1959], and states that triangle-free planar graphs are
3-colorable. Various conjectures were introduced about cycle obstructions for
3-coloring, like the strong Bordeaux conjecture [Borodin and Raspaud, 2003],
the Novosibirsk 3-color conjecture [Borodin et al., 2006] and the Steinberg con-
jecture [Steinberg, 1993]. The latter states that planar graphs without C4 and
C5 are 3-colorable. All these conjectures have now been disproved in [Cohen-
Addad et al., 2017]. Following the Steinberg conjecture, Erdős [Steinberg,
1993] asked the following relaxation: what is the smallest integer n such that
(C4, . . . , Cn)-free planar graphs are 3-choosable? Several results give a par-
tial answer to this question (see [Abbott and Zhou, 1991; Borodin, 1996b,a;
Sanders and Zhao, 1995]), culminating with the result of [Borodin et al., 2005]
stating that planar graphs without C4 to C7 are 3-colorable. It is still open
whether the correct answer to Erdős’ question is 6 or 7.

In the context of list coloring, a well-known result of [Thomassen, 1994]
states that every planar graph is 5-choosable, which is tight by [Voigt, 1993].
While Grötzsch’s theorem does not extend to the list coloring setting (see [Voigt,
1995]), similar cycle obstructions are known for enforcing 3-choosability. For
example, bipartite graphs [Alon and Tarsi, 1992], graphs with girth 5 [Thomassen,
1995], (C3, C5, C6)-free graphs [Lam et al., 2005] are all 3-choosable. Erdős’
question about (C4, . . . , Cn)-free planar graphs transposes to the list color-
ing setting. Again, some partial answers are known: (C4, . . . , C9)-free planar
graphs are 3-choosable [Borodin, 1996a], as well as (C4, . . . , C8)-free planar
graphs [Dvořák and Postle, 2018] and (C4, Ci, Cj, C9)-free planar graphs for
any i, j ∈ {5, 6, 7, 8} with i 6= j [Wang et al., 2011].

Except for Section 2.2 containing the proof of Theorem 2.3, this chapter
is devoted to the study of cycle obstructions for list-coloring the square of a
planar graph with lists of size ∆ +O(1). The results of this chapter have been
compiled in [Choi et al., 2018]. We consider classes with a finite number of
forbidden cycle lengths. For these classes, we can adapt Wegner’s construction
to prove that C4 has to be forbidden. We then prove a dual result: planar
C4-free graphs are (∆ + 73)-choosable. Observe that this bound is worse that
the ∆ + 48 bound obtained in [Wang and Cai, 2008], but here we consider list
coloring instead of coloring.

The main result of this chapter is a strengthening of this bound for C4-free
planar graphs with large enough maximum degree. In this case, we prove a
∆ + 2 bound for the list chromatic number, which is tight (see Figure 2.3).
To prove this result, we partly use the discharging method: we give a set of
reducible configurations, and prove that every C4-free planar graph with large
enough maximum degree has to contain one of them. However, this last part
does not use any discharging argument, only the pigeonhole principle.

134 Théo Pierron

2. Discharging without discharging: the power of pigeons

2.2 A Brooks-like result on graph powers
In this section, we give a proof of Theorem 2.3, stated again below.

Theorem 2.3. For every integer k ∈ N∗ and every ∆ > 3, the k-th power
of every graph of maximum degree ∆ is (f(k,∆) + 3− k)-colorable, except for
finitely many of them.

First note that the case k = 1 is easy since every graph G can be colored
with ∆(G) + 1 6 f(1,∆) + 2 colors. Moreover, the case k = 2 is already
handled by Theorem 2.1. Thus, we only consider the case k > 3. In the
following, we denote by G a graph of maximum degree ∆ > 3 such that
χ(Gk) > f(k,∆) + 3− k, if any.

To prove Theorem 2.3, we prove that G cannot have some configurations,
until we get to the point where G is proved not to exist at all. For each of
these configurations, assuming that G contains it, we design a procedure to
give a valid coloring of G, and thus reach a contradiction. This procedure
roughly consists in coloring the vertices greedily by decreasing distance to the
configuration.

2.2.1 First structural results

To prove Theorem 2.3, we give several properties satisfied by G. All of
these are proved using the same technique: by contradiction, we assume the
property does not hold. Then we define an ordering of the vertices of G, and
we color them greedily in this order. For each vertex, we prove that there is
always an available color, thus we reach a contradiction. We first apply this
technique to prove that G is ∆-regular.

Proposition 2.9. The graph G has minimum degree ∆.

Proof. Assume that G has a vertex u of degree at most ∆− 1. Let H be the
graph obtained from G by attaching to u a pending path v1, . . . , vk. Observe
that ∆(H) = ∆ since u has degree ∆ − 1 in G. To reach a contradiction, we
color vertices of G in H by decreasing distance to vk.

Note that, usually, we remove elements of G, and use some minimality
argument to obtain a coloring to extend. In this case, we instead add some
vertices. This is not related to some inductive argument (we do not even color
these new vertices). The goal of this modification is to make the gap between
the number of forbidden colors and the upper bound easier to find, by counting
the uncolored vertices in the neighborhood at distance k instead.

Let w be a vertex of G, at distance d from vk. Note that the d vertices on a
shortest path from w to vk are uncolored. Therefore, w has at most f(k,∆)−d
colored neighbors in Hk (thus in Gk), hence w has at least d− k + 3 available
colors. Since w ∈ V (G), we have d > k, hence w can always be colored.

We thus obtain χ(Gk) 6 f(k,∆)− k + 3, a contradiction.

Induction Schemes: From Language Separation to Graph Colorings 135

2.2. A Brooks-like result on graph powers

By coloring vertices of G by decreasing distance to a given small cycle, we
can prove in a similar fashion that G has large girth, as shown by the following
result.

Proposition 2.10. The graph G has girth at least k + 2.

The proof of this result again relies on counting the number of available
colors of each vertex in some coloring procedure. Given a vertex v in G and a
partial coloring of G, we look for the number of available colors for v. In the
worst case, the neighborhood of v in Gk induces a ∆-ary tree of height k in
G, and the number of available colors is the number of uncolored vertices in
this tree. However, we are not always considering worst cases. To mimic this
counting argument, we thus consider (in any fixed order) all the f(k,∆) non-
empty non-backtracking walks of length at most k starting from v, meaning
that we allow the same edge to be used twice, but not in a row. The number
of available colors thus depends on the number of such walks ending on an
uncolored vertex, and ending with vertices with the same color (possibly the
same vertices).

We say that such a walk is nice if either its endpoint (possibly v) is un-
colored, or if it is the endpoint of an already considered walk. The number
of forbidden colors is the number of non-nice walk. Therefore, the number of
available colors for v is the number of nice walks starting from v, minus k− 3.

Proof. Assume that G contains a cycle C = u1 · · ·un with 3 6 n 6 k + 1. We
color vertices of G by decreasing distance to C.

Let v be a vertex of G \ C and denote by v0 · · · vd a shortest path from v
to C with v0 = v and vd ∈ C, say vd = u1 by symmetry, see Figure 2.4. Then
every subwalk of the non-backtracking walk v1 · · · vdu2 · · ·unu1 · · · of length k
ends up with an uncolored vertex. We thus obtain k nice walks, hence we can
always color v.

v1 v2 vd−1 vd

u1

u2 u3

un−1un

Figure 2.4 – Configuration of Proposition 2.10

Consider then a vertex v ∈ C. Then there are at least 2k nice walks starting
from v, namely the subwalks of the two non-backtracking walks of length k
going around C in the two possible directions. Thus each vertex of C has k+2
available colors. Moreover, vertices of C induce a clique in Gk, and there are
at most k + 1 of them. Since Kk+1 is (k + 1)-choosable, we can color vertices
of C, reaching a contradiction.

136 Théo Pierron

2. Discharging without discharging: the power of pigeons

2.2.2 Bounding the diameter

We end the proof of Theorem 2.3 by bounding the diameter of G. Indeed,
for every ∆ > 3 and d ∈ N∗, there is only a finite number of graphs of maximum
degree ∆ and diameter at most d. Thus, Theorem 2.3 is a consequence of the
following proposition.

Proposition 2.11. The graph G has diameter at most 2k − 1.

The remainder of this section is devoted to the proof of Proposition 2.11.
Assume that G has diameter at least 2k, and consider a shortest path P =
u1 · · ·ukxv1 · · · vk between u1 and vk, of length 2k. First, for 1 6 i 6 k, we
color both ui and vi with color i. Note that this is a proper partial coloring:
if dist(ui, vi) = k, there is a path from u1 to vk of length 2k, contradicting the
hypothesis.

We fix the following ordering of the vertices of P : u1 > vk > u2 > vk−1 >
· · · > uk > v1 > x. Let w be a vertex of G. We define the root rw of w as the
largest vertex in P on a shortest path from w to x. We denote by Pw any path
obtained by concatenating a shortest path from w to rw with the subpath of
P between rw and x. By definition, Pw is a shortest path between w and x.

We first prove a generic lemma about these objects.

Lemma 2.12. Let v be a vertex of G. For every w ∈ Pv \ P , rw = rv.

Proof. First note that the subpath of Pv between w and x has to be a shortest
path. Therefore, since this path contains rv, we must have rw > rv.

Conversely, consider the path obtained by concatenating the subpath of
Pv between v and w with Pw. This path has the same length as Pv (since we
replaced a shortest path from w to x in Pv by another one), and its largest
element in P is rw. Thus rv 6 rw, which ends the proof.

We can also have some information about the root of vertices close to P ,
as shown by the following result.

Lemma 2.13. Let vw be an edge where w ∈ P and v /∈ P . Then rv 6 w.

Proof. Let i be the length of the subpath of P between x and w, so that
w ∈ {x, vi, uk+1−i} (the case w = x corresponding to i = 0). The path
obtained by concatenating this subpath with the edge wv is a path from x
to v of length i + 1. Thus Pv has length at most i + 1, and we must have
dist(x, rv) < i+ 1 since v /∈ P .

This proves that rv 6 w, unless rv = uk+1−i and w = vi. But in this
case, note that either i = 1 and we have a 4-cycle ukxv1w, a contradic-
tion with Proposition 2.10, or i 6= 1, and uiwvk+1−i is a path shorter than
ui · · ·ukxv1 · · · vk+1−i, contradicting that P is a shortest path.

Induction Schemes: From Language Separation to Graph Colorings 137

2.2. A Brooks-like result on graph powers

We are now ready to color the uncolored vertices of G, namely the vertices
of G that are not in P \{x}. We color these vertices by decreasing lexicographic
order of (rv, dist(v, rv)). Consider a vertex v with rv 6= x. In this case, up to
symmetry, we may assume that rv = ui, and Pv = P ′vui+1 · · ·ukx where P ′v is a
shortest path from v to rv. We now use the assumption ∆ > 3 together with
Proposition 2.9 to find some uncolored vertices.

First note that for j ∈ [i + 1, k], since ∆ > 3, there is a neighbor u′j of
uj outside P . We define some other vertices by fixing a path x0x1 · · ·x k

2
such

that x0 = x and x1 /∈ P . Since ∆ > 3, we know that for 1 6 i < k
2
, each xi

has a neighbor x′i different from xi−1 and xi+1.
We now consider three types of uncolored vertices, as shown in Figure 2.5:

1. The internal vertices w of P ′v: by Lemma 2.12, we have rw = rv. More-
over, dist(w, rw) = dist(w, rv) < dist(v, rv), hence w is uncolored when
we consider v.

2. The vertices u′j for i < j 6 k: by Lemma 2.13, we have ru′j 6 uj < rv,
hence u′j is uncolored when we consider v.

3. The vertices x1 and xj, x′j−1 for 2 6 j 6 k
2
: Assume that rxj 6= x. Then

Pxj is a path of length at most k
2
from xj to x, which does not use x1.

Therefore, we have two different paths of length at most k
2
from xj to x in

G. Hence, G contains a cycle of length at most 2× k
2

= k, contradicting
Proposition 2.10. The same argument ensures that rx′j = x. Therefore,
since rv 6= x, x1 and all the xj, x′j−1 (2 6 j 6 k

2
) are uncolored when

coloring v.

xuk

2
u′k

uk−1

2
u′k−1

ui+1

2
u′i+1

rv = uiu1 v1 v2 vk

3 x1

3 x′13x2

3 x′23x3

3 x′33x k
2

v

P ′v

T
ype

1

Figure 2.5 – Global picture of the situation when considering v: black vertices
are already colored, white ones are uncolored. Integers inside vertices represent
types.

We now have to make sure that at least k − 2 such vertices lie in the
neighborhood of v in Gk. Denote by d = dist(v, rv) and d′ = dist(rv, x). For

138 Théo Pierron

2. Discharging without discharging: the power of pigeons

i = 1, . . . , d − 1, there is an internal vertex of P ′v at distance i from v. Thus
we may assume that d 6 k − 2. In this case, for i = d + 2, . . . , d + d′ + 1,
there is a vertex at distance i from v (either some u′j or x1). There are thus
min(d+ d′+ 1, k)− 2 uncolored vertices in the neighborhood of v in Gk, hence
we may also assume that d+ d′ + 1 < k.

For i = d + d′ + 2, . . . , d + d′ + k
2
, there are two vertices (xj and x′j−1 for

some 2 6 j 6 k
2
) at distance at most i from v. Then we have d + d′ − 1 +

2 min(k − d − d′ − 1, k
2
− 1) uncolored vertices at distance at most k from v.

Observe that

d+ d′ − 1 + 2(k − d− d′ − 1) = 2k − d− d′ − 3 > k − 2

and that
d+ d′ − 1 + 2

(
k

2
− 1

)
= k + d+ d′ − 3 > k − 2

since d + d′ 6 0 is not possible due to rv 6= x. Therefore, we can always find
an available color for every vertex v such that rv 6= x.

We now consider the remaining case rv = x. In this case, every vertex of
Pv has x as root by Lemma 2.12, hence is uncolored. Write Pv = x0 · · · xd with
x0 = v, d = dist(x, v) and xd = x. Again, since G is ∆-regular and ∆ > 3, each
xi (except possibly xd) has a neighbor x′i different from its neighbors in Pv.
We now distinguish several cases depending on d. Again, in each of them, we
prove that there are at least k− 2 uncolored vertices or colors appearing twice
in the neighborhood of v in Gk. This ensures that v always has an available
color.

• If d > k−2, then x1, . . . , xk−2 are uncolored neighbors of v in Gk. Hence
we may assume that d < k − 2.

• If d < k − 2 and d > k
2
, then x1, . . . , xd, x

′
2, . . . , x

′
d−1 are at distance at

most d − 1 from x, hence they are uncolored. Moreover, they are at
distance at most k from v. We thus have 2d − 2 > k − 2 uncolored
vertices.

• Otherwise, we have d < k
2
. In this case, observe that some of the colors

1, . . . , k present on u1, . . . , uk and v1, . . . , vk appear twice in the neigh-
borhood of v in Gk. More precisely, v is at distance at most k from
ud+1, . . . , uk and from v1, . . . , vk−d. Thus, colors d + 1, . . . , k − d appear
twice in the neighborhood of v in Gk, meaning that we spare k− 2d col-
ors. Since there are also 2d− 2 uncolored vertices, v spares k − 2 colors
in its neighborhood in Gk, hence we can color it.

This ends the proof of Theorem 2.3. As a final remark, observe that the
proofs of Propositions 2.9 and 2.10 are still valid both in the list coloring
setting (since we use only degeneracy arguments) and in the case where we

Induction Schemes: From Language Separation to Graph Colorings 139

2.3. Coloring squares of planar graphs

want to spare more colors (say at most k). This is not the case anymore for
Proposition 2.11. However, maybe some more involved arguments could bound
the diameter of G in these two more general settings.

2.3 Coloring squares of planar graphs
Let S be a finite set of integers, and CS be the set of planar graphs with

no cycle of length ` ∈ S as a subgraph. We first show that removing C4 is
necessary to obtain a ∆+O(1) upper bound for the square chromatic number.

Proposition 2.14. If 4 /∈ S, then for every C ∈ N, there exists a graph
G ∈ CS such that χ(G) > ∆ + C.

Proof. Since S is finite, there exists an odd integer k such that 2k /∈ S. Begin
with a k-cycle and replace each edge vw with a copy of K2,t, so that the two
vertices of degree t replace v and w. The resulting graph, Gk,t, has maximum
degree 2t and has cycles only of lengths 4 and 2k.

Figure 2.6 – The graph G5,4

Consider a proper coloring of G2
k,t. Observe that each color class contains

at most (k − 1)/2 vertices of degree 2 in Gk,t (by the pigeonhole principle).
Since Gk,t has kt 2-vertices, we have:

χ(G2
k,t) >

kt

(k − 1)/2
=

2kt

k − 1
= 2t+

2t

k − 1
= ∆(G) +

2t

k − 1

Given any constant C, we can choose t sufficiently large so that 2t
k−1

> C.
The graph Gk,t is then the required graph.

The goal of this chapter is to prove the following refinement of Proposi-
tion 2.7:

Theorem 2.15 ([Choi et al., 2018]). There exists an integer ∆0 such that
every C4-free planar graph G with ∆ > ∆0 satisfies χ`(G2) 6 ∆ + 2.

140 Théo Pierron

2. Discharging without discharging: the power of pigeons

Note that this bound is tight, as shown by several constructions from [Borodin
et al., 2004; Dvořák et al., 2008], see Figure 2.3.

As the title of the chapter may suggest, the proof of Theorem 2.15 uses
the discharging method. We actually follow the same general approach as
in [Bonamy et al., 2019a], which considered planar graphs with girth at least
5; however, we need new ideas to handle the presence of triangles. In Sec-
tions 2.4 and 2.5, we design a specific induction scheme allowing to prove
(∆ + 2)-choosability by reducing some configurations. More precisely, we use
the arguments presented in Chapter 1 to reduce some small configurations in
Section 2.4. Section 2.5 is devoted to reducing a much larger one.

The second part of the discharging method consists in proving the com-
pleteness of the induction scheme, i.e. that every C4-free planar graph with
large enough ∆ can be reached by the scheme. In Chapter 1, this part is
achieved by moving charges around a graph, which led to a quite involved case
analysis. In Section 2.6, we prove this result only using that planar graphs are
5-degenerate, together with the pigeonhole principle.

Remark 2.16. Theorem 2.15 also holds for correspondence coloring, a gener-
alization of list coloring. For the ease of exposition, we present the proof for
choosability. We then devote Section 2.7 to the introduction of correspondence
coloring and to the proof of the extended version of Theorem 2.15.

2.4 Small reducible configurations
First, take ∆0 = 237695002 = 564989130250000 and fix k ≥ ∆0. We prove

by contradiction that if G is a plane graph with no 4-cycles and with ∆(G) ≤ k,
then G2 is (k + 2)-choosable. (By plane graph, we mean a planar graph with
a fixed embedding in the plane.) Assume this assertion is false and let G be
a counterexample that minimizes |E(G)|+ |V (G)|. Let L be an assignment of
lists of size k+ 2 to the vertices of G such that G2 has no L-coloring. Since G
is a plane graph, recall that the embedding of G in the plane is also fixed.

The goal of this section is to prove that G does not contain some configu-
rations. As in Chapter 1, a first step is to prove that G is connected and does
not contain vertices of small degree.

Lemma 2.17. Graph G is connected and has minimum degree at least 2.

Proof. Note that G is connected, since otherwise one of its components is a
smaller counterexample. Now assume there exists a 1-vertex v ∈ V (G). By
the minimality of G, we can L-color (G \ {v})2. Since |L(v)| = k + 2, and v
has at most 1 + (k − 1) neighbors in G2, we can color v with a color not used
on its neighbors in G2, which is a contradiction.

The next two lemmas essentially show that every vertex of G must be near
a vertex of high degree. To formalize this, we use the following terminology:

Induction Schemes: From Language Separation to Graph Colorings 141

2.4. Small reducible configurations

a vertex v ∈ V (G) is big if deg(v) ≥
√
k and small otherwise. Denote by B

and S the sets of big and small vertices, respectively. To refine the set S, we
write Si for the set of small vertices with exactly i big neighbors.

Remark 2.18. In the figures, we apply the conventions of Chapter 1: we use
black circles for vertices with all neighbors shown. Furthermore, we draw small
vertices as circles, and big vertices as squares. When we do not know whether
a vertex is big or small, we consider (unless stated otherwise) that we are in
the worse case, i.e. it has degree ∆, hence we draw it as a big vertex. For
example, Figure 2.7 shows the configurations forbidden by Lemma 2.19.

Lemma 2.19. For each edge vw ∈ E(G), either v ∈ N [B] or w ∈ N [B].
Furthermore, if deg(v) = deg(w) = 2, then v, w ∈ N [B].

v w

v w

Figure 2.7 – Forbidden configurations of Lemma 2.19.

Proof. Assume to the contrary that some edge vw has v, w /∈ N [B]. By min-
imality, we can L-color (G − vw)2. We uncolor v and w. Since v, w /∈ N [B],
both v and w have less than

√
k×
√
k colored neighbors in G2. Since |L(v)| =

|L(w)| = k + 2, we can find distinct available colors for v and w.
Suppose instead that d(v) = d(w) = 2 and v ∈ N [B] and w /∈ N [B].

Again, by minimality we L-color (G− vw)2, then uncolor v and w. Now v has
at most k + 1 colored neighbors in G2, so v has an available color. As before,
we can color w. This gives an L-coloring for G2, a contradiction.

Lemma 2.20. If vw is an edge with deg(v) = deg(w) = 2, then v and w have
no common neighbor.

Proof. Assume there exists a triangle vwx with deg(v) = deg(w) = 2. By
minimality, we can L-color (G\{v, w})2. Both v and w have deg(x)−1 6 k−1
colored neighbors in G2. So v and w each have at least 3 available colors, and
thus we can color them both.

Lemma 2.21. Let vx1x2 be a triangle of G such that some vertex w ∈ S \
{v, x1, x2} has a common 2-neighbor with x1. If either (a) d(x2) = 2 or (b)
d(x2) = 3 and w and x2 have a common 2-neighbor, then d(x1) ≥ 4.

142 Théo Pierron

2. Discharging without discharging: the power of pigeons

w

x1

x2

y1

y2

v

(b)

w

x1

x2

y1

v

(a)

Figure 2.8 – Forbidden configurations of Lemma 2.21.

Proof. Let y1 and y2 denote the 2-neighbors of w common with x1 and x2 if
they exist (in Case (a), only y1 is defined). Assume that deg(x1) 6 3. Note
that we have deg(x1) = 3 since otherwise we have y1 = v, hence deg(v) = 2 and
G is a triangle. If vw ∈ E(G), then wvx1y1 is a 4-cycle in G, a contradiction.
So vw /∈ E(G). By assumption, w /∈ {v, x1, x2, y1}. So if wx2 ∈ E(G),
then wx2x1y1 is a 4-cycle in G, again a contradiction. Thus, wx2 /∈ E(G).
Since d(x1) = 3 and v, x2, y1 ∈ N(x1), we must have w /∈ N(x1). Since
N(y1) = {x1, w}, also vy1 /∈ E(G). So in both cases wx1, wx2, wv, vy1 /∈ E(G).
And in (b) also vy2 /∈ E(G).

Let S = {x1, x2, y1} in Case (a), and S = {x1, x2, y1, y2} in Case (b). By
minimality, we L-color (G \ S)2. For each i ∈ {1, 2}, the number of colored
neighbors in G2 of xi is at most:

|{v, w}|+ |N(v) \ {x1, x2}| 6 2 + (k − 2) = k.

Thus, x1 and x2 both have at least 2 available colors, so we can color them.
Further, for each i ∈ {1, 2}, the number of colored neighbors of yi is at most

|{v, w, x1, x2}|+ |N(w) \ {yi}| 6 4 +
√
k − 1 =

√
k + 3.

Therefore, y1 and y2 (if defined) both have k−
√
k−1 available colors. Since k

is large enough, we can color them to get an L-coloring for G2, a contradiction.

We combine Lemmas 2.19 and 2.21 to prove the reducibility of the bigger
configuration shown in Figure 2.9.

Lemma 2.22. Fix v, w ∈ V (G) such that w ∈ S. Now G cannot contain
vertices y1, . . . , y5 that are consecutive neighbors of w and that satisfy both
conditions below; see Figure 2.9.

1. Each yi has degree two and has a common neighbor xi with v.

2. For each i ∈ {1, . . . , 4}, each vertex inside the cycle vxiyiwyi+1xi+1 is
adjacent to v.

Induction Schemes: From Language Separation to Graph Colorings 143

2.5. Reducing regions

w

x3 x4 x5x2x1

y3 y4 y5y2y1

v

Figure 2.9 – A possible configuration of Lemma 2.22.

Proof. We assume that G contains such a configuration and reach a contra-
diction, by showing that G contains a configuration forbidden by Lemma 2.21.
Since G contains no 4-cycle, all xi’s are distinct. Moreover, every connected
component of a graph strictly contained in a cycle vxiyiwyi+1xi+1 must be of
size at most two (otherwise it creates a C4 with v).

Below when we write a statement about xi, we mean that it is true for
each i ∈ {2, 3, 4}. Since w ∈ S, Lemma 2.19 implies that d(xi) ≥ 3. Because
y1, . . . , y5 are consecutive neighbors of w, vertex xi is not adjacent to w. Since
G has no 4-cycle, xi has at most one common neighbor with v. Thus d(xi) = 3.
Define z so that N(x3) = {v, y3, z}. If z ∈ {x2, x4}, then G contains the second
configuration in Lemma 2.21, a contradiction. If z has a neighbor other than
x3 and v, then call it z′; now z′ is adjacent to v (by hypothesis 2), so vx3zz

′ is
a 4-cycle, a contradiction. Thus, z is a 2-vertex with N(z) = {x3, v}. Now G
contains the first configuration in Lemma 2.21, again a contradiction.

2.5 Reducing regions

2.5.1 Terminology

In order to present the last configuration, we introduce some terminology.
Recall that S is the set of small vertices, and Si is the set of small vertices
with exactly i big neighbors. Let G′ denote the multigraph formed from G
by suppressing every vertex of degree 2 in S \ N [B], and then contracting
every edge between S1 and B. (Suppressing a 2-vertex v means deleting v and
adding an edge between its two neighbors.) Note that G′ may contain loops.
For example, there is a loop in G′ around a vertex u if u is a big vertex in
G and there is a triangle uvw with v, w ∈ S1. We say that a vertex of G
disappears when constructing G′ if it is either a suppressed vertex, or a vertex
in S1.

Let G′′ denote the multigraph formed from G′ by removing every loop, and
let G′′′ denote the underlying multigraph of G′′, i.e., the multigraph formed
from G′′ by deleting the minimal number of edges to remove all faces of length

144 Théo Pierron

2. Discharging without discharging: the power of pigeons

2. Note that G′′′ can have parallel edges. For example, suppose v and w have
parallel edges, say e1 and e2, in G′. If some vertices are embedded inside and
outside of the cycle e1e2, then in G′′′ vertices v and w still have parallel edges,
with those same vertices embedded inside and outside of the cycle they bound.
However, G′′′ cannot have faces of length 2.

G 7→ G′

7→

7→··
·

··
·

Figure 2.10 – Construction of G′

An r-region of G′′ is a set {f1, . . . , fr} of consecutive faces of length 2 such
that:

• For 1 6 i < r, fi shares one edge with fi+1. (We say that the fi’s are
consecutive.)

• All the fi’s have the same vertices b1, b2 on their boundary, where b1 and
b2 are distinct vertices of B.

Note that each of the faces in an r-region is constructed from some cycle of G
when we apply the construction rules above. By extension, an r-region of G is
the subgraph of G induced by the vertices of these cycles, together with those
lying on the inside of those cycles. (We often simply write region, when the
specific value of r is less important.) When R is an r-region of G, we denote
by V (R) the set of vertices appearing on all faces of R, excluding b1 and b2.

To reach a contradiction, we prove the following two propositions.

Proposition 2.23. G does not contain any r-region for r > 475353.

Proposition 2.24. G contains an r-region of size at least
√
k

50
− 37.

Our contradiction now comes quickly. These propositions give that
√
k

50
−

37 < 475353. This inequality implies k < 237695002, contradicting the hy-
pothesis k > ∆0 = 237695002.

The present section is devoted to the proof of Proposition 2.23. We then
prove Proposition 2.24 in Section 2.6. Both these results use some structural
properties about regions in G. We thus begin by investigating these structures.

Induction Schemes: From Language Separation to Graph Colorings 145

2.5. Reducing regions

2.5.2 Structural properties of regions

We first classify each edge of G′ based on its corresponding path in G. An
edge e in G′ corresponds to a path x1 · · ·xn in G if e = x1xn and for each
i ∈ {2, . . . , n− 1}, one of the following holds:

• xi is a 2-vertex in G and xi−1, xi+1 ∈ S, or

• xi ∈ S1 and either xi−1 or xi+1 lies in B.

Due to the construction of G′, for every loop (resp. non-loop edge) e of
G′, there is a unique cycle (resp. path) x1 · · ·xn in G corresponding to e (with
possibly n = 2). Note that we used here that the suppressed 2-vertices are
not in N [B], hence every contracted edge (between S1 and B) is between two
adjacent vertices in G.

The following lemma ensures that every edge (resp. loop) of G′ corresponds
to a short path (resp. cycle) of G. It also gives a classification of all the possible
such paths (resp. cycles), depicted in Figure 2.11.

Type 1:
v w

or
v w

or
v w

Type 3:
v ye xe w

Type 5:
v xe x′e

(possibly w = v)
w

Type 2:
v xe w

Type 4:
v ye w

Type 6:
v xe ye x′e w

Figure 2.11 – The six types of paths in G that create edges in G′ (gray vertices
lie in S1).

Lemma 2.25. Each edge e = vw of G′ corresponds to a path or a cycle in G
for which exactly one of the following six conditions holds (up to exchanging v
with w). If e satisfies condition i below (for some i ∈ {1, . . . , 6}), then we say
that e has type i. If v ∈ S, then e has one of types 1–4. If e is a loop of G,
then e has type 5. Finally, if v, w ∈ B, then e has type 1, 5, or 6.

1. e ∈ E(G).

2. w ∈ B and e corresponds to a path vxew in G with xe ∈ S1.

3. w ∈ B and e corresponds to a path vyexew in G with xe ∈ S1 and
deg(ye) = 2.

4. w ∈ S and e corresponds to a path vyew in G with deg(ye) = 2.

5. e corresponds to a path vxex′ew in G with xe, x′e ∈ S1.

6. e corresponds to a path vxeyex′ew in G with xe, x′e ∈ S1 and deg(ye) = 2.

146 Théo Pierron

2. Discharging without discharging: the power of pigeons

Proof. Due to the construction of G′, each edge e in G′ between v and w comes
from a path (or cycle) Pe in G between v and w. In particular, every internal
vertex of Pe is either a 2-vertex in S \N [B] or a vertex of S1 which is preceded
or followed in Pe by a big vertex. This implies that each internal vertex of Pe
is small, and that the only vertices of Pe that can be big are v and w.

By Lemma 2.19, no two consecutive vertices of Pe are suppressed. This
implies that Pe has length at most four.

• If Pe has length one, then e has type 1.

• If Pe has length two, then we have v 6= w since G is simple. Denote by x
the middle vertex of Pe. We must have either v, w ∈ S and degG(x) = 2
(case 4), or v ∈ B, w ∈ S and x ∈ S1 (case 2).

• If Pe has length three, then at least one of v, w must be in B and its
neighbor in Pe must be in S1. If both v and w lie in B, then we are in
case 5; otherwise, we have v 6= w and we are in case 3.

• Finally, if Pe has length four, then we have v 6= w since G is C4-free.
Moreover, they both have to be big and their neighbors in Pe (say xe, x′e)
lie in S1. The other vertex ye of Pe must have degree two, so we are in
case 6.

Observe in particular that if v is small, then cases 5 and 6 cannot occur.
Moreover, if v and w are big, then only cases 1, 5, and 6 can occur. Finally,
every loop of G′ has type 5.

In what follows, when referring to an edge e with type i, we use xe, x′e, and
ye as defined in the corresponding part of Lemma 2.25. This lemma implies
the following facts about the structure of regions in G.

Corollary 2.26. Let R be a region of G. Now V (R) is the disjoint union of
three sets B1, B2, D such that Bi ⊂ N(bi) for some b1, b2 ∈ B, and D is an
independent set of 2-vertices, each with a neighbor in each of B1 and B2.

Proof. Let R be a region of G. By definition, there exists b1, b2 ∈ B on the
boundary of every face of R in G′′. Therefore, in G′, the edges appearing in R
are either loops on b1 or b2 or edges between b1 and b2.

Note that V (R) is the set of all vertices of G that disappear when we
construct the edges of R in G′. For each i ∈ {1, 2}, define Bi as the set of
vertices v of G such that vbi is contracted when constructing an edge of R
in G′. We also define D as the set of vertices in G that are suppressed when
constructing an edge of R in G′. By definition, we have Bi ⊂ N(bi).

By Lemma 2.25, since b1, b2 ∈ B, each edge e between b1 and b2 in G has
type 1, 5, or 6, and each loop around b1, b2 has type 5. This ensures that

Induction Schemes: From Language Separation to Graph Colorings 147

2.5. Reducing regions

V (R) = B1 ∪ B2 ∪D and that D contains only vertices of degree 2 in G. By
Lemma 2.19, this implies that D is an independent set.

It remains to show that these sets are pairwise disjoint. Assume that there
is x ∈ B1 ∩ B2. Now xb1 and xb2 are both contracted when constructing G′.
This requires that x ∈ S1. Since b1 and b2 are both big, we must have b1 = b2,
a contradiction. Further, since b1 ∈ B, no neighbor of b1 is suppressed during
the construction of G′. Since B1 ⊂ N(b1), we thus have D ∩ B1 = ∅. By
symmetry, we also have D ∩B2 = ∅.

In the following, given a region R, we use the notation of Corollary 2.26.
We are now ready to prove Proposition 2.23.

2.5.3 Large regions are reducible

In this section, we show that G cannot contain arbitrarily large regions, i.e.,
for r large enough every r-region is reducible. Note that the square of such
r-regions consists of two cliques, with some edges between them. Following
the terminology of Corollary 2.26, we denote the vertices of these cliques by
B1 and B2. As before, D denotes a set of independent 2-vertices, each with
one neighbor in B1 and one neighbor in B2. We begin by proving that there
are only few edges between B1 and B2.

Lemma 2.27. Let R be an r-region of G. Now each w ∈ B1 ∪B2 has at most
one neighbor in B1, at most one in B2, and at most eight in D.

Proof. Suppose w ∈ B1∪B2. If w has two neighbors x and y in Bi, then bixwy
is a 4-cycle in G, a contradiction. So we assume w has at most one neighbor
in each of B1 and B2. In what follows, we assume by symmetry that w ∈ B1.

Suppose that w has five consecutive neighbors x1, . . . , x5, all in D, and
denote by yi the common neighbor of xi and b2. By Lemma 2.22, there is a
vertex z inside some cycle wxiyib2yi+1xi+1 that is not adjacent to b2. Since R
is an r-region, z disappears when we construct G′. Since z /∈ NG(b2), vertex z
must be a 2-vertex. By Lemma 2.19, each neighbor of z is adjacent to b2. So
G contains a 4-cycle, a contradiction. Thus, w has at most four consecutive
neighbors in D.

Consider an edge wx between these blocks of consecutive neighbors in D
where x ∈ V (R)\D. Then x cannot lie in B1, otherwise b1wx is a triangle not
containing b2 nor any vertex in B2. By planarity, there cannot be vertices of
D inside and outside of this triangle. Therefore x ∈ B2.

Since G has no 4-cycle, at most one such neighbor x exists, so w has at most
two blocks of consecutive neighbors in D. This proves the final assertion.

Proving that G does not contain large regions amounts to proving that
r-regions of G are square L′-colorable for a suitable assignment L′. To prove
this new assertion, we introduce yet another method, different from the ones of

148 Théo Pierron

2. Discharging without discharging: the power of pigeons

Chapter 1. Here, we use an auxiliary result about choosability, due to Bondy,
Boppana, and Siegel (see Remark 2.4 in [Alon and Tarsi, 1992]). This result
applies to kernel perfect digraphs. We briefly recall the definition here.

Definition 2.28. A kernel K in a digraph D is a subset of V (D) such that
every vertex v of D satisfies: v ∈ K if and only if N+(v) ∩K = ∅. A digraph
is kernel perfect if each of its induced subgraphs has a kernel.

As shown by Bondy, Boppana and Siegel (see [Alon and Tarsi, 1992]),
kernel-perfect orientations can be linked to choosability: we can translate the
problem of choosability into finding an orientation with nice properties.

Lemma 2.29. Let D be a kernel perfect digraph D with underlying graph H. If
L is a list assignment for V (H) such that for all v ∈ V (H), |L(v)| > d+(v)+1,
then H is L-colorable.

Proof. We prove the theorem by induction on the size p of ∪v∈V (H)|L(v)|. If
p = 1, then d+(v) = 0 and |L(v)| = 1 for every vertex v of D. Thus, H is an
independent set, and assigning to v the unique element in L(v) gives a proper
L-coloring.

Assume now that p > 1 and take c ∈ ∪v∈V (H)L(v). Consider the subgraph
D′ of D induced by {v ∈ V (H), c ∈ L(v)}. By hypothesis, D′ has a kernel K.
We then color the vertices in K with c.

It remains to color D \K. To this end, we apply the induction hypothesis
with the list assignment L′ defined by L′(v) = L(v) \ {c} for each v ∈ V (H).
Note that D \ K is still kernel perfect, since it is a subgraph of D. We thus
have to prove that |L′(v)| > d+

D\K(v) + 1 for each v ∈ V (H) \K. We separate
two cases:

• If c /∈ L(v), then |L′(v)| = |L(v)| > d+
D(v) + 1 > d+

D\K(v) + 1.

• If c ∈ L(v), then |L′(v)| = |L(v)| − 1. However, since K is a kernel of
H ′ and v /∈ K, v has an out-neighbor in K, hence d+

D(v) = d+
D\K(v) + 1.

Finally, we obtain |L′(v)| > d+
D\K(v) + 1.

We use this lemma to reduce the problem of square L-coloring an r-region
to finding a kernel perfect orientation. We apply this method to prove the
following generic result about choosability of graphs covered by two cliques
with few edges between them.

Lemma 2.30. Let H be a graph covered by two disjoint cliques, B1 and B2,
see Figure 2.12. Let L be a list assignment for V (H) and suppose Ti ⊂ Bi for
each i ∈ {1, 2}. Now H is L-colorable if the following five conditions hold.

1. |B1| > 52811 and |B2| > 52811.

2. |T1| 6 4400 and |T2| 6 4400.

Induction Schemes: From Language Separation to Graph Colorings 149

2.5. Reducing regions

Ti T3−i

Bi B3−i

6 11

> |Bi| colors
on each ver-
tex

> 52811

> |Bi| − 44
colors on each
vertex

6 4400

Figure 2.12 – Conditions of Lemma 2.30

3. For each v ∈ Bi, |N(v) ∩B3−i| 6 11.

4. For each v ∈ Ti, |L(v)| > |Bi| − 44.

5. For each v ∈ Bi \ Ti, |L(v)| > |Bi|.

Proof. To prove this result we construct an orientationD ofH such thatD sat-
isfies the hypotheses of Lemma 2.29. We first show that we can order the ver-
tices x1, . . . , x|B1| and y1, . . . , y|B2| of B1 and B2 such that T1 = {x1, . . . , x|T1|},
T2 = {y1, . . . , y|T2|} and every path beginning in {x|B1|−10, . . . , x|B1|} and end-
ing in {y|B2|−10, . . . , y|B2|} that alternates between B1 and B2 has length at
least 5. Note that a single edge may be an alternating path, so we require that
no edge joins xi and yj whenever i > |B1| − 10 and j > |B2| − 10.

Definition of the orderings

We now construct the vertex orderings from the previous paragraph. Their
only non-trivial property is the absence of short alternating paths between the
final 11 vertices in B1 and those in B2. So, our goal is to construct Z1 ⊂ B1

and Z2 ⊂ B2 with |Z1| = |Z2| = 11 such that no alternating path of length at
most 3 begins in Z1 and ends in Z2. To this end, we first define Z2, then count
the number of vertices in B1 reachable from Z2 with such an alternating path.

If there exists v ∈ B1 \ N(T2) with 11 neighbors in B2, then we take
Z2 = NH(v) ∩ B2. If no such vertex exists, then we swap the roles of B1

and B2, take Z2 as any subset of B2 \ (T2 ∪ N(T1)) of size 11 (this is always
possible since |B2| > 52811 > |T2| + 11|T1| + 11), and let v be any vertex of
B1. Since every element of Z2 has at most 10 neighbors in B1 \ {v}, we have
|NB1(Z2)\{v}| 6 11×10 = 110. Moreover, each vertex in NB1(Z2)\{v} has at

150 Théo Pierron

2. Discharging without discharging: the power of pigeons

most 11 neighbors in B2 (one of them being in Z2). Since the only neighbors
of v in B2 are in Z2, we obtain

|NB2(NB1(Z2)) \ Z2| 6 11× 102 = 1100.

By the same argument, the set of vertices of B1 reachable from Z2 with an
alternating path of length exactly 3 has size

|NB1(NB2(NB1(Z2)) \ Z2)| 6 1100× 10 = 11000.

So the number of vertices of B1 that are excluded from appearing in Z1, because
of paths to Z2, is at most

|NB1(NB2(NB1(Z2)) \Z)|+ |NB1(Z2) \ {v}|+ |{v}| = 11000 + 110 + 1 = 11111.

Further, we must also remove vertices of T1. Thus, we can choose Z1 as desired,
since |B1| − |T1| − 11111 > 11.

Definition of the orientation

For each edge with both endpoints in the same clique, direct it toward the
vertex of lower index. For every other edge, direct it in both directions, unless
one of its endpoints is among the last 11 vertices of B1 or B2. In this case,
direct the edge toward this endpoint.

The orientation is kernel-perfect

Let A ⊂ V (H), with A 6= ∅. We look for a kernel of A. Let xp (resp. yq)
denote the vertex with smallest index in A ∩ B1 (resp. A ∩ B2), if it exists.
If A ∩ B1 = ∅, then {yq} is a kernel. Similarly, if A ∩ B2 = ∅, then {xp}
is a kernel. So we assume that both xp and yq are well defined. We can also
assume that xpyq ∈ E(H), since otherwise {xp, yq} is a kernel.

Let xr (resp. ys) denote the vertex with smallest index in A∩B1 (resp. A∩
B2) that is not a neighbor of yq (resp. xp).

We now prove that at least one of {xp}, {xp, ys}, {yq} and {xr, yq} is a
kernel. Assume the contrary. Since {xp, ys} is not a kernel, there exists yj
such that q 6 j < s and either there is no edge xpyj or it is directed only
towards yj. Due to the choice of s, this edge is present in H and is thus
directed only one way. (If ys is not well defined, i.e. if xp is adjacent to every
vertex in A∩B2, we can obtain the same result using that {xp} is not a kernel.)

Similarly, using that {xr, yq} is not a kernel (or only {yq} if yq is adjacent
to every vertex in A ∩B1), we have an edge xiyq directed only towards xi.

Since xiyq and xpyj are directed towards xi and yj, this ensures that xi
and yj are both among the final 11 vertices of B1 and B2. However, this is
impossible, since xiyqxpyj would be a path of length 3 that alternates between
B1 and B2 and begin and ends in the final 11 vertices of B1 and B2. Thus,
either {xp, ys}, {xp}, {xr, yq} or {yq} is a kernel of A. So the orientation is
kernel-perfect.

Induction Schemes: From Language Separation to Graph Colorings 151

2.5. Reducing regions

The orientation has small out-degrees

We now prove that |L(v)| > d+(v) + 1 for every v ∈ V (H). By symmetry,
it suffices to prove this for all v ∈ B1, i.e., v = xi whenever i ∈ {1, . . . , |B1|}. If
i 6 |T1|, i.e., v ∈ T1, then v has at most |T1|−1 6 4399 out-neighbors in B1 and
at most 11 out-neighbors in B2. So deg+(v) + 1 6 4410 6 |B1| − 44 6 |L(v)|.
If |T1| < i 6 |B1| − 11, then v has at most |B1| − 12 out-neighbors in B1 and
at most 11 in B2. So deg+(v) + 1 6 |B1| 6 |L(v)|. If i > |B1| − 11, then every
out-neighbor of v is in B1, so deg+(v) + 1 6 |B1| 6 |L(v)|.

We now use this lemma to prove Proposition 2.23, i.e., that large regions
are reducible for square choosability.

Proof of Proposition 2.23. We use proof by contradiction. Assume that G has
an r-region R with r > 475353. Let v1 and v2 be adjacent vertices of R
such that any vertex at distance 2 in G from {v1, v2} lies in {b1, b2} ∪ V (R) ∪
N(b1) ∪ N(b2). To see that such vertices exist, pick v1 ∈ B1 such that each
face containing v1 is in R, and let v2 be a neighbor of v1 in B2 ∪D.

Let T denote the set of vertices in B1 ∪ B2 that appear on a face of G
not in R. Note that |T | 6 4; this is because each vertex of T must lie on the
first or last edge of the r-region in G′, and each of these edges has exactly one
vertex in each of B1 and B2. Let T (1) = N(T)∩ V (R), T (2) = N(T (1))∩ V (R)
and T (3) = N(T (2)) ∩ V (R), so that for 1 6 i 6 3, T ∪ · · · ∪ T (i) is the set
of vertices of V (R) at distance at most i from T (with the distance taken in
V (R)). By Lemma 2.27, each vertex of T has at most 10 neighbors in V (R),
so |T (1)| 6 40, |T (2)| 6 400 and |T (3)| 6 4000.

By minimality, (G − v1v2)2 has an L-coloring ϕ. Let B′i = Bi \ N [T]. We
uncolor the vertices of B′1 ∪B′2 ∪D.

We also define Ti as the set of vertices of B′i with some colored neighbor
from V (R) in R2, i.e., Ti = B′i ∩ (T (2) ∪ T (3)). Finally, let H = G2[B′1 ∪ B′2].
Note that B′1 and B′2 are cliques in H. Moreover, they are disjoint since
B′1 ∩B′2 ⊂ B1 ∩B2 = ∅.

Our goal is now to apply Lemma 2.30 to L′-color H, where L′ is the list
assignment formed from L by removing all colors already used on vertices at
distance at most 2:

L′(v) = L(v) \ {ϕ(w), w ∈ N2(v) \ (V (H) ∪D)}.

We prove that the hypotheses of Lemma 2.30 are satisfied.
Suppose v ∈ B′1. Now |N2(v) ∩B′2| = |N(v) ∩B′2|+

∑
w∈N(v) |N(w) ∩B′2|.

By Lemma 2.27, for each w ∈ V (R), |N(w) ∩ B′2| 6 1. Moreover, if w ∈
N(v) \ V (R), then |N(w) ∩ B′2| = 0, unless w = b2. Since B1 and B2 are
disjoint, we have b2 /∈ N(v), and we get

|N2(v) ∩B′2| 6 1 + |N(v) ∩ V (R)| 6 11.

152 Théo Pierron

2. Discharging without discharging: the power of pigeons

Suppose v ∈ B′1 \ T1. By definition, v is distance at least four from T
(in V (R)), hence at distance at least three (in V (R)) from N [T], the set of
colored vertices of V (R). So the only colored neighbors of v in G2 are in
{b1, b2} ∪ (N(b1) \B′1). Hence, we have

|L′(v)| > k + 2− (2 + k − |B′1|) = |B′1|.

Suppose v ∈ T1. By construction, its colored neighbors in G2 are in
{b1, b2} ∪ (N(b1) \ B′1) ∪ T ∪ T (1). Since |T | + |T (1)| 6 44, we have |L′(v)| >
|B′1| − 44.

We already saw that |T1| 6 |T (2) ∪ T (3)| 6 400 + 4000 = 4400. There are
r + 1 edges in the region R (in G′). Every such edge (except b1b2 if it exists)
corresponds to a path containing a vertex in B1. By Lemma 2.27, each vertex
in B1 accounts for at most nine of them. Therefore, |B1| > r

9
. Observe also

that |N [T] ∩ B1| 6 6 since |T ∩ B1| = 2 and, by Lemma 2.27, every vertex of
B1 ∪B2 has at most one neighbor in each of B1 and B2. We thus obtain:

|B′1| > |B1| − |N [T] ∩B1| >
r

9
− 6 > 52811.

We can thus apply Lemma 2.30 to find an L′-coloring of H.
It remains to color the vertices in D. Note that each has k + 2 colors and

at most 2
√
k neighbors. So we can greedily color the vertices in D.

2.6 Finding a large region

Our goal in this section is to prove Proposition 2.24, i.e. to find a large
region in G. In the traditional discharging proofs, this is done using weight
transfers to reach a contradiction whenever G does not contain such a region.
However, here, we reach a contradiction only using Euler’s formula and the
pigeonhole principle.

Recall that, due to the construction of G′, finding a large region in G is
means finding a large set of consecutive faces of length 2 in G′. Moreover,
recall also that faces of length at most 2 disappear when constructing G′′′.
Therefore, if we manage to find a vertex u with large degree in G′ (for example
a big vertex), but small degree in G′′′, then many edges incident to u in G′ are
spread across few neighbors of u. The pigeonhole principle then implies that
these edges must create adjacent 2-faces. The goal of this section is to settle
properly this argument.

We first recall a result from [Bonamy et al., 2019a] (Lemma 3.6 in that
paper) allowing us to find a vertex in G′′ with few neighbors in G′′′. Observe
that the general context of [Bonamy et al., 2019a] is planar graphs with girth
at least 5. However, the proof of Lemma 2.31 uses only that G has no 4-cycles.

Induction Schemes: From Language Separation to Graph Colorings 153

2.6. Finding a large region

Lemma 2.31 ([Bonamy et al., 2019a]). There exists b1 ∈ B such that degG′′′(b1) 6
40 and degG′′′[B](b1) 6 10.

Our goal is to apply a pigeonhole-like argument to find a large number
of consecutive edges between two vertices in G′′. To this end, we first need
to control the degrees of vertices in G′′. We begin with a definition. The
half-edges of G′ are the elements of the multiset of pairs (u, e) where e is an
edge incident to u. Note that when e is a loop around u, there are still two
half-edges (u, e). Observe also that since we fixed a plane embedding of G,
there is a natural cyclic ordering of the half-edges around each fixed vertex u.

Lemma 2.32. If e is a loop around a vertex v in G′, then one of the half-loops
induced by e must be followed or preceded by a half-edge (v, vw) with v 6= w.

Proof. By Lemma 2.25, every loop has type 5. So let xe and x′e denote the
vertices in G that merged into v to form e in G′. By Lemma 2.20, either
deg(xe) > 2 or deg(x′e) > 2; by symmetry, assume d(xe) > 2. Among all
neighbors of xe in G, other than x′e and v, choose w to be one that immediately
precedes or follows x′e.

If w is not suppressed in G′, then the half-edge (v, vw) precedes or follows
(v, e) or (v, e′). Note that vw /∈ E(G) since otherwise vwxex′e is a 4-cycle in
G. Thus we have v 6= w in G′ and the lemma is true. So assume that w is
suppressed. Now w has degree 2 in G. Let x be the neighbor of w other than
xe. Since xe is small, Lemma 2.19 ensures that x has degree at least 3 in G;
hence, it is not suppressed in G′. Therefore, the half-edge (v, vx) precedes or
follows (v, e) or (v, e′). Again, vx /∈ E(G) since otherwise vxwxe is a 4-cycle
in G. Thus x 6= v in G′ and the lemma is true.

Lemma 2.32 implies the following relationship between degrees of vertices
in G′′ and in G′.

Corollary 2.33. Every v ∈ V (G′) satisfies degG′′(v) > degG′ (v)

5
.

Proof. Suppose v ∈ V (G′) and consider the half-edges around v in G′. By
definition, there are degG′(v) half-edges around v and degG′′(v) of them are
not half-loops. So it suffices to prove that the number of half-loops around v is
at most four times the number of the other half-edges, i.e., at most 4 degG′′(v).

Suppose w ∈ NG′(v). Consider the two half-edges (v, e) and (v, f) such that
(v, e), (v, vw) and (v, f) are consecutive around v. Let F (w) be the maximum
subset of {(v, e), (v, f)} containing only half-loops. Lemma 2.32 ensures that,
for every loop, one of its half-loops appears in F (w) for some w ∈ NG′(v).
Therefore, the number of half-loops around v is at most

2
∣∣∪w∈NG′ (v)F (w)

∣∣ 6 4|NG′(v)| = 4 degG′′(v).

This concludes the proof, since

degG′(v) 6 degG′′(v) + 4 degG′′(v) = 5 degG′′(v).

154 Théo Pierron

2. Discharging without discharging: the power of pigeons

Consider the vertex b1 obtained by Lemma 2.31. By Corollary 2.33, we
have

degG′′(b1) >
degG′(b1)

5
>

degG(b1)

5
>

√
k

5
.

Using a pigeonhole argument, we will see that b1 has some neighbor b2 such
that at least

√
k

5×40
consecutive edges incident to b1 end at b2. Note that Propo-

sition 2.24 almost follows from this result (with
√
k

50
replaced by

√
k

200
). We only

need to refine this argument to show how to force b2 ∈ B, i.e., b2 /∈ S ′, where
S ′ = V (G′) \ B. To this end, we show that small vertices are incident to few
consecutive edges in G′′.

Lemma 2.34. If v ∈ B and w ∈ S ′, then (v, w) is on the boundary of at most
eight consecutive faces of length 2 in G′′.

Proof. Pick v ∈ B such that there is an edge vw ∈ E(G′), with w ∈ S ′. We
consider each possible type of edge in G′ between v and w. The type 3 edges
are a special case, which we postpone to the end. Since G is simple, at most
one edge vw of G′ has type 1. Similarly, if G′ has two edges e1 and e2 of type
2, then xe1 6= xe2 . Thus vxe1wxe2 is a 4-cycle in G, a contradiction. So G′ has
at most one edge of type 2. Since v ∈ B and w ∈ S ′, G′ has no edge of type
4, 5, or 6.

Only type-3 edges remain. We assume such an edge exists, since otherwise
the lemma holds. Note that G′ has no edge of type 4 (since v ∈ B), nor of
type 1 (since G has no 4-cycle), nor of type 5 or 6 (since w ∈ S ′). So G′ has
at most one edge f not of type 3, and f , if it exists, has type 2. Thus, edge
f separates two blocks of consecutive type-3 edges. To prove the lemma, it
suffices to prove that each such block has size at most four.

Assume that e1, . . . , e5 are edges of type 3 that are consecutive in G′′. We
now prove that the hypotheses of Lemma 2.22 are satisfied by the subgraph of
G induced by the vertices inside the cycle vxe1ye1wye5xe5 . Since each edge ei
has type 3, the first hypothesis holds.

To prove the second hypothesis holds, assume that some vertex x is not
adjacent to v, but x lies inside some cycle C = vxeiyeiwyei+1

xei+1
. Note that x

is not a neighbor of yei or yei+1
, since they both have degree 2; nor of w since

ei and ei+1 are consecutive edges in G′′. Note that ei and ei+1 bound a face of
length 2 in G′′ so every vertex inside the cycle C disappears when we construct
G′. Thus, all these vertices are small, and either lie in S1 or lie in S \ N [B]
and have degree 2 in G. Hence, v is the only big vertex inside or on C and
xv /∈ E(G); so x /∈ ∪i≥1Si.

Since x /∈ S1, x has degree 2 and its two neighbors, say y and z, lie in
S. Applying Lemma 2.19 to edges xy and xz, we get that y, z ∈ N [B]. This
implies that both y and z are neighbors of v, so xyvz is a 4-cycle in G, a
contradiction. Therefore, no such x exists.

Induction Schemes: From Language Separation to Graph Colorings 155

2.7. Extension to correspondence coloring

Now Lemma 2.22 yields a contradiction, since G cannot contain this con-
figuration.

We can now finish the proof of Proposition 2.24.

Proof of Proposition 2.24. Let b1 be a vertex inG′′′ guaranteed by Lemma 2.31.
For each small neighbor v of b1 in G′′′ and edge vb1, Lemma 2.34 ensures that
in G′′ edge vb1 corresponds to at most nine edges between b1 and v. Since
degG′′′(b1) 6 40, the number of such edges is at most 9× 40 = 360. However,
by Corollary 2.33, we have degG′′(b1) > degG(b1)

5
>
√
k

5
. Thus, there must exist

a big neighbor b2 of b1 in G′′ such that there are at least
√
k

5
− 360

degG′′′[B](b1)
>

√
k

50
− 36

consecutive edges b1b2 in G′′. By definition, these edges form a region of size√
k

50
− 37 in G.

2.7 Extension to correspondence coloring
The results of Sections 2.4, 2.5 and 2.6, namely Lemmas 2.17 through 2.27

and Propositions 2.23 and 2.24 prove that Theorem 2.15 holds for choosability.
In this section, we prove that this result can actually be extended to a stronger
notion.

2.7.1 Correspondence coloring

To prove that some configurations are reducible, it is often convenient to
identify vertices. This works very well for the original vertex coloring problem,
see for example the proof of the following theorem.

Theorem 2.35 (Folklore). Planar graphs are 5-colorable.

Proof. Assume that the theorem is false and consider a counterexample G
which minimizes |V (G)|. Since G is planar, it has a 5−-vertex u.

By minimality G \ u is 5-colorable. If only 4 colors are used in G \ u, then
it is easy to extend the coloring to G, since there is always at least one color
available for u.

However, this approach does not work when u is a 5-vertex and all the
colors are used on NG(u). To avoid this situation, we identify two non-adjacent
vertices u1, u2 from NG(u) in G \u (such vertices exist since G is planar). The
resulting graph H is still planar, and has two vertices less than G. Thus, H
has a 5-coloring. Unfolding the identification, we obtain a coloring of G \ u
where only four colors are used on NG(u), hence we may extend the coloring
to G, a contradiction.

156 Théo Pierron

2. Discharging without discharging: the power of pigeons

However, in the list coloring setting, this kind of identification does not
work anymore since two different vertices may have different lists (even disjoint
ones). The notion of correspondence coloring was introduced in [Dvořák and
Postle, 2018] to overcome this problem. This new coloring is a generalization
of list coloring, as we shall see. Moreover, the authors prove that with this
new type of coloring, some identifications can be made, and use it to tackle
Erdős’ question about 3-choosability of (C4, . . . , Cp)-free planar graphs.

We now give the definition of correspondence coloring. Given a graph G
and a function f : V (G) → N, an f -correspondence assignment C is given
by a matching Cvw, for each vw ∈ E(G), between {v} × {1, . . . , f(v)} and
{w}×{1, . . . , f(w)}. We say that each vertex x has f(x) available colors. A k-
correspondence assignment is an f -correspondence assignment where f(v) = k
for all v ∈ V (G). Given an f -correspondence assignment C, a C-coloring is
a function ϕ : V (G) → N such that ϕ(v) 6 f(v) for each v ∈ V (G), and, for
each edge vw ∈ E(G), the pairs (v, ϕ(v)) and (w,ϕ(w)) are nonadjacent in
Cvw. The correspondence chromatic number of G is the least integer k such
that, for every k-correspondence assignment C of G, the graph G admits a
C-coloring. It is denoted by χcorr(G). Note that if G is k-degenerate, then
coloring greedily in an appropriate order shows that χcorr(G) ≤ k + 1.

Note also that if L is a k-list assignment for a graph G, we can construct
a k-correspondence assignment C such that G has a C-coloring if and only if
it has an L-coloring. For every edge vw, Cvw contains all the edges between
(v, i) and (w, j) when the i-th element of L(v) equals the j-th element of L(w).
Therefore, correspondence coloring is a generalization of list coloring, and we
have χ`(G) 6 χcorr(G).

2.7.2 Theorem 2.15 revisited

In this subsection, we extend Theorem 2.15 to the setting of correspondence
coloring.

Theorem 2.36. There exists ∆0 such that if G is a plane graph with no 4-
cycles and with ∆ > ∆0, then χcorr(G2) 6 ∆ + 2

To prove this theorem, we again apply the discharging method, without
discharging. Take ∆0 = 26429002 = 6984920410000, and fix k > ∆0, as well as
a minimum counterexample G. Let C be a (k+ 2)-correspondence assignment
for G2 such that G2 has no C-coloring. So C assigns, to each pair of vertices
(v, w) adjacent in G2, a partial matching Cvw between {v}×{1, . . . , k+2} and
{w} × {1, . . . , k + 2}.

Note that Proposition 2.24 does not depend on the type of coloring we con-
sider. Hence it is still valid in this new setting: G has a large region. Moreover,
we claim that all the results of Section 2.4 (Lemmas 2.17 through 2.27) still
hold, since we color vertices using only that they have more available colors

Induction Schemes: From Language Separation to Graph Colorings 157

2.7. Extension to correspondence coloring

than colored neighbors. Therefore, G does not contain any of the small config-
urations. Thus, it only remains to prove that large regions are also reducible
in the new setting, i.e. to extend Proposition 2.23 for G.

Proposition 2.37. Every r-region of G satisfies r 6 52821.

Assuming this proposition holds, we can conclude. Indeed, Propositions 2.24
and 2.37 imply that

√
k

50
−37 < 52821, i.e., that k < 26429002 = 6984920410000 =

∆0, a contradiction.
It thus remains to prove that large regions are reducible, by generalizing

Lemma 2.30. The argument using kernel-perfect orientations is no longer valid,
since Lemma 2.29 does not extend to correspondence coloring. Instead of
using Lemma 2.29 as a black box, we now have to go more into the details to
construct a suitable coloring. As we will see, using low-level arguments allows
us to obtain a better bound. The downside is that the proof is much more
technical.

Lemma 2.38. Let H be a graph covered by two disjoint cliques, B1 and B2,
each of size p. Suppose there exist T1 ⊂ B1 and T2 ⊂ B2, and a function f
satisfying the four properties below. If p ≥ 5863, then every f -correspondence
assignment C admits a C-coloring.

1. For each v ∈ (B1 \ T1) ∪ (B2 \ T2), we have f(v) > p.

2. For each v ∈ T1 ∪ T2, we have f(v) > p− 44.

3. |T1| 6 4400 and |T2| 6 4400.

4. ∆(H)− p+ 1 6 11.

Proof. We begin with a global (and informal) presentation of the proof. Let
A be a subset of B1 \ T1 with |A| = ∆(H) + 1 − p. Since each vertex v ∈
(B1 \ T1) ∪ (B2 \ T2) has f(v) ≥ p and ∆(H) − |A| = p − 1, it is easy to
greedily C-color all vertices of H −A. For example, greedily color all vertices
of T2, followed by those of B2 \ T2, followed by those of T1, followed by those
of B1 \ (T1 ∪A). This greedy coloring is possible because at the time we color
each vertex it has more available colors than colored neighbors.

We generally follow this approach. However, we modify it so that after
we color H − A each vertex in A still has |A| available colors, and we can
extend the coloring to A. To do this, for each vertex v ∈ A we will repeatedly
“save a color”, before greedily coloring the other vertices. To accomplish this
we pick vertices w ∈ N(v) ∩ B2 and x ∈ B1 \ N(w). Now we color w and x
with some colors α and β (possibly with α = β) such that α and β forbid at
most one color on v. For each v ∈ A, we must save a color |N(v) ∩B2| times.
After doing so, we color the remaining vertices greedily (as in the previous
paragraph), ending with the vertices of A. The only change is that we must

158 Théo Pierron

2. Discharging without discharging: the power of pigeons

ensure that each of the final 11 vertices we color in B2 has no colored neighbor
in B1.

We now apply this approach, beginning by the choice of A. In the process
of saving colors for vertices in A, we color at most 112 vertices in B1. Each of
these forbids at most 11 vertices in B2 from appearing among the final 11 in B2,
for a total of at most 113 vertices in B2 forbidden. Similarly, we color at most
112 vertices in B2, and these are obviously forbidden from appearing among
the final 11 vertices in B2. Thus, we can choose the desired 11 final vertices in
B2 (after saving colors for the vertices in A), since |B2| ≥ |T2|+ 113 + 112 + 11.

Note that, while saving colors for some vertex v ∈ A, we color all neighbors
of v in B2. As a result, we need that no two vertices in A have a common
neighbor in B2. Each vertex v ∈ A has at most 11 neighbors in B2, and each
of these neighbors has at most 10 other neighbors in B1. Thus, each v ∈ A
forbids at most 11(10) other vertices from A. So, to pick the desired A, we
need |B1| > |T1|+ 10(110 + 1).

Now, for each v ∈ A, we repeat the following |N(v) ∩ B2| times. Choose
uncolored vertices w ∈ N(v)∩B2 and x ∈ B1 \N(w). Note that if N(v) ⊂ B1,
there is nothing to do at all, hence we may assume that the vertex w exists.
Let g(v), g(w), and g(x) denote the number of remaining available colors
for v, w, and x. Without loss of generality, we assume that the bounds of
Hypotheses 1. and 2. are tight, so that f(y) = p − 44 for all y ∈ T1 ∪ T2,
and f(y) = p otherwise. Since A ∩ T1 = ∅, we have f(v) = p > f(w),
hence we may assume that Cvw saturates {w}×{1, · · · , f(w)} (otherwise, add
arbitrary edges until this is the case). Thus, each color available for w forbids
a color for v; similarly for colors available for x. By the pigeonhole principle,
if g(w) + g(x) > p, then there exist colors α and β, available for w and x
respectively, that both forbid the same color on v. Suppose that this far we
have saved a total of i colors for vertices in A. Therefore, the i colored vertices
of B2 forbid i colors for w, and its neighbors in B1 forbid at most 11 colors,
so that we have g(w) ≥ f(w) − i − 11 ≥ p − i − 11 ≥ p − 131. Similarly,
we get g(x) ≥ p − 131. We can assume that g(v) ≤ f(v) ≤ p. And clearly
2(p− 131) > p. Thus, the desired colors α and β exist.

This concludes the proof of Theorem 2.36. It is worth noting that the ∆0

given by our proof of Theorem 2.36, namely 26429002, is much smaller than
that arising from our proof of Theorem 2.15, namely 237695002. This comes
from the fact that instead of using the generic argument from Lemma 2.29,
we directly construct a suitable coloring. This difference is not so meaningful:
these bounds are large, and can certainly be optimized by considering more
technical proofs. The real question, which probably requires new ideas, is to
bring them down to a more reasonable value, say less than 100.

Induction Schemes: From Language Separation to Graph Colorings 159

2.8. Open questions

2.8 Open questions
Observe that Brooks’ theorem gives an infinite list of graphs such that

χ > ∆. However, for every ∆ > 3, this list contains only one graph of
given maximum degree ∆. In this setting, the first result of this chapter
(Theorem 2.3) can be seen as a generalization of Brooks’ theorem for k-th
powers of graphs. However, observe that the bound we obtain for k = 1 is
worse than the one given by Brooks’ theorem. We can think of several ways
for improving this result, the first one consists in proving that k−1 or k colors
can be spared, instead of k − 2. This would actually give the statement of
Brooks’ theorem in the case k = 1, and would also generalize the case k = 2
proven in [Cranston and Rabern, 2016]. Moreover, we also think that we can
spare even more colors using stronger assumptions like ∆ > 4, or ∆ > k.

Another natural question is about the number of exceptions given by The-
orem 2.3. Here the proof gives only little information about the structure of
any given exception. However, we believe that some similar (but yet more
involved) arguments could help to find a better description for exceptions.

The arguments used in the proof of Theorem 2.3 only work with coloring,
not with list coloring. However, Conjecture 2.2 is stated in this more general
setting. Thus, it would also be interesting to see whether Theorem 2.3 could
be extended to the list coloring setting.

Regarding the main contents of this chapter (outside Section 2.2), the meth-
ods we present may actually lead to a better bound for ∆0 in Theorem 2.36.
However, obtaining a better bound means increasing the number and possi-
bly the size of the bounded configurations. Since the goal of this chapter is
to describe the methods, we decided not to optimize the bound in order to
make the arguments as clear as possible. Moreover, we believe that even with
some optimizations, this method cannot bring down the bound on ∆0 to some
reasonable integer (say, less than 100).

As shown by the examples depicted in Figures 2.13, 2.14 and 2.15, ∆ + 2
colors are not sufficient for small ∆. A natural question is then to ask for the
minimum value of ∆0 needed to ensure a ∆ + 2 bound.

Figure 2.13 – Graph G with ∆ = 3 and χ(G2) = 7

In another direction, we believe that the tools we introduce in this chapter
can be useful for extending our result to some more general settings, for ex-
ample to study L(p, q)-labelings. However, it is not clear whether they can be
generalized to color any power of planar graphs instead of only squares. For

160 Théo Pierron

2. Discharging without discharging: the power of pigeons

Figure 2.14 – Graph G with ∆ = 4 and χ(G2) = 7

Figure 2.15 – Graph G with ∆ = 5 and χ(G2) = 8

this kind of coloring, the bound from [Agnarsson and Halldórsson, 2003]

χ`(G
k) = O(∆bk/2c)

is known to be tight for example for ∆-ary trees of height k
2
. However, it seems

that the multiplicative constant has not been investigated so far. Extending
the notion of regions by considering paths of length 2k between two big vertices
may help to study χ(Gk), since the k-th power of a region still consists in two
cliques with some edges in-between. However, the key point in our approach is
to bound the number of such edges, and it is unclear that planarity is sufficient
in this case.

Induction Schemes: From Language Separation to Graph Colorings 161

2.8. Open questions

Finally, a last question is whether we can get rid of the hypothesis that
only finitely many cycles can be forbidden. If we forget this hypothesis, then
C4 may be allowed. However, the construction of Proposition 2.14 shows that
all cycles whose length is 2 modulo 4 have to be forbidden. The resulting class
of planar graphs is quite unusual. There are strong constraints on the sizes
of adjacent faces. However, these local constraints do not seem sufficient to
conclude: locally we cannot distinguish the graphs obtained from an even and
an odd cycle by replacing each edge by a copy of K2,t. However, the former
graph needs only ∆ + O(1) colors while it is not the case for the latter (see
Proposition 2.14). Therefore, extending the result (if it holds) for this new
class of graphs requires more involved arguments than local discharging.

162 Théo Pierron

Chapter 3

Separation of regular languages

Contents
3.1 Introduction . 164

3.1.1 A brief history of formal languages 164

3.1.2 Some examples of classes 167

3.1.3 The membership problem for hierarchies 170

3.1.4 The case of infinite words 173

3.1.5 Computational complexity of the membership and
separation problems 174

3.1.6 Organization of Chapters 3 and 4 175

3.2 Preliminaries . 176

3.2.1 Monoids and semigroups 176

3.2.2 Automata . 179

3.2.3 Varieties . 183

3.3 Input format vs complexity 188

3.3.1 Overview of the proof 190

3.3.2 The construction . 191

3.3.3 Construction of tagging languages 197

3.3.4 Complexity . 199

3.3.5 Separability transfer 207

3.4 Conclusion . 210

The main part of this chapter is dedicated to an overview of the problems we
consider. We present here the history of the field, as well as the basic objects
that are involved. Finally, in Section 3.3, we contribute a complexity reduction
that we proved with Thomas Place and Marc Zeitoun in 2017. It has since

163

3.1. Introduction

been extended by them to a reduction between wider problems and published
in [Place and Zeitoun, 2018a].

3.1 Introduction
We begin this chapter with an overview of the questions we consider, whose

history spans over several decades. These questions are instances of an emblem-
atic problem of finite model theory, asking what kind of sets can be described
using a given formalism. The sets we are interested in are the so-called regular
languages of finite words, well-known for the wealth of formalisms describing
them. We thus begin with a few words about regular languages.

3.1.1 A brief history of formal languages

The introduction of regular languages comes from the seminal article of [Kleene,
1951]. In this document is proved the famous Kleene’s theorem, that estab-
lishes an equivalence between recognition by finite automata and regular ex-
pressions. Regular expressions are formed from simple languages (containing
finitely many words) using three operations:

• Union: if E and E ′ are regular expressions denoting the languages L,L′,
then E + E ′ denotes the language L ∪ L′.

• Concatenation: if E and E ′ are regular expressions denoting the lan-
guages L,L′, then EE ′ denotes the language {uu′ | u ∈ L, u′ ∈ L′}.

• Kleene’s star, also called iteration: if E is a regular expression denoting
the language L, E∗ denotes the language {un | u ∈ L, n > 0}.

In particular, note that the set of all words over an alphabet A can be written as
A∗. A regular language is thus the language described by a regular expression.
For example, the regular expression aA∗ denotes the language of all words
beginning with the letter a.

Since then, other characterizations of regular languages have been estab-
lished, showing that regular languages can be constructed in several equivalent
ways: with regular expressions, automata, morphisms to finite monoids, or
with logical sentences, as shown independently by [Büchi, 1960; Elgot, 1961;
Trakhtenbrot, 1961]. In this introduction, we focus on two such formalisms:
regular expressions and logical sentences. Two other formalisms, namely finite
automata and finite morphisms, will be described later, in Section 3.2.

We now define a logical formalism for describing regular languages. Given
an alphabet A, we consider the first-order (FO for short) sentences constructed
from atomic predicates a(x) for a ∈ A (representing that the position x is la-
beled by the letter a) and x < y (representing that position x is before position

164 Théo Pierron

3. Separation of regular languages

y). This means that a sentence is constructed from the atomic predicated by
taking conjunctions, negations and by quantifying over variables. Such a sen-
tence defines the language of all the (finite) words satisfying it. For example,
the sentence

∃x, a(x) ∧ ¬(∃y, y < x)

can be read as “there is a position x, whose label is a, and such that there is
no position y before”. Therefore, it denotes the language of words whose first
letter is an a.

A famous theorem of Büchi states that regular languages are the ones
definable by a monadic second-order sentence (MSO for short). MSO is an
extension of FO, where we allow also to quantify over sets of variables.

Theorem 3.1 ([Büchi, 1960; Elgot, 1961; Trakhtenbrot, 1961]). A language
L is regular if and only if it is definable by an MSO sentence.

Moreover, this equivalence is effective: we can construct an MSO sentence
recognizing a regular language L from any other representation of L, and
conversely.

Recall that our goal is to study instances of the following typical problem
of finite model theory: determining what kind of sets can be described us-
ing a given formalism. Here, we consider this problem for sets of words, i.e.
languages. The two formalisms we consider in this introduction are regular
expressions and MSO sentences, both of them defining only regular languages.
The question thus becomes: which regular languages are defined by (restric-
tions of) these formalisms?

When considering regular expressions, a first example is to ask for lan-
guages described by regular expressions that do not use Kleene’s star. It is
easy to see that these languages are exactly finite languages. A generalization
of this question is the so-called star-height problem: given a regular language,
what is the minimum number of nested stars needed in a regular expression
that represents it? This problem was originally stated in [Eggan et al., 1963]
in a “restricted” setting (with regular expressions using only union, concate-
nation and iteration) and in [McNaughton, 1960] in a “generalized” setting
(where regular expressions can use complement as an additional operation).
While the restricted star-height hierarchy was known to be infinite (see [Eggan
et al., 1963]), computing the restricted star-height of a given regular language
remained an open problem for roughly 20 years. We know several proofs (with
different levels of readability) that the star-height problem is decidable, see for
example [Hashiguchi, 1983, 1988; Kirsten, 2005; Bojańczyk, 2015]. However,
much less is known for generalized star-height (see [Brzozowski, 1980] for a
survey). Right now, it is not known whether there exists a regular language of
generalized star-height at least two. Consequently, the generalized star-height
problem is not known to be decidable. Even characterizing languages with

Induction Schemes: From Language Separation to Graph Colorings 165

3.1. Introduction

generalized star-height 0, also known as star-free languages, is already a non-
trivial problem, which was solved by [Schützenberger, 1965]. We denote by
SF the class of star-free languages. The question thus becomes to characterize
languages in SF.

Observe that while being a star-free regular expression (or an expression
of given star-height) is a syntactical notion, being a star-free language is a
semantical one: it corresponds to the existence of a star-free regular expression
denoting a given language. In particular, a star-free language can be denoted
by a non star-free expression, as long as it is also denoted by another regular
expression being star-free.

Similarly to characterizing languages in SF, another question was raised
using the logical formalism: which languages can be defined by an FO sentence
(i.e. without using second-order quantification)? Note that such languages are
necessarily regular, since FO is a fragment of MSO.

Surprisingly, the answer to both these questions is the same: the class SF
corresponds to the class of languages definable by an FO sentence. Abusing
notations, we denote by FO the class of languages defined by an FO sentence.
The previous result can then be rephrased as SF = FO. This equality, as
well as a characterization of star-free languages, comes from the forthcoming
Theorem 3.2. Due to this correspondence SF = FO, star-free languages then
became a milestone in the study of any formalism that represents regular
languages. We refer to the surveys of [Diekert et al., 2008; Straubing, 2018]
for a more detailed historical presentation of star-freeness.

Theorem 3.2 ([Schützenberger, 1965; McNaughton and Papert, 1971]). Let
L be a regular language. The following statements are equivalent:

• L is definable in FO.

• L is star-free, i.e. L ∈ SF.

• The minimal automaton of L is counter-free.

• The syntactic monoid of L is aperiodic.

This theorem uses many undefined notions: however, their definitions do
not really matter for this example. The point is that counter-freeness and
aperiodicity are all syntactic properties of automata and monoids, respectively.
The other important remark is that the minimal automaton and the syntactic
monoid of a regular language L are canonical objects that can be effectively
computed from any representation of L. They will be introduced later, in
Section 3.2.

Theorem 3.2 thus establishes a link between two semantic properties (being
definable in FO, or in SF) and syntactical ones (the last two). In particular,
note that the last two properties are decidable: given a language L, we can

166 Théo Pierron

3. Separation of regular languages

compute its minimal automaton (or its syntactic monoid), and then test the
corresponding property. We thus get an effective characterization of star-free
language: given a regular language L, we can decide whether L is star-free.

Deciding whether a given language lies in SF is actually a special instance
of the so-called membership problem. Given a class of languages C, the C-
membership problem takes a regular language as input and asks whether this
language lies in C. Note that the C-membership problem is a central problem
in theoretical computer science, since proving that the class C is decidable
amounts to deciding the C-membership problem.

The motivation for studying this problem comes from the fact that solving
the C-membership problem relies on a deep understanding of the expressive
power of C. This is what is hidden in the proof of Theorem 3.2. Indeed,
we first need to find (and prove) some properties satisfied by every star-free
language. By contrapositive, this requires to understand which properties pre-
vent a language from being star-free. Surprisingly, this is the easiest part of the
proof. The harder part actually comes from the converse result: assuming that
these properties are satisfied, we have to prove that the considered language is
actually star-free. This means that we have to design algorithms to construct
a star-free expression denoting the considered language, just by knowing that
it has a recognizer satisfying a syntactic property. This step also requires to
understand what can be described with star-free expressions.

The approach used here for SF-membership is actually the one we often
use to handle C-membership for other classes C. The goal is to prove a link
between a semantical property (being definable in C) and a syntactic property
of some recognizer, which is easier to decide. The ultimate goal is thus to find
a decidable characterization of the class C, i.e. a property equivalent to testing
membership in C which has to be decidable.

The last assertion of Theorem 3.2 is actually a typical example of the
type of condition we look for. To see this, we need to define aperiodicity: a
finite monoid M is aperiodic if for every s ∈ M , we have sω(M)+1 = sω(M),
where ω(M) is the least positive integer such that for every s ∈ M , we have
s2ω(M) = sω(M). The existence of such an integer will be proven in Section 3.2.
This characterization can thus be summarized by the equation xω(M)+1 =
xω(M), which has to be satisfied by every element of the syntactic monoid of
the considered language. Obtaining an equation (or a set of some equations)
characterizing a class is often the approach followed to prove decidability of
C-membership for other classes C.

3.1.2 Some examples of classes

The class of FO-definable languages is far from being the the only inter-
esting fragment of regular languages: many attempts have been made to un-
derstand the expressiveness of other classes of languages (i.e. to solve the

Induction Schemes: From Language Separation to Graph Colorings 167

3.1. Introduction

corresponding membership problem). Even if several classes not related to FO
were considered, see for example [Margolis and Pin, 1985; Esik and Ito, 2003],
we focus here on subclasses of FO. Various hierarchies were defined to stratify
FO languages in several classes. We present here three historical examples: the
first one is the quantifier alternation hierarchy. In this hierarchy, languages
are sorted according to syntactic restrictions on sentences defining them. The
two other examples are hierarchies stratifying the class SF of star-free lan-
guages according to syntactic restrictions on regular expressions. Note that
since SF = FO, these three hierarchies are actually three stratifications of the
same class.

As the name “quantifier alternation” suggests, the classes of this hierarchy
are defined by counting the number of quantifier alternations in a sentence in
prenex normal form. A sentence is prenex if it is written as Q1x1 · · ·Qnxnϕ
with ϕ quantifier-free and Qi ∈ {∀,∃} for 1 6 i 6 n. It is easy to see that
every sentence can be put in prenex form without changing the language it
describes. In this context, a block of quantifiers is a sequence of consecutive
identical quantifiers. We define Σi as the class of prenex sentences with:

• either exactly i blocks of quantifiers, the first one being existential,

• or at most i− 1 such blocks.

For example, if ψ is a quantifier-free formula, then ∃x∃yψ has a single block
of two existential quantifiers, hence it is a Σ1 formula (and also a Σ2 formula).
On the other hand, ∃x∀y∀zψ, as well as ∀x∀yψ, are Σ2 formulas (but not
Σ1 formulas). Observe that Σi is not closed under complement, hence it is
convenient to define BΣi as its Boolean closure. Similarly to the class FO, we
again abuse notation by saying that a language is in one of these classes if it
is defined by a sentence in the corresponding class. The same remark applies:
being a Σi sentence is a syntactical notion, while being a Σi language is a
semantical one.

The motivation for introducing these classes is twofold. First, an empirical
argument is that, usually, the more quantifier alternations a mathematical
statement has, the more complex it is, independently of how many quantifiers
there are in total. A second motivation comes from complexity questions. For
FO-definable languages, many algorithms have an unavoidable non-elementary
complexity. Consider for example the translation from a given FO sentence
into an automaton recognizing the same language. When restricted to Σi, the
non-elementary lower bound of the generic case does not hold: we can give
an algorithm whose time complexity is bounded by a tower of exponentials of
height i. In particular, observe that if we can decide the membership problem
for every level of the hierarchy, then we can get an idea of how complex a given
language is.

168 Théo Pierron

3. Separation of regular languages

We then present two other examples of hierarchies. These hierarchies strat-
ify the class of star-free languages by considering restrictions on regular ex-
pressions. However, recall that SF = FO, hence these hierarchies can be also
seen as stratification of the FO-definable languages. These hierarchies are the
dot-depth hierarchy [Cohen and Brzozowski, 1971], and the Straubing-Thérien
hierarchy [Straubing, 1981; Thérien, 1981]. They are often called concatena-
tion hierarchies. This comes from the fact that both of them stratify the class
of star-free languages by counting the number of alternations between concate-
nations and complements needed in a star-free regular expression describing
a given language. More precisely, these hierarchies contain two kinds of lev-
els: half-levels and full-levels. These are constructed using the same inductive
scheme. Starting from a class at level 0, we define the higher levels by applying
two kind of operations: the Boolean closure and the polynomial closure.

The polynomial closure Pol(C) of a class C, is the smallest class containing
C and closed under union and marked concatenation: if K,L ∈ Pol(C) and a
is a letter, then KaL ∈ Pol(C).

More precisely, the construction scheme is the following: for every integer n,

• The (half-)level n+ 1
2
is the polynomial closure of level n.

• The (full-)level n+ 1 is the Boolean closure of level n+ 1
2
.

The difference between the dot-depth and the Straubing-Thérien hierar-
chies comes from the class at level 0. Denoting by ε the empty word, level 0 of
the dot-depth hierarchy is {∅, {ε}, A∗\{ε}, A∗}, while level 0 of the Straubing-
Thérien hierarchy is {∅, A∗}.

Due to the equality SF = FO, it is not surprising that the three hierarchies
we described are linked. In particular, the dot-depth hierarchy is tightly tied
to the quantifier alternation hierarchy, as shown by the following result.

Theorem 3.3 ([Thomas, 1982]). For every integer n, a language L lies in
the n-th (resp. (n + 1

2
)-th) level of the dot-depth hierarchy if and only if it is

defined by a BΣn (resp Σn) sentence using additional predicates:

• the nullary predicate ε, satisfied only by the empty word.

• the binary predicate +1 denoting successor.

• the unary predicates min(x) and max(x), denoting that x is the left-
most/rightmost position.

We denote by BΣn(ε,+1,min,max) and Σn(ε,+1,min,max) the corre-
sponding sets of sentences with this enriched signature. A similar connection
was also established between logical classes and the Straubing-Thérien hierar-
chy. This is illustrated by Figure 3.1.

Induction Schemes: From Language Separation to Graph Colorings 169

3.1. Introduction

Straubing-Thérien hierarchy

1
2 1 3

2 2 5
2

. . . SF
Bool Pol Bool Pol

Quantifier alternation hierarchy

Σ1 BΣ1 Σ2 BΣ2 Σ3 FO⊂ ⊂ ⊂ ⊂ . . .

Figure 3.1 – Straubing-Thérien and quantifier alternation hierarchies

Theorem 3.4 ([Perrin and Pin, 1986]). For every integer n, a language lies
in level n (resp. n + 1

2
) of the Straubing-Thérien hierarchy if and only if it

is defined by a BΣn (resp. Σn) sentence, this time with the usual signature
consisting only of ordering and letter predicates.

Recall that BΣn is the Boolean closure of Σn, i.e. closure under the logical
operations ∧,∨ and ¬. In the Straubing-Thérien hierarchy, the corresponding
operation (for obtaining level n from level n − 1

2
) is closure under union, in-

tersection and complement. In particular, observe that each logical operation
corresponds to an operation on languages.

A similar connection holds for the other operation. Indeed, observe that
Σn+1 is the closure of BΣn under conjunction, disjunctions and existential
quantifications. In view of the previous result, this closure operation corre-
sponds to the polynomial closure of the corresponding classes of languages.
To illustrate this, observe that marked concatenations can be interpreted in
a logical setting using existential quantifications: given two languages K,L
defined by two sentences ϕ, ψ and a letter a, we may define KaL by

∃x a(x) ∧ ϕ<x ∧ ψ>x

where ϕ<x and ψ>x are obtained from ϕ and ψ by restricting the scope of their
quantifiers. The operations ϕ 7→ ϕ<x and ψ 7→ ψ>x are standard and fairly
simple: we use the predicate < to compare each variable occurring in ϕ (resp.
ψ) to x, in order to restrict the domain of quantification to positions before
(resp. after) x.

3.1.3 The membership problem for hierarchies

For now, we introduced three hierarchies: dot-depth, Straubing-Thérien
and quantifier alternation. As we already saw, the last two coincide. We may
thus reduce the study of these hierarchies to only two of them. Moreover,
note that dot-depth and Straubing-Thérien are defined using the same generic

170 Théo Pierron

3. Separation of regular languages

construction. It is then not surprising that decidability of these two hierarchies
is linked, as shown by the following theorem.

Theorem 3.5 ([Straubing, 1985; Pin and Weil, 2002]). The membership prob-
lem is decidable for some level of the dot-depth hierarchy if it is decidable for
the same level of the Straubing-Thérien hierarchy.

This was proven for every full-level in [Straubing, 1985], and then extended
in [Pin and Weil, 2002] to half-levels, using a generalization of the algebraic
tools (introduced in [Pin, 1995]) that handle classes that are not closed under
complement. This reduces the study of the three hierarchies to only one: when
considering the membership problem, we may consider only the Straubing-
Thérien hierarchy unless we consider results older than Theorem 3.5.

The first decidability results came for the lower levels of the hierarchies
before the aforementioned reduction was found. The case of level 1 was solved
in [Knast, 1983] for the dot-depth hierarchy, and in [Simon, 1975] for the
Straubing-Thérien hierarchy. This was pushed up to level 3

2
in [Arfi, 1991;

Pin and Weil, 1997; Glaßer and Schmitz, 2008]. Nothing really new happened
about the next levels until recently. Membership for levels 2 and 5

2
has been

proven decidable in [Place and Zeitoun, 2014a]. These results have then been
extended in [Place, 2015] for level 7

2
.

These results rely on the introduction of a new problem called separation.
Given a class C, the C-separation takes two languages L1 and L2 as input
and asks whether there exists a third language L ∈ C such that L1 ⊂ L and
L ∩ L2 = ∅. In other words, L1 and L2 can be separated by a language of C,
see Figure 3.2.

L1 L2

L ∈ C

Figure 3.2 – L1 is C-separated from L2 by L

Observe that we have a naive reduction from the C-membership problem
to the C-separation problem given by the following lemma.

Lemma 3.6. Let C be a class of languages and let L be a language. Then
L ∈ C if and only if L is C-separable from its complement L.

Therefore, proving decidability of any separation problem yields an algo-
rithm for deciding the corresponding membership problem. In particular, we
can see that C-separation is more general than C-membership. This is not

Induction Schemes: From Language Separation to Graph Colorings 171

3.1. Introduction

surprising: solving separation requires a deeper understanding of the consid-
ered class than for membership. Indeed, for C-membership, we can directly
test some properties of C on the input language. For C-separation, we do not
have a language in C to manipulate. In particular, the input languages may be
much more complicated than what can be expressed by C, and still be a pos-
itive instance of C-separation. Thus, to solve C-separation, we not only need
to know what can be defined in C but we also have to characterize what can
be measured by C. This observation is far from being cosmetic: for example,
the additional information obtained by solving separation for level n − 1

2
of

Straubing-Thérien hierarchy can be used to solve membership at level n + 1
2
,

and thus climbing one step in the hierarchy.

Theorem 3.7 ([Place and Zeitoun, 2014a]). For every integer i, there is re-
duction from Σi+1-membership to Σi-separation.

Due to this result, many efforts have been made to solve separation for
the lower levels of the hierarchies. Note that Theorem 3.5 does not prove
anything regarding separation. However, this theorem was extended in [Place
and Zeitoun, 2017a]: decidability of separation for level n does not depend on
the considered concatenation hierarchy. This was already proven for full levels
with algebraic arguments. Indeed, as shown in [Almeida, 1999], the separation
problem is equivalent to an algebraic problem, so-called computability of 2-
pointlike sets. For this problem, Theorem 3.5 has been proved in [Steinberg,
2001] for varieties, a kind of classes we define later, and which include the full
levels of the concatenation hierarchies.

Level 1 was proven decidable in [Van Rooijen and Zeitoun, 2013; Czerwiński
et al., 2013] (but also in [Almeida and Zeitoun, 1997; Almeida et al., 2008] us-
ing again the link with algebra established by [Almeida, 1999]). Separation for
level 3

2
was proven decidable in [Place and Zeitoun, 2014a], yielding a member-

ship algorithm for level 5
2
by Theorem 4.2. In the same paper, the information

obtained for solving separation for level 3
2
was also used to solve membership

for level 2, although the result does not rely on a generic reduction between
separation for level n − 1

2
and membership for level n, regardless of n. This

result has then been extended to separation for level 2 in [Place and Zeitoun,
2017d]. Moreover, using again Theorem 4.2, decidability of membership for
level 7

2
followed from the decidability of level 5

2
separation, proven in [Place,

2015]. Note also that the separation problem is also decidable for the class SF,
as shown in [Henckell, 1988; Henckell et al., 2010; Place and Zeitoun, 2014b].
The current results about concatenation hierarchies are depicted in Figure 3.3.

We end this section by introducing the two kinds of problems we present
in Chapters 3 and 4. The first is to extend these results to the setting of
infinite words. The second concerns the complexity of the membership and
the separation problem.

172 Théo Pierron

3. Separation of regular languages

1
2 1 3

2 2 5
2 3 7

2 4⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂. . . SF

Separation decidable

Membership decidable, separation unknown

Both unknown

Figure 3.3 – State of the art

3.1.4 The case of infinite words

Solving membership for levels of the Straubing-Thérien and the dot-depth
hierarchies is a longstanding open problem. Following Schützenberger’s ap-
proach for star-free languages, it was first investigated for languages of finite
words. However, the question also makes sense for more complex structures,
in particular for the most natural extension: infinite words. Schützenberger’s
result was first generalized to infinite words in [Perrin, 1984], and a suitable
algebraic framework for ω-languages (i.e. languages of infinite words) was set
up in [Wilke, 1991].

Without any changes, the quantifier alternation hierarchy can be used to
define ω-languages instead of only languages of finite words. The definitions of
the dot-depth and the Straubing-Thérien hierarchies also extend naturally to
this setting, up to some slight adjustments. As shown in [Place and Zeitoun,
2017a], Theorem 3.5 still holds in this setting. Therefore, we may consider
only Straubing-Thérien hierarchy, or equivalently the quantifier alternation
hierarchy with letter predicates and ordering.

The regular ω-languages are built on top of the regular languages of finite
words. Indeed, they are defined using three operations, namely:

• Union: if A,B are regular ω-languages, then A ∪ B is a regular ω-
language.

• Concatenation: if A is a regular language of finite words and B is a
regular ω-language, then AB is a regular ω-language.

• Iteration: if A is a regular language of finite words such that ε /∈ A, then
A∞ is a regular ω-language, where A∞ = AAA · · · .

Therefore, finding a membership or a separation algorithm for ω-languages
does not usually require to start over. Instead these algorithms are obtained
by building on top of the algorithms for finite words, adding new arguments,
specific to infinite words. A flagrant example of this phenomenon is the case
of Σ1-membership. Observe that a Σ1 sentence can only test whether a (finite
or infinite) word w contains some finite words as scattered subwords. This is

Induction Schemes: From Language Separation to Graph Colorings 173

3.1. Introduction

independent from considering finite or infinite words. Therefore, membership
is decidable for Σ1 on infinite words, using the same criterion as for finite
words.

About higher levels of the hierarchies, the decidability of BΣ1-membership
from [Simon, 1975] has been generalized from finite to infinite words in [Perrin
and Pin, 2004]. This is also the case for Σ2-membership, whose decidability
has been lifted to infinite words in [Bojańczyk, 2008; Diekert and Kufleitner,
2011]. However, few is known for separation on infinite words: except for the
easily-solved case of Σ1, only FO-separation is known to be decidable [Place
and Zeitoun, 2014b].

Following the idea of extending algorithms for languages of finite words
to this setting, the natural next question is to determine whether the tools
developed in [Place and Zeitoun, 2014a] to tackle the lower levels of the hi-
erarchies can be lifted to the case of infinite words. The answer provided
in [Pierron et al., 2016] is that we can use the involved algorithms from [Place
and Zeitoun, 2014a] as subroutines to prove decidability for lower levels: sep-
aration for Σ2 and Σ3 and membership for BΣ2 are decidable. This last result
was also obtained independently by [Kufleitner and Walter, 2018]. However,
no generic decidability transfer result (either from finite to infinite words, or
from separation at level i− 1

2
to membership at level i+ 1

2
) is known for now.

3.1.5 Computational complexity of the membership and
separation problems

Recall that the hierarchies were introduced following some descriptive com-
plexity motivations: lower levels correspond to languages that are easier to
describe. However, if testing membership in a low level class requires an un-
reasonable amount of computation, then stratifying star-free languages with
the hierarchies, and finding the lowest level containing a language may be
less useful. This raises the question of the computational complexity of the
membership problem for these classes. Moreover, since some membership al-
gorithms rely on separation ones, we also consider complexity of separation.

However, complexity questions can be tricky when considering problems on
regular languages, due to the wealth of formalisms representing them. Observe
that, a priori, the computational complexity of the membership and the sep-
aration problem depends on how the input languages are represented. While
converting an automaton into a monoid recognizing the same language is de-
cidable, this may be a costly procedure. In particular, to represent a given
language, a monoid can be exponentially less succinct than an automaton.
This means that problems on monoids are (a priori) easier than on automata.
This is also valid for many possible conversions between the different equivalent
descriptions of regular languages. This is not a problem when we only consider
decidability, but this can be crucial for complexity, as illustrated for example

174 Théo Pierron

3. Separation of regular languages

with membership for level 1. As shown in [Masopust, 2018], this problem
is PSpace-complete when the input language is given by a non-deterministic
finite automaton (NFA), while it is NLogSpace-complete when the input is a
deterministic finite automaton (DFA) [Cho and Huynh, 1991], and in LogSpace
when the input is a monoid morphism. However, when considering separability
for level 1, the problem is PTime-complete for NFA, DFA and minimal DFA,
see [Masopust, 2018].

Similar results are known for other classes, for example first-order defin-
able languages. For NFA and DFA, FO-membership is PSpace-complete [Cho
and Huynh, 1991], but for monoids the problem lies in LogSpace. For FO-
separation, the exact complexity is still an open question. Using the lower
bound for FO-membership for DFA, we can find a lower bound for FO-separation.
Indeed, observe that given a DFA recognizing a language L, we can compute
in LogSpace a DFA recognizing L (by exchanging final and non-final states).
Since L is a yes-instance of FO-membership if and only if (L,L) is a yes-instance
of FO-separation, we obtain a LogSpace reduction from FO-membership when
the input is a DFA to FO-separation for inputs given by NFAs or DFAs. This
yields a PSpace lower bound for FO-separation for NFA and DFA. As we will
see, the result of Section 3.3 extends this lower bound to the case of monoids.
On the other hand, the best known upper bound is ExpTime, regardless of the
input format [Place and Zeitoun, 2014b]. All these results are summarized in
Figure 3.4.

Membership
NFA DFA Monoid

FO PSpace-complete PSpace-complete LogSpace
Level 1 PSpace-complete NLogSpace-complete LogSpace

Separation
NFA DFA Monoid

FO ExpTime ExpTime ExpTime
PSpace-hard PSpace-hard PSpace-hard

Level 1 PTime-complete PTime-complete PTime
PTime-hard

Level n+ 1/2 PSpace-hard PSpace-hard PSpace-hard

Figure 3.4 – Complexity of membership and separation problems (bounds in
boldface are consequences of Theorem 3.37 or 4.10, presented later)

3.1.6 Organization of Chapters 3 and 4

This chapter is devoted to a generic complexity result. We prove that
when C is nice enough, C-separation has the same complexity regardless of the

Induction Schemes: From Language Separation to Graph Colorings 175

3.2. Preliminaries

input format (NFA or monoid). This is a key difference between separation
and membership, for which this property does not hold. We first need to
settle down in Section 3.2 the definitions and main properties of these two
formalisms. The result itself (namely, Theorem 3.37) is proved in Section 3.3.

Chapter 4 is devoted to the study of the polynomial closure, one of the
two fundamental operations for defining the Straubing-Thérien and the dot-
depth hierarchies. First, we consider the Pol(C)-separation problem from a
complexity point of view, and prove a generic PSpace lower bound when C is
expressive enough (Theorem 4.10). The second result is an extension of the
decidability of Pol(C)-separation to the setting of infinite words, when C is a
finite class (Theorem 4.67).

3.2 Preliminaries

This section is devoted to the introduction of some notation, mainly related
to the two formalisms describing regular languages that we consider in the rest
of this chapter. The first one is algebraic (monoids), while the second one is
computational (finite automata). To fix the notation, we begin with basic
definitions about words.

Definition 3.8. A word over the alphabet A is a finite (possibly empty)
sequence of letters of A. We denote by A∗ the set of words over A. A language
on A is a subset of A∗.

The alphabet of a word w is the smallest set A such that w ∈ A∗. It is
denoted by alph(w).

If u, v ∈ A∗, we denote by u · v or uv their concatenation.

3.2.1 Monoids and semigroups

Definition 3.9. A semigroup is a set S equipped with an associative operation
s · t (often written st). A semigroup S with a neutral element 1S satisfying
1Ss = s1S = s for every s ∈ S is called a monoid.

Example 3.10. The set A∗ is a monoid when endowed with concatenation.
Its neutral element is the empty word ε. The set A+ = A∗\{ε} is a semigroup.

Definition 3.11. A semigroup morphism is a product-preserving mapping
between two semigroups: α : S → T is a semigroup morphism if α(st) =
α(s)α(t) for all s, t ∈ S. It is a monoid morphism if it also satisfies α(1S) = 1T .

Given a language L and a monoid morphism A∗ → M , we say that L is
recognized by α if there exists F ⊂M such that L = α−1(F). It is well-known
that a language is regular if and only if it is recognized by a finite monoid.

176 Théo Pierron

3. Separation of regular languages

Example 3.12. The set M = Z/2Z equipped with addition modulo 2 is
a monoid. Moreover, the morphism ϕ : {a}∗ → M defined by ϕ(a) = 1
recognizes the languages ∅ = ϕ−1(∅), a∗ = ϕ−1(M), (aa)∗ = ϕ−1({0}) and
a(aa)∗ = ϕ−1({1}).

Every regular language L is recognized by infinitely many morphisms to
finite monoids. However, among all of them, there is a “minimal” one. Such a
morphism is called the syntactic morphism of L. It is constructed as follows.

Definition 3.13. Given a language L, the syntactic order of L is the relation
defined on A∗ by u 6L v if for all words x, y ∈ A∗, we have xuy ∈ L⇒ xvy ∈ L.

The syntactic congruence of L is defined by u ∼L v if u 6L v and v 6L u.

It is easy to check that ∼L is indeed a congruence. Moreover, when L is
regular, this relation has finite order and the syntactic morphism of L is the
canonical projection αL : A∗ → A∗/ ∼L associating to each word of A∗ its
class for ∼L. When L is regular, the relation ∼L and the morphism αL can be
computed from L, see [Pin, 1997]. We give a construction later, when stating
Proposition 3.25.

Example 3.14. We consider two examples:

• Let L = (aa)∗. Then it is easy to see that ak ∼L a` if and only if k
and ` have the same parity. There are thus two classes of ∼L: the set
of words with even number of a’s, namely (aa)∗, and the set of words
with odd number of a’s, namely a(aa)∗. Since (aa)∗(aa)∗ = (aa)∗ and
a(aa)∗a(aa)∗ ⊂ (aa)∗, the syntactic monoid of (aa)∗ is thus isomorphic
to (Z/2Z,+).

• Let L = (ab)∗. Then∼L has several classes: ε, (ab)+, (ba)+, a(ba)∗, b(ab)∗,
and the class of all the other words (containing two consecutive identical
letters). We represent these classes respectively by the words ε, ab, ba, a, b, aa.

The syntactic monoid M of L contains thus six elements, and multipli-
cation is given by the following table:

× ε ab ba a b aa
ε ε ab ba a b aa
ab ab ab aa a aa aa
ba ba aa ba aa b aa
a a aa a aa ab aa
b b b aa ba aa aa
aa aa aa aa aa aa aa

Indeed, consider the example ab · a. This is the class of words obtained
as uv where u ∈ (ab)+ and v ∈ a(ba)∗. We thus have uv ∈ a(ba)∗, i.e.
ab · a = a. We can find all the other products in the same way.

Induction Schemes: From Language Separation to Graph Colorings 177

3.2. Preliminaries

We may check that the resulting monoid is the set {ε, a, b, ab, ba, aa}
endowed with concatenation, using the following relations: aba = a,
bab = b, and aa = bb.

Recall that Schützenberger’s theorem states that a language is star-free if
and only if its syntactic monoid is aperiodic. Aperiodicity is a property of a
monoid relying on the notion of idempotent. An element s of a semigroup S
is idempotent when it satisfies s2 = s. As we will see, idempotency is a key
property when studying finite semigroups. This is illustrated by the following
result.

Proposition 3.15. Given a finite semigroup S, there is a positive integer ω
such that for all s of S, sω is idempotent.

Given a finite semigroup S, the smallest such integer is usually denoted by
ω(S), or by ω when S is understood.

Proof. Let s ∈ S. Since S is finite, the sequence (s2n)n∈N takes twice the
same value. There thus exist two integers i, j such that s2i = s2i+j . Let
ω(s) = 2i+j − 2i. We have

(sω(s))2 = s2i+j+1−2i+1

= s2i+j

s2i+j−2i+1

= s2is2i+j−2i+1

= s2i+j−2i+1+2i = sω(s)

We then define ω =
∏

s∈S ω(s). For every s ∈ S, we have

(sω)2 = s2ω = (s2ω(s))k = (sω(s))k = skω(s) = sω

where k = ω
ω(s)
∈ N.

Example 3.16.

• We have ω(Z/2Z) = 2 since 1 is not idempotent, but 2× 0 = 2× 1 = 0
is.

• The second monoid of Example 3.14 also satisfies ω = 2.

Observe that given a semigroup S and an element s ∈ S, the set {sω+n, n >
0} is actually isomorphic to a subgroup of (Z/ωZ,+), via the application
n 7→ sω+n. As shown in [Pin, 1997], this is the unique group in the sub-
semigroup of S generated by s.

The notion of aperiodicity asks for all these groups to be trivial. Equiva-
lently, it requires the condition sω+1 = sω to be satisfied for every s ∈ S.
Example 3.17. • The monoid Z/2Z is not aperiodic, since it is a group.

Alternatively, we have ω(M) = 2 and ω(M)× 1 = 0 6= (ω(M) + 1)× 1.
By Schützenberger’s theorem, we thus obtain that (aa)∗ is not definable
in FO, since its syntactic monoid is Z/2Z. As a consequence, it is not
FO-separable from its complement a(aa)∗.
This example can actually be generalized: every pair of languages of the
form (ak)∗a` (for some positive integers k, `) is FO-inseparable.

178 Théo Pierron

3. Separation of regular languages

• For the second monoid of Example 3.14, we again have ω(M) = 2, but
this time M is aperiodic. Therefore, using again Schützenberger’s theo-
rem, the language (ab)∗ is definable in FO since it is recognized by the
morphism α : {a, b}∗ → M defined by α(a) = a and α(b) = b. We can
even construct a FO-sentence describing it:

∀x∀y, (a(x) ∧ y = x+ 1)⇒ b(y)

∀x∀y, (b(x) ∧ y = x+ 1)⇒ a(y)

∀x, (min(x)⇒ a(x))

∀x, (max(x)⇒ b(x))

This sentence describes words such that: each letter following an a is a
b, each letter following a b is an a, the first letter is an a and the last
letter is a b.

3.2.2 Automata

Definition 3.18. An automaton is a 5-tuple (Q,Σ, I, F, δ) where:

• Q is a finite set of states,

• Σ is a finite alphabet,

• I ⊂ Q is a set of initial states,

• F ⊂ Q is a set of final states, and

• δ ⊂ Q× Σ×Q is a set of transitions.

We denote a transition (q, a, q′) by q a−→ q′. A word a1 · · · an (with a1, . . . , an ∈
A) is accepted by an automaton A = (Q,Σ, I, F, δ) if there exists a sequence
of states q0, . . . , qn such that q0 ∈ I, qn ∈ F and qi−1

ai−→ qi ∈ δ for 1 6 i 6 n.
The set of such words is the language recognized by A.

Example 3.19. The languages (aa)∗ and (ab)∗ are recognized by the automata
represented in Figure 3.5. Each node corresponds to a state, and each arc to a
transition. The initial (resp. final) states are represented by an ingoing (resp.
outgoing) arc without source (resp. destination).

0 1

a

a
0 1

a

b

Figure 3.5 – Automata recognizing (aa)∗ (left) and (ab)∗ (right).

Induction Schemes: From Language Separation to Graph Colorings 179

3.2. Preliminaries

Definition 3.20. An automaton (Q,Σ, I, F, δ) is deterministic (a DFA) when
|I| = 1 and its set of transitions can be represented as a set of partial functions
δa : Q → Q for a ∈ Σ, i.e. if for every q ∈ Q and a ∈ Σ, there is at most one
q′ ∈ Q such that (q, a, q′) ∈ δ.

Given an automaton A = (Q,Σ, I, F, δ), we can compute a deterministic
automaton recognizing the same language as A. The usual way of doing so
is by considering an automaton whose states are subsets of Q. There is a
transition S a−→ S ′ when S ′ = {q′ ∈ Q | ∃q ∈ S, q a−→ q′}. In other words, this
means that S ′ is the set of states obtained by reading a from the states of S.
The new initial state is {I}, and a state S is final when S intersects F . This
automaton is deterministic and recognizes the same language as A. However,
note that its size is exponential with respect to A.

Given a regular language L, we can prove that there exists a deterministic
automaton recognizing L with minimum number of states. This automaton is
called the minimal automaton of L, and can be effectively constructed from
any automaton recognizing L, see [Brzozowski, 1962].

The minimal automaton of a language L is a canonical object: it is unique
up to renaming states. Due to its minimality, it also satisfies some more
properties. The first one is given using Nerode’s congruence.

Definition 3.21. Let A = (Q,Σ, I, F, δ) be an automaton recognizing a lan-
guage L. The Nerode congruence is the relation defined on Q by q ∼A q′ when
the languages recognized by (Q,Σ, {q}, F, δ) and (Q,Σ, {q′}, F, δ) are the same.

If A is a minimal automaton, then its Nerode’s congruence is the equal-
ity. We can exploit this property to design a minimization algorithm: starting
from a DFA A, we define a (coarse) partition of its set of states, and refine it
successively until we end up with the partition where each class is an equiv-
alence class for the Nerode congruence. To refine a partition, we split a set
S of states each time we find q, q′ ∈ S and a ∈ A such that reading a from q
and q′ ends in two states not in the same set of the partition. This leads to
a polynomial time algorithm. However, we need the initial automaton to be
deterministic. Therefore, minimizing an NFA may yield a minimal automaton
of exponential size.

Note that the languages used in the definition of Nerode’s congruence can
be written as {v ∈ A∗ | uv ∈ L} where u is a suitable word. For example,
assume that A = (Q,Σ, {qi}, F, δ) is a DFA recognizing L. Let u be a word
such that reading u from qi in A ends up in the state q. Then the language
recognized by (Q,Σ, {q}, F, δ) is {v ∈ A∗ | uv ∈ L}. This language is a special
case of the so-called quotients.

Definition 3.22. Given a word u ∈ A∗ and a language L, the left quotient
u−1L is defined as {v ∈ A∗ | uv ∈ L}, and the right quotient Lu−1 as {v ∈
A∗ | vu ∈ L}.

180 Théo Pierron

3. Separation of regular languages

Example 3.23. Let L = (aa)∗ and let k be an integer. Then (ak)−1L is the
set of words an such that akan has even length, i.e. with n of same parity as k.
Therefore, (ak)−1L is a(aa)∗ when k is odd and (aa)∗ when k is even. This
also holds for right quotients.

Similarly, the quotients of L = (ab)∗ are

• b(ab)∗, obtained as w−1L where w ∈ a(ba)∗.

• L, obtained as w−1L or Lw−1 where w ∈ L.

• a(ba)∗, obtained as Lw−1 where w ∈ b(ab)∗.

• ∅, obtained by taking left or right quotient by any other word.

Observe that, given a deterministic automaton A = (Q,Σ, I, F, δ) recog-
nizing a language L, the left quotient u−1L is recognized by (Q,Σ, {q}, F, δ)
where q is the state obtained by reading u from the initial state. Note that,
if such a state exists, it is unique since the automaton is deterministic. Oth-
erwise, we have u−1L = ∅. Similarly, automata recognizing right quotients
are obtained by considering other final states. We can thus reformulate the
definition of Nerode congruence when A is deterministic. Assume that reading
u (resp. v) from the initial state of A ends in the state q (resp. q′). Then we
have q ∼A q′ if and only if u−1L = v−1L.

In particular, there is only a finite number of such quotients. Moreover, if
the automaton A is minimal, then the relation ∼A is the equality. Therefore,
the left quotients of a language are in bijection with the states of its minimal
automaton. Note that this also holds for right quotients, by exchanging the
role of initial and final states in the previous analysis. This is the well-known
result of Myhill-Nerode.

Theorem 3.24 (Myhill-Nerode). A language is regular if and only if it has
finitely many left (resp. right) quotients.

Automata and monoids are two formalisms that recognize regular lan-
guages. Moreover, the conversions are effective in both ways: given an au-
tomaton, we can compute a monoid morphism recognizing the same language,
and conversely. We end this subsection by presenting the conversions between
these formalisms.

First consider a regular language L recognized by a monoid morphism
α : A∗ → M . Then L is recognized by the automaton whose states are
elements of M , alphabet is A, initial state is α(ε) = 1M , final states are
elements of α(L), and transitions are all the s a−→ sα(a) for s ∈M and a ∈ A.
Indeed, we can prove by induction on the length of any word w that reading w
from 1M ends in the state α(w). Therefore, w is accepted by this automaton
if and only if α(w) ∈ α(L), i.e. w ∈ L since α recognizes L. Observe that this
conversion can be done in LogSpace.

We thus obtain the following proposition.

Induction Schemes: From Language Separation to Graph Colorings 181

3.2. Preliminaries

Proposition 3.25. Given an monoid morphism α : A∗ → M recognizing a
language L, one can construct in LogSpace an automaton A recognizing L.

Example 3.26. The automata depicted on Figure 3.6 are the ones obtained by
the aforementioned construction, starting from the monoids of Example 3.14.

0 1

a

a
ε

a

b

ab

ba

aa

b

a

a

b

b

a
a b

b a

a, b

Figure 3.6 – Automata obtained from the syntactic monoids of (aa)∗ (left) and
(ab)∗ (right).

Note in particular that the automaton for (aa)∗ is the minimal automaton
of this language. However, this is not the case for (ab)∗, even if we remove the
states labeled aa, b and ba from which no word can be accepted.

One way of computing the other conversion relies on the following notion.

Definition 3.27. Given a deterministic automaton A = (Q,Σ, I, F, δ), its
transition monoid MA is the monoid generated by all the partial functions
δa : Q→ Q for a ∈ Σ.

Let A be a deterministic automaton recognizing a language L. Define a
monoid morphism α : A∗ → MA by α(a) = δa for a ∈ A. Then for every
word w, we have w ∈ L if and only if α(w) maps the initial state of A to a
final state. Therefore, L is recognized by α.

Example 3.28. The automata presented in Example 3.19 are deterministic
and have the following transition monoids.

• For (aa)∗, the function δa swaps states 0 and 1. The function δa ◦δa coin-
cides with identity, hence the monoid generated by δa is again isomorphic
to Z/2Z.

• For (ab)∗, the function δa is defined only on state 0, and maps it to
state 1, while δb is defined only on state 1 and maps it on state 0. The

182 Théo Pierron

3. Separation of regular languages

monoid they generate is exactly the one of Example 3.14. For example,
the element ba corresponds to the function δa ◦ δb, which is defined on
state 1 and maps it to itself.

The automata presented in Example 3.19 are actually the minimal au-
tomata of (aa)∗ and (ab)∗, and it appears that their transition monoid are
isomorphic to the syntactic monoid of the recognized languages. These exam-
ples are not isolated cases, as shown by the following proposition.

Proposition 3.29. The syntactic monoid of a regular language is isomorphic
to the transition monoid of its minimal automaton.

The construction of the transition monoid of a DFA shows how to trans-
late an automaton into a monoid recognizing the same language: we first
determinize it, then we compute its transition monoid. Moreover, with this
proposition, we can even compute the syntactic monoid (instead of just some
monoid recognizing the right language). To this end, we have to minimize the
obtained DFA before computing the transition monoid. This ensures that the
syntactic monoid is computable, even if it was unclear from its definition.

However, in contrast to the other conversion, the construction is not LogSpace
anymore: the transition monoid MA of a DFA A may have exponential size
with respect to A. A fortiori, this is also the case for the syntactic monoid of
the language recognized by A.

3.2.3 Varieties

In this thesis, we look for decidability and complexity results for the C-
separation problem. However, if C is an arbitrary class, there is no hope of
obtaining such results, unless we get some structural hypotheses on C. More-
over, the classes we consider are not chosen randomly: they are defined using
some syntactic restrictions. Due to this choice, these classes satisfy some ad-
ditional properties, like closure by Boolean operations. The most convenient
classes to work with are the so-called varieties, defined as follows.

Definition 3.30. Let C be a class of languages. Given an alphabet A, we
denote by CA the class of languages in C over the alphabet A. We say that C
is a variety if:

• For every alphabet A, CA is closed under Boolean operations (union,
intersection and complement).

• For every alphabet A, each word u ∈ A∗ and language L ∈ CA, u−1L and
Lu−1 lie in CA.

• For every alphabets A,B, if ϕ : A∗ → B∗ is a monoid morphism and
L ∈ CB, then ϕ−1(L) ∈ CA.

Induction Schemes: From Language Separation to Graph Colorings 183

3.2. Preliminaries

The three items correspond respectively to closure under Boolean oper-
ations, quotients and inverse morphisms. Note that if u = vw, we have
u−1L = w−1(v−1L) and Lu−1 = (Lw−1)v−1. In particular, this means that
we may only require closure under quotient by a letter in the definition of
variety.

We will often consider finite varieties. A variety C is finite if for every
alphabet A, the class CA is finite.

Example 3.31. We present here some classic examples.

• A first example of variety is Reg = (RegA)A where for every alphabet A,
RegA is the class of regular languages over the alphabet A.

• The class SF is also a variety, as well as all the full levels of the Straubing-
Thérien and the dot-depth hierarchies.

• The class AT of alphabet testable languages is defined as the set of Boolean
combinations of all languages A∗aA∗ for every alphabet A and every
letter a ∈ A.
It is the class of languages L such that testing if w ∈ L depends only
on the alphabet of w. From a logical point of view, it can be seen as
the class of languages defined in FO(∅), the fragment of first-order logic
using only letter predicates (but not ordering).

This class is a variety. Together with level 0 of the Straubing-Thérien and
the dot-depth hierarchies, it is an emblematic example of finite variety.

• Level 1 of Straubing-Thérien hierarchy is also known as the class of
piecewise testable languages. Due to Theorem 3.4, it corresponds to
the fragment BΣ1. It is thus the set of all Boolean combinations of
languages A∗a1A

∗a2 · · ·A∗akA∗ where k is an integer, A is an alphabet
and a1, . . . , ak are letters of A. In particular, testing membership of
a word w in a piecewise testable language depends only on the set of
(scattered) subwords of w.

Given a monoid morphism α, the set of all languages recognized by α has
a strong algebraic structure: it is for example closed under Boolean operations
and quotients. We can get even more structure on this set when α is a syntactic
morphism, by the following proposition.

Proposition 3.32 ([Pin, 1986]). Let C be a variety, and α : A∗ → M be the
syntactic morphism of a language in C. Then all the languages recognized by
α lie in C.

Proof. Let α : A∗ → M be the syntactic morphism of a language L ∈ C. Let
K be a language recognized by α, i.e. K = α−1(F) for F ⊂M .

184 Théo Pierron

3. Separation of regular languages

Observe that we have
K =

⋃
s∈F

α−1(s).

Since C is a variety, it is closed under unions, hence it is sufficient to treat
the case F = {s} for some s ∈M .

Let w ∈ α−1(s). Note that such a word exists since otherwise L = ∅ and
we are done: we have L ∈ C since C is closed under Boolean operations. The
goal is to write α−1(s) as a Boolean combination of quotients of L. This will
conclude that α−1(s) ∈ C since C is a variety.

To this end, consider the set C(w) = {(u, v) ∈ A∗ × A∗ | uwv ∈ L}. By
definition of ∼L, we have, for every word w′ ∈ A∗:

s = α(w′)⇔ w ∼L w′ ⇔ C(w) = C(w′).

Therefore, α−1(s) = {w′ ∈ A∗ | C(w′) = C(w)}.
Observe that a pair (u, v) lies in C(w) if and only if w ∈ u−1(Lv−1). We

can thus rewrite α−1(s) as⋂
(u,v)∈C(w)

u−1(Lv−1) \
⋃

(u,v)/∈C(w)

u−1(Lv−1).

This is the expression we look for. However, we cannot conclude directly since
the intersection and the union in the above expression are indexed by infinite
sets of words.

However, since L is regular, it has a finite number of quotients. Therefore,
the union and the intersection above are actually indexed by a finite number
of pairs (u, v). This ensures that α−1(s) ∈ C.

Observe that the criterion given by Schützenberger’s theorem to decide
whether a language L is definable in FO depends on the syntactic monoid of
L, but not on its accepting set. This is explained by Proposition 3.32: there
is nothing special about the accepting set of L since L is definable in FO if
and only if all languages recognized by its syntactic morphism are definable in
FO. This proposition thus emphasizes that, in order to solve C-membership,
we have to focus on properties of syntactic monoids instead of properties of
languages.

Due to all their closure properties, varieties are very convenient classes to
work with. Note however that many interesting classes, such as the ones ob-
tained using polynomial closure, are often not varieties (for example, consider
the half-levels of the Straubing-Thérien and the dot-depth hierarchies). In-
deed, they are not closed under complement in general. This observation leads
to the introduction of the notion of positive varieties.

Definition 3.33. A class C of languages is a positive variety if:

Induction Schemes: From Language Separation to Graph Colorings 185

3.2. Preliminaries

• For every alphabet A, the class CA is closed under union and intersection.

• For every alphabet A, each word u ∈ A∗ and language L ∈ CA, the
quotients u−1L and Lu−1 lie in CA.

• For all alphabets A,B, if ϕ : A∗ → B∗ is a monoid morphism and L ∈ CB,
then ϕ−1(L) ∈ CA.

Observe that taking the Boolean closure of a positive variety allows to re-
store closure under complement, while preserving the other closure properties.
In other words, we have the following.

Lemma 3.34. The Boolean closure of a positive variety is a variety.

Proof. Let C be a positive variety and A be an alphabet. Observe that
Bool(C)A = Bool(CA). It is thus clear that this class is closed under Boolean
operations. Moreover, every language L ∈ Bool(C)A is constructed as unions,
intersections and complements of languages in CA.

To prove the result, it is thus sufficient to prove that the Boolean operations
commute with quotients and inverse morphisms. Indeed, this will prove that
every quotient (resp. inverse image) of a language in Bool(C) can be written
as Boolean combinations of quotients (resp. inverse image) of languages in C,
ensuring that Bool(C) is a variety.

LetK,L be two languages and u, v be two words. Unfolding the definitions,
we get:

v ∈ u−1(K ∪ L)⇔ uv ∈ K ∪ L⇔ uv ∈ K or uv ∈ L⇔ v ∈ u−1K ∪ u−1L

Similarly, we have u−1(K ∩ L) = u−1K ∩ u−1L.
Moreover, we have

v ∈ u−1L⇔ uv /∈ L⇔ v /∈ u−1L⇔ v ∈ u−1L,

hence u−1L = u−1L.
Similarly, if A,B are alphabets, ϕ : A∗ → B∗ is a morphism and K,L are

languages over B, we have

ϕ−1(A ∪B) = ϕ−1(A) ∪ ϕ−1(B),

ϕ−1(A ∩B) = ϕ−1(A) ∩ ϕ−1(B), and

ϕ−1(A) = ϕ−1(A).

This concludes the proof.

To handle classes that are only positive varieties (but not necessarily vari-
eties), we need to enrich the notion of recognition by monoids: we consider or-
dered monoids, i.e. monoids equipped with an order compatible with the mul-
tiplication. A language L is then recognized by a morphism α : A∗ → (M,6M)

186 Théo Pierron

3. Separation of regular languages

when L = α−1(α(L)) and α(L) is upward-closed for 6M . This allows to handle
classes that are not closed under complement: even if L = α−1(α(L)), the set
α(L) may not be upward-closed, hence α may not recognize L. This will be
illustrated in Example 3.35.

Note that, given a regular language L, the syntactic monoid ML of L is
defined as A∗/ ∼L. Therefore, the quasi-order 6L is well defined on ML. It is
even an order by definition of ∼L. Therefore, syntactic monoids are naturally
endowed with a structure of ordered monoids.

Example 3.35. We again consider the languages (aa)∗ and (ab)∗. For each of
them, we denote by αL : A∗ →ML their syntactic morphism.

• Let L = (aa)∗. Its syntactic monoid is ML = Z/2Z. Observe that 0 and
1 are incomparable for 6L. Indeed, assuming by symmetry that 0 6L 1,
we obtain that 0 + 1 6L 1 + 1 since 6L is compatible with addition. We
thus obtain that 0 = 1, a contradiction.

Therefore, the relation 6L is trivial on ML. In particular, every subset
of ML is upward closed, hence the languages recognized by (ML,6L)
as ordered monoid are exactly the ones recognized by ML as a monoid:
∅, (aa)∗, a(aa)∗ and a∗.

• Let L = (ab)∗. In this case, recall thatML = {ε, a, b, ab, ba, aa}. Observe
that for all words u, v ∈ A∗ and w ∈ α−1

L (aa), we have uwv /∈ (ab)∗ since
w contains two consecutive a’s or two consecutive b’s. Thus, by definition
of 6L, we have aa 6L s for every s ∈ML.

We can also check that ab 6L ε and ba 6L ε. Except for that, the other
pairs are incomparable for 6L.

Therefore, the language (ab)+ = α−1
L (ab) is not recognized by the ordered

monoid (ML,6L) since {ab} is not upward-closed. However, the language
(ab)∗ = α−1

L ({ab, ε}) is still recognized.

Observe also that the language {ε} = α−1
L ({ε}) is recognized, but not its

complement {a, b}+ = α−1
L ({a, b, ab, ba, aa}).

We end this section by extending Proposition 3.32 to this setting, using the
more generic framework of [Pin, 1995]. The “missing” hypothesis of closure by
complement is balanced by considering recognition by ordered monoids.

Proposition 3.36 ([Pin, 1995]). Let C be a positive variety, and α : A∗ →
(M,6M) be a the syntactic morphism of a language in C. Then all the lan-
guages recognized by α lie in C.

Induction Schemes: From Language Separation to Graph Colorings 187

3.3. Input format vs complexity

3.3 Input format vs complexity
In this section, we establish Theorem 3.37, stating that the complexity of

the separation problem does not depend on the format of the input languages.
We consider here two such formats: (non-deterministic) finite automata, and
finite monoids. Given a class C of languages, we thus introduce the two fol-
lowing variants of the C-separation problem:

• C-separation for automata: given two automata A1 and A2, can we sep-
arate the languages recognized by A1 and A2 by a language in C?

• C-separation for monoids: given two monoid morphisms α1 : A∗ → M1

and α2 : A∗ → M2 and two subsets F1 ⊂ M1 and F2 ⊂ M2, can we
separate the languages α−1

1 (F1) and α−1
2 (F2) by a language in C?

First note that there is an easy reduction from each problem to the other
one: just convert the automata into monoids recognizing the same languages
(or the converse) and apply the suitable algorithm. Recall that constructing
an automaton recognizing the same language as a given monoid morphism
can be done in LogSpace, using a Proposition 3.25. We thus obtain a LogSpace
reduction from C-separation for languages given by monoids to C-separation for
languages given by automata, regardless of the class C we consider. Intuitively,
this means that separation is more costly on automata than on monoids.

On the other hand, converting an automaton into a monoid recognizing
the same language may need exponential time, hence the previous naive ap-
proach does not lead to a LogSpace reduction. However, observe that these
naive reductions are generic: they are independent from the properties of the
languages we want to test. The goal of this section is to use additional prop-
erties of separation to establish a LogSpace reduction in the other direction.
We prove that, under suitable assumptions on the class C, the C-separation
problem has the same complexity regardless of the kind of input we consider.
More precisely, we prove the following result.

Theorem 3.37. If C is a positive varietysuch that Bool(C) 6= Reg, then there
is a LogSpace reduction from the C-separation problem for automata to the
C-separation problem for monoids.

Together with the previous analysis, this theorem yields the following corol-
lary.

Corollary 3.38. If C is a positive variety such that Bool(C) 6= Reg, then the
C-separation problem has the same complexity regardless on whether its input
languages are given by automata or monoids morphisms.

We can even strengthen this corollary by getting rid of the hypothesis
Bool(C) 6= Reg, and obtain the following corollary.

188 Théo Pierron

3. Separation of regular languages

Corollary 3.39. If C is a positive variety, then the C-separation problem has
the same complexity regardless on whether its input languages are given by
automata or monoids morphisms.

Proof. Let C be a positive variety, and assume that C 6= Reg. As a consequence
of [Almeida and Klíma, 2015, Theorem 9.3], we have Bool(C) 6= Reg. There-
fore, when C 6= Reg, Corollary 3.39 is directly obtained from Corollary 3.38.

It remains to consider the case C = Reg. In this case, the separation
problem is equivalent to testing emptiness of intersection. For languages given
by automata, this is a well-known NLogSpace-complete problem, see [Jones,
1975]. In the setting of monoids, this is also NLogSpace-complete, as we will
see.

Indeed, a NLogSpace algorithm is given by the following: starting from two
monoid morphisms, compute two automata recognizing the same languages (by
Proposition 3.25, this can be done in LogSpace), and then apply the NLogSpace
algorithm for Reg-separation for languages given by automata.

To prove NLogSpace-hardness, we reduce the problem of accessibility: given
an oriented graph G = (V,A) and two distinct vertices s, t of G, is there a path
from s to t in G? This is a well-known NLogSpace-complete problem.

Given an oriented graph G = (V,A), we define the monoidM = V 2∪{0, 1},
endowed with the multiplication law:

(q1, q2)(q′1, q
′
2) =

{
(q1, q

′
2) if q2 = q′1

0 otherwise

where 0 is an absorbing element and 1 is the neutral element.
We define two languages over the alphabet A, meaning that letters are arcs

in G. They are both recognized by the morphism α : A∗ →M , where for every
arc −→uv ∈ A, we set α(−→uv) = (u, v). By induction, we can see that

α(−−→u1v1 · · · −−→unvn) =


1 if n = 0

0 if vi 6= ui+1 for some 1 6 i < n

(u1, vn) otherwise

In particular, for every u, v ∈ V 2, the language α−1({(u, v)}) contains all the
non-empty sequences of arcs obtained by following paths from u to v.

The two languages we consider are L1 = α−1({(s, t)}) and L2 = A∗ =
α−1(M). Observe that since L1 ⊂ L2, we have L1 ∩ L2 = ∅ if and only if
L1 = ∅, which is equivalent to the non-existence of a path from s to t in G by
definition of α.

Observe that the monoid M , as well as the images α(a) for a ∈ A can
be computed in LogSpace. Therefore, we obtain a LogSpace reduction from
the Reg-separation problem for languages given by monoid morphisms to the
accessibility problem.

Induction Schemes: From Language Separation to Graph Colorings 189

3.3. Input format vs complexity

This implies that the Reg-separation problem is NLogSpace-complete for
languages given by monoids, which is the same as for automata.

Before proving Theorem 3.37, we list below a few examples of well-known
varieties, as well as some observations regarding Theorem 3.37:

• As shown in [Cho and Huynh, 1991], FO-membership is PSpace-hard
even when the input languages are given by their minimal automata.
Starting from a DFA A recognizing a language L, we can construct in
polynomial time an automaton recognizing L (we just have to swap final
states of A with non-final states). Therefore, the map L 7→ (L,L) is a
polynomial-time reduction from FO-membership for a language given by
a DFA to FO-separation for languages given by automata. In particular,
we obtain that FO-separation is PSpace-hard: In view of Theorem 3.37,
we obtain that FO-monoids-separation is also PSpace-hard since FO is a
variety.

• Similarly, AT-separation is NP-complete when its inputs are given by
NFA (even by DFA) according to [Van Rooijen and Zeitoun, 2013]. By
Theorem 3.37, we thus obtain that it is also NP-complete when its inputs
are given by monoids morphisms.

• Separation for the class of piecewise testable languages is PTime-complete
when the input languages are given by automata, as shown by [Masopust,
2018]. Thus, Theorem 3.37 implies that this complexity result transfers
to separation for languages given by monoids.

• All the levels of the dot-depth and the Straubing-Thérien hierarchies are
positive varieties (and even varieties for the full-levels). Since these hi-
erarchies are infinite [Brzozowski and Knast, 1978], none of their levels
is Reg. Therefore, Theorem 3.37 applies to all their levels. This im-
plies that studying complexity of the separation problem only requires
to consider one type of recognizer.

3.3.1 Overview of the proof

The remainder of this section is devoted to the proof of Theorem 3.37. We
thus fix a positive variety C such that its Boolean closure Bool(C) is different
from Reg. We also fix a pair of automata (A1,A2) recognizing two languages L1

and L2. We construct a pair of morphisms (α1, α2) recognizing the languages
α−1

1 (F1) and α−1
2 (F2) for some accepting sets F1, F2.

This construction must be a reduction: we want L1 to be C-separable from
L2 if and only if so is α−1

1 (F1) from α−1
2 (F2). We also want the reduction to be

in LogSpace. In the following, we show how to construct such pairs (α1, α2) and
(F1, F2). For the sake of readability, we only focus on proving that their size is

190 Théo Pierron

3. Separation of regular languages

polynomial with respect to (A1,A2). However, we claim that the construction
we present lies actually in LogSpace.

Observe that the naive approach consisting in computing the transition
monoid of A1 and A2 does not lead to a LogSpace reduction, since some au-
tomata A have transition monoids of exponential size (with respect to A).
Thus, we have to look for a construction where (L1, L2) 6= (α−1

1 (F1), α−1
2 (F2)).

We proceed as follows. We modify L1, L2 to obtain two new languages L′1
and L′2 such that:

(1) L′1 is C-separable from L′2 if and only if L1 is C-separable from L2.

(2) There is a monoid recognizing L′1 and L′2 of polynomial size with respect
to A1,A2.

To construct L′1 and L′2, we actually modify A1 and A2 into two new au-
tomata A′1 and A′2 as described in Subsection 3.3.2. This construction relies on
auxiliary languages, whose construction will be presented in Subsection 3.3.3.

We then prove Property (2) in Subsection 3.3.4, ensuring that the reduction
is LogSpace. Finally, in Subsection 3.3.5, we prove that C-separability transfers
from A1,A2 to A′1,A′2 (and conversely), ensuring Property (1) together with
the correctness of the reduction. Altogether, this proves Theorem 3.37.

3.3.2 The construction

Our construction is motivated by properties of the transition monoid of a
given deterministic automaton. Recall that this monoid recognizes the lan-
guage accepted by A, but may have exponential size with respect to A. How-
ever, a key observation is that it has polynomial size when all the transitions
are labeled by different letters, as shown by the following lemma.

Lemma 3.40. Let (Q,Σ, I, F, δ) be an automaton where each letter labels at
most one transition. Then its transition monoid has size at most |Q|2 + 2.

Proof. Let a ∈ Σ. Observe that the partial function δa is defined on at most
one state. Assume that it is defined on q and that its value is q′, i.e. that
q

a−→ q′ is the only transition with label a. Note then that every composition
of such functions is defined on at most one state. There are thus two special
elements: the function defined nowhere, denoted by 0, the identity δε also
denoted by 1, and functions defined on exactly one state. Such a function is
entirely defined by q (the state on which it is defined) and q′ (its image of
q). Thus, the transition monoid is isomorphic to a submonoid of Q2 ∪ {0, 1}
endowed with the following multiplication:

(q1, q
′
1) · (q2, q

′
2) =

{
(q1, q

′
2) if q′1 = q2,

0 otherwise,

Induction Schemes: From Language Separation to Graph Colorings 191

3.3. Input format vs complexity

where 0 is an absorbing element and 1 is a neutral element. This monoid has
size |Q|2 + 2, which concludes the proof.

Observe that this bound is tight, as shown by Example 3.28 for the language
(ab)∗: its minimal automaton has two states and its transition monoid has size
six.

Coming back to the proof of Theorem 3.37, recall that we want to construct
A′1 and A′2 that recognize languages fulfilling points (1) and (2) (page 191).

A first idea is then to rename all the transitions of A1 and A2 to enforce
that each letter appears on at most one transition. By doing so, the obtained
automata have small transition monoids. However, this kind of renaming may
not preserve C-separability. To overcome this problem, we will replace the
labels of each transition in order to

• simulate distinct transitions and thus obtain a “small” transition monoid
by (a generalization of) Lemma 3.40

• preserve C-separability and C-inseparability of the recognized languages.

To this end, we consider automata where transitions are labeled by regular
languages instead of letters. A word w is recognized by such an automaton
if there is a path q0

K1−→ q1 · · ·
Kn−−→ qn where q0 is an initial state, qn a final

state, and w can be decomposed as w1 · · ·wn where each factor wi lies in Ki

for 1 6 i 6 n. Note in particular that these machines recognize only regular
languages: we can recover a classic automaton from such an enriched one by
replacing each transition q K−→ q′ by an automaton AK recognizing K. More
precisely, assuming that AK has a single initial state qi and a single final state
qf (which can be done without loss of generality for non-empty languages using
standard constructions on automata), we identify q with qi and q′ with qf . An
example of this construction is depicted on Figure 3.7.

q q′
a(aa)∗

⇒ q q′

a

a

Figure 3.7 – Flattening a transition q
a(aa)∗−−−→ q′.

Starting from the automata A1 and A2, we construct enriched automata
A′1 and A′2 by tagging their transitions with (regular) languages. This allows
us to simulate distinct transitions (using pairwise disjoint tags), and to transfer
separability properties (using tags that cannot be distinguished by C).

The generic construction follows. Given an n-tuple of regular languages
K = (K1, . . . , Kn) and an automaton A with at most n transitions, we denote
by A[K] the automaton obtained by replacing the i-th transition q a−→ q′ of A

192 Théo Pierron

3. Separation of regular languages

by q aKi−−→ q′. In this case, we say that K1, . . . , Kn are the tagging languages and
A[K] is the tagged automaton. Note that we may assume that A comes with
an order on its transitions, hence this construction is well-defined. Observe
also that A and A[K] share the same sets of states, initial states and final
states.

Before giving the value of K that we use, we state the two main properties
of this construction. The first one is a generalization of Lemma 3.40: it re-
places the hypothesis of distinct transition labels by pairwise disjoint transition
languages.

Proposition 3.41. Let K be a tuple of pairwise disjoint languages and let A
be an automaton. Let β : A∗ → N be a monoid morphism recognizing all the
languages in K. Then we can construct a monoid morphism recognizing the
same language as A[K] of polynomial size with respect to A and N .

This result is proven in Subsection 3.3.4. Let us summarize the reduction:
starting from A1 and A2, we tag these automata using pairwise disjoint lan-
guages. Then, we compute the transition monoid of these tagged automata.
By Proposition 3.41, we know that this reduction can be done in polynomial
time. However, we still have to prove it is a reduction from C-separation for
automata to C-separation for monoids. In other words, the second main prop-
erty of this reduction is a separability transfer result. It will be stated in
Proposition 3.45, but we first need to introduce some terminology before.

Consider two transitions q1
a−→ q′1 in A1 and q2

a−→ q′2 in A2, labeled by
the same letter a. When tagging A1 and A2, these transitions become labeled
by some languages aK and aK ′. To obtain a separability transfer, we need
for K,K ′ to be non C-separable. To see this, for i = 1, 2, consider Hi be
the language of words labeling a path from qi to q′i in Ai. In A1 and A2,
the considered transitions are labeled with the same letter a. Therefore, the
languages H1 and H2 intersect and thus are not C-separable. If K and K ′

are C-separable, then C may be able to distinguish H ′1 from H ′2 where, for
i = 1, 2, H ′i is the language of labels of paths from qi to q′i in A′i. Therefore,
C-inseparability may not transfer from A1,A2 to A′1,A′2. This is why we need
the tagging languages K,K ′ to be C-inseparable.

However, the letter a may appear on more than one transition in A1 and
A2, and we still need the tagging languages present on these transitions to be
non C-separable. However, the pairwise C-inseparability is not sufficient. We
use here a stronger notion: C-coverability.

This variant of the separation problem was introduced in [Place and Zeitoun,
2017b], as a tool to study the separation problem. The intuition motivating
the introduction of this problem is the following. In view of Proposition 3.36,
solving C-membership for a language L is equivalent to solving it for every
language recognized by the syntactic morphism of L. Since the set of all these

Induction Schemes: From Language Separation to Graph Colorings 193

3.3. Input format vs complexity

languages has a robust structure (it is stable by unions, intersections and quo-
tients), it is natural to follow the same approach for separation.

Definition 3.42. A set {K1, . . . , Kn} of languages is C-coverable if we can
find some languages L1, . . . , Lp such that:

• L1, . . . , Lp ∈ C.

• K1 ∪ · · · ∪Kn ⊂ L1 ∪ · · · ∪ Lp.

• No Li intersects all the languages K1, . . . , Kn.

In this case, the set {L1, . . . , Lp} is said to be a C-cover of {K1, . . . , Kn}.

The notion of covering is illustrated with Figure 3.8. The covering problem
is a generalization of the separation problem for more than two languages, in
a way that encapsulates more information than just the one given by pairwise
separability of the languages. In particular, when considering coverability of
only two languages, we end up back with the initial separation problems, as
shown by the following lemma.

Lemma 3.43. Let C be a class of regular languages closed under Boolean
operations, and let K1, K2 be two regular languages. The set {K1, K2} is C-
coverable if and only if K1 and K2 are C-separable.

Proof. Assume that K1 and K2 are separated by a language L ∈ C. Then we
can write K1 ∪ K2 ⊂ L ∪ L. Observe that both L and L are elements of C
(since C is closed under complement). Moreover, L intersects K1 but not K2,
and L intersects K2 but not K1. Thus {K1, K2} is C-coverable.

Conversely, assume that {K1, K2} is C-coverable. Then we can find lan-
guages L1, . . . , Lp in C covering {K1, K2}. Denote by L the union of all Li
intersecting K1 for 1 6 i 6 p. Observe that L ∈ C since C is closed under
union.

Let w ∈ K1. Since L1, . . . , Lp is a covering of {K1, K2}, there exists an
integer i such that w ∈ Li. This language Li intersectsK1, hence it is contained
in L. Therefore, w ∈ L and K1 ⊂ L.

Moreover, L does not intersect K2, since otherwise, there would be a lan-
guage Li intersecting both K1 and K2. Finally, we obtain that L is a separator
in C of K1 and K2.

Note that the property of non-C-coverability refines the notion of pairwise
non-separability. In other words, if two languages of {K1, . . . , Kn} are C-
separable, then {K1, . . . , Kn} is C-coverable. However, if all the pairs (Ki, Kj)
are not C-separable, then {K1, . . . , Kn} may or may not be C-coverable, see
Figure 3.8. This is illustrated by the following example.

194 Théo Pierron

3. Separation of regular languages

K3

K1

K2

L2

L1

K3

K1

K2

L′1

L′2L′3

Figure 3.8 – {K1, K2, K3} is covered by L′1 ∪ L′2 ∪ L′3, but not by L1 ∪ L2

Example 3.44. Let K1 = (aa)+ + b(bb)+, K2 = (bb)+ + c(cc)+ and K3 =
(cc)+ +a(aa)+. Observe that any pair (Ki, Kj) is not FO-separable. Indeed for
example, K1 contains b(bb)∗, which is not FO-separable from (bb)+ (contained
in K2). However, {K1, K2, K3} is FO-covered by {a∗, b∗, c∗}.

On the other hand, if we take L1 = (aaa)∗, L2 = (aaa)∗a and L3 =
(aaa)∗aa, they are still pairwise non FO-separable, but {L1, L2, L3} is not FO-
coverable.

Informally, the reason for which L1, L2 and L3 are pairwise non FO-separable
is that all of them contains words an with arbitrarily large n. Conversely, K1

and K2 are non FO-separable because of arbitrarily long words of the form bn,
and for K2, K3 it is because of cn. Therefore, the set {L1, L2, L3} is not FO-
coverable since the pairs (Li, Lj) have the same cause of non-separability, while
the set {K1, K2, K3} is FO-coverable because these causes are independent.

For more insight on the covering problem and its benefits towards separa-
tion, we refer to [Place and Zeitoun, 2017b]. As a final remark, note that the
covering problem is the key to solve C-separation for some classes C such as FO
or the lower levels of finitely-based hierarchies: we actually do not know how to
solve C-separation directly, but decidability of C-covering yields an algorithm
for C-separation.

With this more general problem, we can finally state the separability trans-
fer result we look for. It states that when C “cannot distinguish” the tagging
languages, then the tagging process preserves C-separability of the recognized
languages.

Proposition 3.45. Let A1 and A2 be two automata over an alphabet A. Take
K = (K1, . . . , Kn) a tuple of languages over an alphabet disjoint from A such
that {K1, . . . , Kn} is not Bool(C)-coverable.

Then the languages recognized by A1 and A2 are C-separable if and only if
the languages recognized by A1[K] and A2[K] are C-separable.

Induction Schemes: From Language Separation to Graph Colorings 195

3.3. Input format vs complexity

Observe that this proposition considers Bool(C)-coverability instead of C-
coverability. This is because we are stating a result about separability, hence we
need to recover some separability information from a coverability hypothesis.
The only tool we described to do so is given by Lemma 3.43. However, it is
only valid when C is closed under Boolean operation. Since C is only a positive
variety, this may not be the case. Therefore, we use here a stronger notion
instead: Bool(C)-coverability.

Proposition 3.45 is proven in Subsection 3.3.5. Together with Proposi-
tion 3.41, it pinpoints the hypotheses that the tagging languages must satisfy.
The existence of such languages is given by the following proposition.

Proposition 3.46. Let D be a variety such that D 6= Reg. For any integer n,
one may construct a monoid morphism β : B∗ → N of polynomial size in n that
recognizes n pairwise disjoint languages K1, . . . , Kn such that {K1, . . . , Kn} is
not D-coverable.

Observe that this proposition constructs languages satisfying all the hy-
potheses of Propositions 3.41 and 3.45 except that their alphabet B may not
be disjoint from the alphabet of A1 and A2. However, the properties of Propo-
sition 3.46 do not depend on which alphabet is used. We can thus rename the
letters of B (if needed) to ensure this additional condition while preserving the
properties of Proposition 3.46.

Assuming Propositions 3.41, 3.45 and 3.46 hold, we show how to end the
proof of Theorem 3.37. Take n as the maximal number of transitions of A1 and
A2. Take a tuple K = (K1, . . . , Kn) given by Proposition 3.46 for D = Bool(C)
(D is a variety by Lemma 3.34) and denote by β : B∗ → N a monoid mor-
phism recognizing K1, . . . , Kn. Note that this is the only use of the hypothesis
Bool(C) 6= Reg in Theorem 3.37. Up to renaming letters, we may assume that
B is disjoint from the alphabet A of A1 and A2. Using Proposition 3.41, we can
effectively construct some monoid morphisms α1 : A∗ →M1 and α2 : A∗ →M2

recognizing the same languages as A1[K] and A2[K]. These morphisms are the
output of our reduction. Since M1 and M2 have polynomial size with respect
to A1, A2 and N (by Proposition 3.41) and N has polynomial size with respect
to n (by Proposition 3.46), our reduction has the requested complexity. More-
over, using Proposition 3.45, the reduction is also correct since C-separability
and C-inseparability transfers between the languages recognized by A1 and
A2 and those recognized by A1[K] and A2[K]. This concludes the proof of
Theorem 3.37.

The end of this section is devoted to the proofs of the three remaining
propositions: 3.46, 3.41 and 3.45. A subsection is devoted to each of them.

196 Théo Pierron

3. Separation of regular languages

3.3.3 Construction of tagging languages

In this subsection, we prove Proposition 3.46. We thus fix an integer n
and a variety D (Reg. We look for n pairwise disjoint languages K1, . . . , Kn

recognized by a morphism β : B∗ → N of polynomial size in n, such that
{K1, . . . , Kn} is not D-coverable. Before giving the explicit construction, we
present its outline on an example, by taking D = FO.

Example 3.47. Recall that the language (aa)∗ is not FO-definable. Lemma 3.43
thus ensures that {(aa)∗, a(aa)∗} is not FO-coverable.

Note that this is valid for every letter a. Therefore, for every integer p, we
have p sets of non FO-coverable languages: the {(aiai)∗, ai(aiai)∗} for 1 6 i 6 p.

For every x ∈ {0, 1}p, consider the language Kx containing all words w ∈
{a1, . . . , ap}∗ such that, for 1 6 i 6 p, the number |w|ai of letters ai in w equals
xi modulo 2. Observe that there are 2p such languages. Moreover, they are all
recognized by the following morphism:{

{a1, · · · , ap}∗ → (Z/2Z)p

w 7→ (|w|a1 mod 2, . . . , |w|ap mod 2)

In particular, note that the monoid (Z/2Z)p has size 2p, which is linear in the
number of languages Kx.

Observe that if x, y ∈ {0, 1}p are different, there exists 1 6 i 6 p such that
xi 6= yi. By symmetry, assume that xi = 0. In particular, each word of Lx
has an even number of ai’s, while every word of Ly has an odd number of ai’s.
This implies that no word is contained in both Lx and Ly. As a consequence,
the languages Lx are pairwise disjoint.

It remains to show that the set {Kx, x ∈ {0, 1}p} is not FO-coverable. To
this end, we consider the 2p languages obtained by considering the concatena-
tions L′1 · · ·L′p where each L′i is (aiai)

∗ or ai(aiai)∗. Observe that each of these
concatenations is contained in exactly one Kx. Therefore, it is sufficient to
prove that the set of such concatenations is not FO-coverable. This is actually
a generic result about C-covering we will state in Lemma 3.48.

Therefore, we obtain 2p languages, all of them recognized by the same
monoid of size 2p, and whose set is not FO-coverable. Taking p = dlog2(n)e
thus implies Proposition 3.46 in the case of FO.

We now give the construction in the generic case. Take p = dlog2(n)e.
Since D 6= Reg, there exists a regular language L outside of D. Moreover,
since D is a variety, we can rename the letters of L to obtain p languages
L1, . . . , Lp over some pairwise disjoint alphabets B1, . . . , Bp such that none of
L1, . . . , Lp lies in D.

We use these languages to construct K1, . . . , Kn. To this end, we introduce
the notion of projection over an alphabet. If B and C are alphabets such that

Induction Schemes: From Language Separation to Graph Colorings 197

3.3. Input format vs complexity

B ⊂ C, the projection πC,B is the morphism C∗ → B∗ erasing the letters of
C \B. We fix here B =

⋃p
i=1Bi.

For j ∈ [1, n], we define Kj as an intersection H1 ∩ · · · ∩Hp where each Hi

is π−1
B,Bi

(Li) or π−1
B,Bi

(B∗i \ Li). Since we have 2p choices and n 6 2p, we can
thus define n languages K1, . . . , Kn.

Assume that there exist two integers i, j such that Ki∩Kj contains a word
w. Then for 1 6 k 6 p, we have πB,Bk

(w) ∈ πB,Bk
(Ki)∩πB,Bk

(Kj). Therefore,
πB,Bk

(Ki) and πB,Bk
(Kj) are not disjoint. Since these languages are either

Lk or B∗k \ Lk, we have πB,Bk
(Ki) = πB,Bk

(Kj). Since this is valid for every
integer k, we have Ki = Kj by construction. This implies that the languages
K1, . . . , Kn are pairwise disjoint.

Moreover, note that L1, . . . , Lp are the same up to letter renaming. For
1 6 i 6 p, let ϕi : B∗i → B∗1 be a bijection such that ϕi(Li) = L1, obtained by
renaming letters. If ψ1 : B∗1 → M is a morphism recognizing L1, then ϕi ◦ ψ1

is a morphism B∗i → M recognizing Li. Denote by ψi this morphism. The
languages K1, . . . , Kn are then recognized by the single morphism:

ϕ :

{
B∗ →Mp

u 7→ (ψ1(πB,B1(u)), · · · , ψp(πB,Bp(u))).

Due to our choice of p, the size of Mp is polynomial in n.
It remains to show that {K1, . . . , Kn} is not D-coverable. By definition

of coverability, observe that it is sufficient to find a non D-coverable set of
languages {K ′1, . . . , K ′n} such that each Ki contains K ′i. In our case, note
that each language Kj contains a concatenation L′1 · · ·L′p where for i ∈ [1, p],
L′i = Li or L′i = B∗i \ Li.

Since Li /∈ D and D is closed under complement, Li is not D-separable from
B∗i \ Li, hence the set {Li, B∗i \ Li} is not D-coverable. It is thus sufficient to
prove that non D-coverability is preserved when considering concatenations.
This is actually a consequence of the following lemma, a simplified version
of a result from [Place and Zeitoun, 2017b]. It is an extension of a similar
result about inseparability: if K is not D-separable from K ′ and L is not D-
separable from L′, then KK ′ is not D-separable from LL′ when D is a class of
regular languages closed under quotients. We will come back to this point in
Chapter 4.

Lemma 3.48. Let D ⊂ Reg be a class closed under quotients. Let {L1, . . . , Ln}
and {L′1, . . . , L′p} be two non-D-coverable sets of languages. Then the product
set {LiL′j | i ∈ [1, n], j ∈ [1, p]} is not D-coverable.

By Lemma 3.48, we thus obtain that the set of all the products L′1 · · ·L′p is
not D-coverable, which ensures that neither is {K1, . . . , Kn}. This concludes
the proof of Proposition 3.46.

198 Théo Pierron

3. Separation of regular languages

For the sake of completeness, we end this subsection by giving the proof
of Lemma 3.48. We thus fix a quotient-closed class D of regular languages,
and two non D-coverable sets of languages {L1, . . . , Ln} and {L′1, . . . , L′p}. Let
L =

⋃n
i=1 Li and L

′ =
⋃p
j=1 L

′
j.

Consider a D-covering K1, . . . , Kq of {LiL′j | i ∈ [1, n], j ∈ [1, p]}. In
particular, observe that LL′ ⊂ K1 ∪ · · · ∪Kq. We have to prove that some Ki

intersects all the products LiL′j.
First assume that we can find two words u ∈ L and v ∈ L′ such that the

following assertions hold for every w ∈ A∗ and 1 6 k 6 q:

(1) If u ∈ Kkw
−1, then Kkw

−1 intersects every Li for 1 6 i 6 n.

(2) If v ∈ w−1Kk, then w−1Kk intersects every L′j for 1 6 j 6 p.

Using these two words, we show how to conclude the proof of Lemma 3.48. By
construction, we have uv ∈ LL′, hence uv lies in some Kk. We prove that this
language intersect every product LiL′j. Let i ∈ [1, n] and j ∈ [1, p].

We have uv ∈ Kk, hence u ∈ Kkv
−1. By (1), we obtain that there exists a

word ui ∈ Kkv
−1 ∩ Li. We thus have uiv ∈ Kk, i.e. v ∈ u−1

i Kk. Using (2), we
obtain that there exists a word vj ∈ u−1

i Kk ∩ L′j. Finally, we obtain that the
word uivj lies in Kk and in LiL′j.

Therefore, the language Kk intersects all the LiL′j for 1 6 i 6 n and
1 6 j 6 p, ensuring that {LiL′j | i ∈ [1, n], j ∈ [1, p]} is not D-coverable.

It remains to prove the existence of u and v. Note that assertions (1) and
(2) are symmetrical, hence we only need to prove the first one. It follows from
the non-D-coverability of {L1, . . . , Ln}. Consider the set Q = {Kkw

−1 | w ∈
A∗, 1 6 k 6 q} of all the possible right quotients of the languages K1, . . . , Kq.
Observe that since K1, . . . , Kq are regular, each of them has a finite number of
quotients, hence Q is finite. Moreover, since D is closed under quotients, we
have Q ⊂ D.

Property (1) can be rephrased as follows: there exists a word u ∈ L such
that every Q ∈ Q containing u intersects all the Li’s for 1 6 i 6 n. Assume
that this is false, i.e. for every u ∈ L, there exists Qu ∈ Q containing u and
which does not intersect all the Li’s.

Observe that {Qu, u ∈ L} is finite and contains only languages of D, since
it is a subset of Q. Moreover, we claim that is a D-cover of {L1, . . . , Ln}.
Indeed, for every u ∈ L, we have u ∈ Qu and, by construction of Qu, none of
the Qu intersect all the Li’s. We thus obtain a contradiction since {L1, . . . , Ln}
is not D-coverable, which concludes the proof of Lemma 3.48.

3.3.4 Complexity

In this subsection, we prove Proposition 3.41. We thus fix an automaton A
with alphabet A, n transitions and an n-tuple K = (K1, . . . , Kn) of pairwise

Induction Schemes: From Language Separation to Graph Colorings 199

3.3. Input format vs complexity

disjoint languages recognized by a monoid morphism β : B∗ → N . We con-
struct a monoid morphism χ : (A∪B)∗ →M recognizing the same language as
A[K], and such that the monoid M has polynomial size with respect to A and
N in two steps. Throughout the reduction, we will apply it on the following
example.

Example 3.49. We will take A as the minimal automaton of the language
(aa)∗. Since it has two transitions, we need two tagging languages: we take
(bb)∗ and b(bb)∗. Note that {(bb)∗, b(bb)∗} is not FO-coverable, hence this choice
of tagging languages could actually occur when considering FO-separation.

The automata A and A[K] are depicted on Figure 3.9. Observe that A[K]

a

a

a · (bb)∗

a · b(bb)∗

Figure 3.9 – Running example of Subsection 3.3.4

recognizes the language (a(bb)∗ab(bb)∗)∗.

The first step is to construct an automaton Â from A[K] satisfying the
hypothesis of Lemma 3.40. To this end, we construct a monoid C and a
morphism ϕ : (A∪B)∗ → C recognizing all the transition labels aKi of A[K].
Observe that, since the languages in K are pairwise disjoint, the automaton
Â obtained by replacing each transition q aKi−−→ q′ by all the transitions q s−→ q′

for s ∈ ϕ(aKi) satisfies the hypothesis of Lemma 3.40: each element of the
monoid C appears on at most one transition of Â.

We thus obtain that the transition monoid of Â has polynomial size with
respect to the number of states of A[K], i.e. of A. Our second step then
consists in using this transition monoid together with ϕ to construct another
monoid morphism recognizing the same language as A[K].

First step: recognizing the tags

The construction of the morphism ϕ and the monoid C relies on the fol-
lowing lemma.

Lemma 3.50. Given a morphism β : B∗ → N and an alphabet A disjoint from
B, the languages aL where a ∈ A and L is recognized by β are all recognized
by a monoid of size (|A|+ 1)|N |+ 2.

Proof. Define C = (A × N) ∪ N ∪ {0, 1}. We use the different components
to remember the number of letters of A we encounter: the component A×N
handles words in AB∗, the component N handles words in B+ and 0, 1 take

200 Théo Pierron

3. Separation of regular languages

care of the other words. More precisely, we define the multiplication law over
C by taking for a, b ∈ A and s, t ∈ N :

(a, s)(b, t) = 0, (a, s)t = (a, st), and t(a, s) = 0,

where 0 is an absorbing element and 1 is a neutral element. We can check that
this multiplication law is associative.

We then define a morphism ϕ : (A ∪ B)∗ → C by taking for a ∈ A and
b ∈ B:

ϕ(a) = (a, 1) and ϕ(b) = β(b).

Observe that by construction, for every w ∈ B∗:

ϕ(aw) = (a, β(w))

ϕ(w) = β(w) if w 6= ε

ϕ(ε) = 1

and ϕ(w) = 0 if w /∈ AB∗ ∪B∗.
As a consequence, we have ϕ−1(a, s) = aβ−1(s) for any a ∈ A and s ∈ N .

Therefore, the morphism ϕ recognizes all the languages aL where a is a letter of
A and L is recognized by β: the corresponding accepting set is {a}×β(L).

To obtain a monoid morphism ϕ recognizing the tags in A[K], it is then
sufficient to apply Lemma 3.50 to the monoid morphism β recognizing the
languages inK. It remains to show how to use ϕ to obtain a monoid recognizing
the same language as A[K].

Example 3.51. The morphism β : {b}∗ → Z/2Z defined by β(b) = 1 rec-
ognizes the tagging languages (bb)∗ and b(bb)∗. The monoid constructed by
Lemma 3.50 is then C = ({a} × Z/2Z) ∪ Z/2Z ∪ {0C , 1C} with

× (a, 0) (a, 1) 0 1 0C 1C
(a, 0) 0C 0C (a, 0) (a, 1) 0C (a, 0)
(a, 1) 0C 0C (a, 1) (a, 0) 0C (a, 1)

0 0C 0C 0 1 0C 0
1 0C 0C 1 0 0C 1

0C 0C 0C 0C 0C 0C 0C
1C (a, 0) (a, 1) 0 1 0C 1C

Note that, in order to avoid confusion, 0 and 1 denote elements of Z/2Z while
the absorbing element and the neutral element of C are denoted by 0C , 1C .

The monoid morphism ϕ : {a, b}∗ → C is then defined by ϕ(a) = (a, 0)
and ϕ(b) = 1. For n > 0, we have

ϕ(abn) = (a, n mod 2) and ϕ(bn) = n mod 2.

Induction Schemes: From Language Separation to Graph Colorings 201

3.3. Input format vs complexity

Second step: the entire construction

The morphism ϕ recognizes all the languages labeling transitions in A[K].
Moreover, its codomain C has polynomial size with respect to A and N . We
now show how to use ϕ to construct a monoid recognizing the same language
as A[K]. The monoid we construct will have polynomial size with respect to
A[K] and to C, hence with respect to A and N .

To obtain this monoid, we will use Lemma 3.40, which ensures that an
automaton has a small transition monoid when each letter labels at most one
transition. Observe that it makes no sense to apply this lemma to A[K] since
its transitions are labeled by languages instead of letters. However, we know
that these languages are pairwise disjoint. We thus construct an auxiliary
automaton Â such that:

1. Â satisfies the hypothesis of Lemma 3.40.

2. We can construct a monoid recognizing the same language as A[K] from
the transition monoid of Â.

Remark 3.52. Recall that C is endowed with a monoid structure. To prove
the first item, we can actually forget about this structure, we just consider it
as a set of letters. However, the second item requires to use also the monoid
structure of C: it is used as a building block for constructing the final monoid.

Therefore, C (as a monoid) is equipped with its multiplicative law, and we
will consider words over (the alphabet) C, hence we also consider concatenation
over C∗. To avoid confusions, we will explicitly write s ·t to denote the element
of C obtained using the multiplicative law of C, and st to denote the 2-letter
word over the alphabet C.

The automaton Â is constructed by applying ϕ to every transition label
of A[K]. However, this gives an automaton whose transitions are labeled by
subsets of C where we would want only elements of C. This is not restric-
tive: each time we see a transition labeled by {s1, · · · , sp}, we replace it by p
transitions labeled by each of the si’s. The entire construction is given by the
following:

• Â and A[K] have the same sets of states, initial states and final states.

• The alphabet of Â is C.

• There is a transition q
s−→ q′ in Â whenever there exists a transition

q
K−→ q′ in A[K] with s ∈ ϕ(K).

Example 3.53. In our example, the automaton Â is depicted on Figure 3.10.

202 Théo Pierron

3. Separation of regular languages

(a, 0)

(a, 1)

Figure 3.10 – The automaton Â

Using that transitions in A[K] are labeled by pairwise disjoint languages,
we can prove the following claim.

Claim 3.54. Every s ∈ C is the label of at most one transition in Â.

Proof. Assume that s ∈ C appears on two transitions in Â. Let K,K ′ be the
corresponding labels of the transitions in A[K]. We have s ∈ ϕ(K) ∩ ϕ(K ′).
Since ϕ recognizes K and K ′, we obtain that K and K ′ intersect. This is a
contradiction since the tagging languages are pairwise disjoint.

This claim ensures that Â satisfies the hypothesis of Lemma 3.40. There-
fore, this automaton has a small transition monoid. In particular, there is a
small monoid recognizing the same language as Â. To lift this result to the
language recognized by A[K], we first describe the language recognized by Â.

Given a word u = u1 · · ·up where each ui lies in AB∗, we define ϕ̂(u) as
the word of Cp whose i-th letter is ϕ(ui) for 1 6 i 6 p. Observe that this is
well-defined: since A and B are disjoint, the factorization of u in (AB∗)∗ is
unique. With this application, we have the following.

Claim 3.55. The following hold:

• If a word u ∈ (A ∪ B)∗ is accepted by A[K] then u ∈ (AB∗)∗ and ϕ̂(u)

is accepted by Â.

• If v ∈ C∗ is accepted by Â, then there exists u ∈ (AB∗)∗ accepted by
A[K] such that v = ϕ̂(u).

Proof.

• Assume that u ∈ (A ∪ B)∗ is accepted by A[K]. By definition, there
is an accepting path in A[K] whose labels are a1K1, · · · , apKp and such
that u can be decomposed as u1 · · ·up where ui ∈ aiKi for 1 6 i 6
p. In particular, we have u ∈ (AB∗)∗. By definition of Â, the word
ϕ̂(u) = ϕ(u1) · · ·ϕ(up) of Cp labels an accepting path in Â. Thus, ϕ̂(u)

is accepted by Â.

• Let v ∈ C∗ accepted by Â. We write v = s1 · · · sp such that s1, . . . , sp
are the letters of v.

Induction Schemes: From Language Separation to Graph Colorings 203

3.3. Input format vs complexity

By hypothesis, s1, . . . , sp are the labels of an accepting path in Â. By
construction of Â, there is an accepting path labeled by a1K1, · · · , apKp

in A[K] such that si ∈ ϕ(aiKi) for 1 6 i 6 p.

Since ϕ recognizes every language aiKi, for 1 6 i 6 p, there exists
ui ∈ aiKi such that ϕ(ui) = si. We define u as u1 · · ·up, so that u is
accepted by A[K]. This concludes since

ϕ̂(u) = ϕ(u1) · · ·ϕ(up) = v.

Example 3.56. Recall that in our case, ϕ maps every word abi on the element
(a, i mod 2) of C = {(a, 0), (a, 1), 0, 1, 0C , 1C}.

Let w ∈ (ab∗)∗ and write w = abi1 · · · abip . Then ϕ̂(w) is the p-letter word
over C whose j-th letter is (a, ij mod 2).

We can check that the language recognized by Â is (cd)∗, where c (resp. d)
is the letter (a, 0) (resp. (a, 1)) of C.

In particular, observe that the image under ϕ̂ of the language recognized
by A[K] (namely (a(bb)∗ab(bb)∗)∗) is (cd)∗, the language recognized by Â.

Let L be the language recognized by A[K]. By Claim 3.55, we obtain that
ϕ̂(L) is recognized by Â, and in particular by its transition monoid M . By
Claim 3.54 and Lemma 3.40, the monoid M has polynomial size with respect
to Â (and thus in A). It remains to lift this result from ϕ̂(L) to L itself. This
is the goal of the following lemma.

Lemma 3.57. Let ϕ be a monoid morphism from (A ∪ B)∗ → C. Denote by
ϕ̂ as the monoid morphism (AB∗)∗ → C∗ defined previously.

Let K ⊂ C∗ be a language recognized by a morphism ψ: C∗ → M . Then
we can construct a monoid recognizing ϕ̂−1(K) of polynomial size with respect
to the size of M and C.

Before proving Lemma 3.57, we first show how it concludes the proof
of Proposition 3.41. First observe that, due to Claim 3.55, we have L =
ϕ̂−1(ϕ̂(L)). We can then apply Lemma 3.57 with K = ϕ̂(L). This ensures
that L is recognized by a monoid of polynomial size in C and M . Due to
Lemma 3.40, M is polynomial in the number of states in A. Moreover, due to
Lemma 3.50, C is polynomial in N , which concludes the proof.

We end this subsection by proving Lemma 3.57.
First note that, without loss of generality, we may assume that ϕ recognizes

the language {ε} and that ψ(1C) = 1M . Indeed, if it is not the case, we can
replace M by M ∪ {1′}, where for s ∈M , we define s1′ = 1′s = s, and extend
ϕ and ψ by ϕ(ε) = ψ(1C) = 1′, so that {ε} = ϕ−1(1′).

Observe also that any word w ∈ (A ∪ B)∗ can be decomposed uniquely as
w = w1w2w3 where w1 ∈ B∗, and either w2 = w3 = ε, or w2 ∈ (AB∗)∗ and w3 ∈
AB∗. The monoid structure we define follows this decomposition: we associate

204 Théo Pierron

3. Separation of regular languages

an element of C with each part w1 and w3. With the part w2 ∈ (AB∗)∗, we
associate an element of M . The base set of the monoid we construct is thus
C ×M × C. We define a monoid structure by taking:

(r, s, t)(r′, s′, t′) =


(rr′, s′, t′) if (s, t) = (1M , 1C),

(r, s, tr′) if (s, t) 6= (1M , 1C) and (s′, t′) = (1M , 1C),

(r, sψ(t · r′)s′, t′) where t · r′ ∈ C otherwise.

Using that ϕ recognizes {ε}, one can check that this law is associative and
that (1C , 1M , 1C) is a neutral element. We then define a monoid morphism
χ : (A ∪ B)∗ → C ×M × C by taking χ(b) = (ϕ(b), 1M , 1C) for b ∈ B and
χ(a) = (1C , 1M , ϕ(a)) for a ∈ A.

Note that the monoid we constructed has polynomial size with respect to
C and M . It thus remains to prove that it recognizes the language ϕ̂−1(K).
More precisely, we prove that its accepting set is

F = {(1C , s, t) | sψ(t) ∈ ψ(K)}.

This relies on the following claim, which is a consequence of the definition of χ.

Claim 3.58. For any word u ∈ (AB∗)∗, we have χ(u) = (1C , s, t) where
sψ(t) = ψ(ϕ̂(u)).

Moreover, for every u ∈ (A∪B)∗, the first component of χ(u) is the image
under ϕ of the largest prefix of u in B∗.

Using this claim, we can prove that χ−1(F) = ϕ̂−1(K). We separate the
proof in two parts, one for each inclusion.

⊃ If u ∈ ϕ̂−1(K), then u ∈ (AB∗)∗. Hence, using the previous claim, we
know that χ(u) = (1C , s, t) where sψ(t) = ψ(ϕ̂(u)). Therefore, sψ(t) =
ψ(ϕ̂(u)) ∈ ψ(K), hence χ(u) ∈ F .

⊂ Conversely, take u ∈ (A ∪ B)∗ such that χ(u) ∈ F . By definition of F ,
we can write χ(u) = (1C , s, t) with sψ(t) ∈ ψ(K).

Define v as the greatest prefix of u in B∗. Using the previous lemma, we
obtain that ϕ(v) = 1C . Since ϕ recognizes {ε}, we have v = ε.

Thus, u begins with an a, i.e. u lies in (AB∗)∗. By Claim 3.58, we have
sψ(t) = ψ(ϕ̂(u)). By definition of F , ψ(ϕ̂(u)) lies in ψ(K). Since ψ
recognizes the language K, we obtain that ϕ̂(u) ∈ K, hence u ∈ ϕ̂−1(K).

It remains to prove Claim 3.58. Using the first case in the definition of the
multiplicative law on C ×M × C, we have, for b, b′ ∈ B:

χ(bb′) = χ(b)χ(b′) = (ϕ(b), 1M , 1C)(ϕ(b′), 1M , 1C) = (ϕ(bb′), 1M , 1C)

Induction Schemes: From Language Separation to Graph Colorings 205

3.3. Input format vs complexity

By induction, we thus obtain that χ(w) = (ϕ(w), 1M , 1C) for every w ∈ B∗.
Let a ∈ A and w ∈ B∗. We have

χ(aw) = χ(a)χ(w) = (1C , 1M , ϕ(a))(ϕ(w), 1M , 1C)

Observe that ϕ(a) 6= 1C , otherwise we have a ∈ ϕ−1(1C), a contradiction since
ϕ recognizes {ε} = ϕ−1(1C). By the second multiplication rule, we thus obtain

χ(aw) = (1C , 1M , ϕ(aw))

Finally, if a, b ∈ A and w,w′ ∈ B∗, we have by the third multiplication rule:

χ(awbw′) = (1C , 1M , ϕ(aw))(1C , 1M , ϕ(bw′)) = (1C , ψ(ϕ(aw)), ϕ(bw′))

where ϕ(aw) is interpreted as a 1-letter word over the alphabet C. We thus
have χ(awbw′) = (1C , ψ(ϕ̂(aw)), ϕ(bw′)).

By induction, we thus obtain that if u ∈ (AB∗)∗ is decomposed as u1 · · ·up
where each ui lies in AB∗, we have

χ(w) = (1C , ψ(ϕ̂(u1 · · ·up−1)), ϕ(up))

In particular, observe that

ψ(ϕ̂(u1 · · ·up−1))ψ(ϕ(up)) = ψ(ϕ̂(u1 · · ·up−1)ϕ(up)) = ψ(ϕ̂(u))

where ϕ(up) is interpreted in the middle term as a letter of C. This proves the
first part of the lemma.

For the second part, let u ∈ (A∪B)∗ and write u = vw where v is the largest
prefix of u in B∗. In particular, note that w ∈ (AB∗)∗, hence χ(w) = (1C , s, t)
with sψ(t) = ψ(ϕ̂(w)). We thus have

χ(u) = χ(v)χ(w) = (ϕ(v), 1M , 1C)(1C , s, t) = (ϕ(v), s, t)

which proves the second part of the lemma. This concludes the proof of Propo-
sition 3.41.

We now end the construction on the running example.

Example 3.59. The two transitions of the automaton Â have different labels.
Denote by c, d the letters (a, 0) and (a, 1) of C. The language recognized by
Â is thus (cd)∗.

Therefore, we already computed the transition monoid M of Â in Exam-
ple 3.28: it is isomorphic to {ε, c, d, cd, dc, cc} endowed with concatenation
using the relations cdc = c, dcd = d and cc = dd.

The output of the reduction given by Lemma 3.57 is then the following set
of size 216:

{(a, 0), (a, 1), 0, 1, 0C , 1C} × {ε, c, d, cd, dc, cc} × {(a, 0), (a, 1), 0, 1, 0C , 1C}.

206 Théo Pierron

3. Separation of regular languages

For every w ∈ {a, b}∗, write w = bi0abi1a · · · abip and define

χ(w) =


(1C , ε, 1C) if w = ε

(i0 mod 2, ε, 1C) if w ∈ B+

(1C , ϕ̂(abi1 · · · abip−1), (a, ip mod 2)) if w ∈ (AB∗)+

(i0 mod 2, ϕ̂(abi1 · · · abip−1), (a, ip mod 2)) otherwise

By Lemma 3.57, χ is a monoid morphism, which recognizes the language
(a(bb)∗ab(bb)∗)∗ recognized by A[K]. The corresponding accepting set is

{(1C , c, (a, 1)), (1C , cd, 1C), (1C , ε, 1C)}.

3.3.5 Separability transfer

In this subsection, we prove Proposition 3.45. This is the last result we need
to prove before concluding about Theorem 3.37. We recall here its statement.

Proposition 3.45. Let A1 and A2 be two automata over an alphabet A. Take
K = (K1, . . . , Kn) a tuple of languages over an alphabet disjoint from A such
that {K1, . . . , Kn} is not Bool(C)-coverable.

Then the languages recognized by A1 and A2 are C-separable if and only if
so are the languages recognized by A1[K] and A2[K].

Before proving Proposition 3.45, we illustrate that its hypotheses are needed,
with the case C = Bool(C) = FO. We first show that the non-coverability hy-
pothesis is needed to transfer separability from the languages recognizes by
the tagged automata to the initial languages.

Example 3.61. Take A1 and A2 to be the same as the minimal automaton
of a(aa)∗. In particular, observe that a(aa)∗ is not FO-separable from itself.
Assume that the tagging languages are K = (b, bb, bbb, bbbb), so that A1[K]
and A2[K] are depicted on Figure 3.61. Then A1[K] recognizes ab(abbab)∗

a · b

a · bb

a · bbb

a · bbbb

Figure 3.11 – Automata for Example 3.61

and A2[K] recognizes abbb(abbbbabbb)∗. These two languages are FO-separable
since each word of ab(abbab)∗ is either of size 2 or has an a in third position,
while each word of abbb(abbbbabbb)∗ has length at least 4 and contains a b in
third position.

Induction Schemes: From Language Separation to Graph Colorings 207

3.3. Input format vs complexity

This illustrates that even if the tagging languages use a disjoint alphabet,
the non-coverability is necessary for transferring non-separability along the
tagging process.

The second example shows that the other hypothesis, namely that the
tagging languages use a disjoint alphabet, is also needed. This time, it is used
to transfer separability from the initial languages to the ones recognized by
the tagged automata.

Example 3.62. Take A1 and A2 to be the minimal automata of (ab)∗ and
(ab)∗a. These languages are FO-separable since (ab)∗ is FO-definable and
(ab)∗∩(ab)∗a = ∅. Assume that the tagging languages areK = (b(bb)∗, (bb)∗, b(bb)∗, (bb)∗),
so that A1[K] and A2[K] are depicted on Figure 3.62. Then A1[K] recognizes

a · b(bb)∗

b · (bb)∗

a · b(bb)∗

b · (bb)∗

Figure 3.12 – Automata for Example 3.62

(a(bb)∗)∗ and A2[K] recognizes (a(bb)∗)∗b. These two languages are not FO-
separable: they contain respectively a(bb)∗b and a(bb)∗. As we already saw,
(bb)∗ and (bb)∗b are not FO-separable. With a similar argument, we can prove
that this is also the case for a(bb)∗b and a(bb)∗.

This illustrates that even if the non Bool(C)-coverability hypothesis is ful-
filled, we need to use a disjoint alphabet for the tagging languages. This time,
this is necessary for transferring separability along the tagging process.

We now come back to the proof of Proposition 3.45. We thus take two
automata A1 and A2 over an alphabet A. We also fix a tuple of languages
K = (K1, . . . , Kn) over an alphabet B disjoint from A such that {K1, . . . , Kn}
is not Bool(C)-coverable.

We show that the languages L1 and L2 recognized by A1 and A2 are C-
separable if and only if so are the languages L′1 and L′2 recognized by A1[K]
and A2[K]. We prove separately the two directions of this equivalence.

Separability and tagging

We first assume that L1 is C-separated from L2 by a language Sep. We
then use Sep to construct a C-separator for L′1 and L′2. As illustrated with
Example 3.62, this direction does not use that K is not C-coverable, only the
languages of K are contained in B∗, hence do not use any letter of A.

For i = 1, 2, recall that Ai and Ai[K] only differ from the labels of their
transitions: every transition q

aKj−−→ q′ in Ai[K] comes from a transition q a−→ q′

208 Théo Pierron

3. Separation of regular languages

in Ai. Since all the Kj’s are languages over the alphabet B, erasing the letters
in B from a word in L′i gives a word in Li. Therefore, if πA∪B,A is the projection
(A ∪B)∗ → A∗ we have L′i ⊂ π−1

A∪B,A(Li).
It is then easy to see that π−1

A∪B,A(Sep) separates L′1 from L′2. Indeed, since
L1 ⊂ Sep and Sep ∩ L2 = ∅, we have:

L′1 ⊂ π−1
A∪B,A(L1) ⊂ π−1

A∪B,A(Sep)

and
L′2 ∩ π−1

A∪B,A(Sep) ⊂ π−1
A∪B,A(L2 ∩ Sep) = ∅.

Moreover, since C is a positive variety, it is closed under inverse morphism,
hence π−1

A∪B,A(Sep) ∈ C. Therefore, L′1 and L′2 are C-separable.

Non separability and tagging

We now prove the converse direction: we assume that Sep′ ∈ C separates
L′1 from L′2 and we construct a language Sep ∈ C separating L1 from L2.
Similarly to the other direction, we construct Sep as an inverse image of Sep′

by a suitable morphism. As illustrated with Example 3.61, this time the non-
coverability hypothesis plays a crucial role: C must not be able to distinguish
the languages in K.

Let α : (A ∪ B)∗ → M be the syntactic morphism of Sep′ ∈ C. Since
Bool(C) is a variety, using Proposition 3.32, all the languages recognized by α
lie in Bool(C). Moreover, the union of all the α−1(s) for s ∈ M is (A ∪ B)∗

and hence contains K1 ∪ · · · ∪Kn. Since the set {K1, . . . , Kn} is not Bool(C)-
coverable, there exists an element s of M such that α−1(s) intersects every
language Ki.

We thus obtain some words w1 ∈ K1, . . . , wn ∈ Kn mapped on s by α:

α(w1) = · · · = α(wn) = s

In some sense, these words are not distinguished by C and α. We may now
define our separating language Sep as ψ−1(Sep′) where ψ : A∗ → (A ∪ B)∗ is
the morphism given by ψ(a) = aw1 for any letter a ∈ A.

Again, since C is a positive variety, it is closed under inverse morphism,
hence Sep ∈ C. It remains to show that Sep separates L1 and L2.

For i = 1, 2, consider the word

u = a1 · · · ap ∈ Li.

It labels an accepting path of Ai. By construction of Ai[K], there is a path in
Ai[K] labeled by a language a1Ki1 · · · apKip .

Hence, we have
v = a1wi1 · · · anwin ∈ L′i.

Induction Schemes: From Language Separation to Graph Colorings 209

3.4. Conclusion

Moreover, we can check that:

α(ψ(u)) = α(a1w1 · · · apw1) = α(a1wi1 · · · apwip) = α(v).

Since α is the syntactic morphism of Sep′, we obtain that

v ∈ Sep′ if and only if ψ(u) ∈ Sep′ if and only if u ∈ Sep.

If u ∈ L1, then v ∈ L′1, hence v ∈ Sep′ since L′1 ⊂ Sep′. Therefore, u ∈ Sep
and L1 ⊂ Sep.

Similarly, if u ∈ L2, then v ∈ L′2, hence v /∈ Sep′ since Sep′∩L2 = ∅, so u /∈
Sep. Therefore L2 ∩ Sep = ∅, which concludes the proof of Proposition 3.45.

3.4 Conclusion
In this chapter, we gave an historical presentation of the membership and

the separation problems, which are the main problems considered in this chap-
ter and in the next one. We investigated a complexity question about the
separation problem. We proved that its complexity does not depend on the
representation of the input languages. This result applies in many contexts,
in particular for all the classes we introduced. It has then been adapted in a
generalized setting in [Place and Zeitoun, 2018a].

The result presented here exhibits a major difference with the case of the
membership problem: the complexity of separation comes from an additional
amount of information that we need to compute, and not from the succinct-
ness of the formalisms representing the inputs. This emphasizes that more
information is needed to solve separation than to solve membership. In partic-
ular, this result also illustrates the robustness of the separation problem: its
complexity behaves better than the one of the membership problem, for which
Theorem 3.37 does not hold.

Despite its consequences on the robustness of the separation problem, The-
orem 3.37 does not provide any complexity bound by itself: it only allows to
transfer existing ones. Moreover, it does not help to obtain decidability results,
since we do not need this theorem to effectively reduce the membership and
separation problems on languages given by several formalisms. These decid-
ability and complexity questions are actually the goal of the next chapter. We
will describe there how to obtain some decidability results, as well as complex-
ity lower bounds for the separation problem. In this setting, Theorem 3.37 will
help anyway since it will allow us to only consider complexity of the separation
problem when the languages are given by automata.

210 Théo Pierron

Chapter 4

The polynomial closure operation

Contents
4.1 Introduction . 212

4.1.1 Generic hierarchies 212

4.1.2 Properties of polynomial closures 214

4.1.3 A variant of the polynomial closure 215

4.1.4 Organization of the chapter 217

4.2 The case of finite words 218

4.2.1 From separation to pairs 218

4.2.2 First step for Proposition 4.15: the case of finite classes222

4.2.3 Second step for Proposition 4.15: stratifying Pol(C) . 224

4.2.4 Specific closure operations 227

4.2.5 Deciding Pol(C)-separation 229

4.3 Pol(C)-separation is PSpace-hard 236

4.3.1 Satisfiability for quantified Boolean formulas 237

4.3.2 Outline of the reduction 239

4.3.3 Encoding valuations into alphabets 239

4.3.4 Base case: quantifier-free formulas 240

4.3.5 Induction step: existential quantifier 241

4.3.6 Induction step: universal quantifier 247

4.4 Extension to infinite words 251

4.4.1 Algebraic framework: ω-semigroups 253

4.4.2 Computing pairs . 256

4.4.3 Soundness of the algorithm 258

4.4.4 Completeness of the algorithm 260

211

4.1. Introduction

4.5 Conclusion . 262

This chapter is organized as follows. Section 4.2 is a presentation of the
usual tools for the separation problem. The result of Section 4.3 was obtained
with Thomas Place and Marc Zeitoun in 2017. A weaker version (with a lighter
proof) was later included in [Place and Zeitoun, 2018a]. Section 4.4 is based on
a result obtained with Thomas Place and Marc Zeitoun in 2015 ([Pierron et al.,
2016]), which we extended this year to the more generic framework introduced
in [Place and Zeitoun, 2017c].

4.1 Introduction

4.1.1 Generic hierarchies

In Chapter 3, we introduced several hierarchies. Among them, the dot-
depth hierarchy and the Straubing-Thérien hierarchy were defined to stratify
the star-free languages according to expressiveness criteria. Recall that while
the initial level of both these hierarchies are different, they follow the same
construction pattern.

Both are actually a special case of a generic construction studied in [Place
and Zeitoun, 2017c]. Unless stated otherwise, all the results of this introduction
come from this paper. Starting from a base class C (called the basis), one may
define a concatenation hierarchy by mimicking the construction of the dot-
depth hierarchy: level 0 is C, and for every integer n,

• The (half-)level n+ 1
2
is the polynomial closure of level n.

• The (full-)level n+ 1 is the Boolean closure of level n+ 1
2
.

All of the results mentioned in Chapter 3 actually transpose to this more
generic framework whenever the basis has nice properties. In particular, sep-
aration is decidable for levels up to 3

2
, and so is membership for to level 5

2
in

every hierarchy with a finite basis satisfying nice properties. Even the link
with logic is generic: every concatenation hierarchy with a nice enough basis
corresponds to the quantifier alternation hierarchy for FO enriched with some
predicates depending on the basis. To state this link properly, we introduce
the following predicates: given a language L,

• the binary predicate IL(i, j) is satisfied by all words a1 · · · an such that
the infix ai+1 · · · aj−1 lies in L.

• the unary predicate PL(i) is satisfied by all words a1 · · · an such that the
prefix a1 · · · ai−1 lies in L.

• the unary predicate SL(i) is satisfied by all words a1 · · · an such that the
suffix ai+1 · · · an lies in L.

212 Théo Pierron

4. The polynomial closure operation

• the nullary predicate NL is satisfied by all words in L (and not by the
words outside L).

We denote by FO(C) the first-order logic using the predicates IL, PL, SL and
NL for every L ∈ C. Note that, in contrast to the signatures we defined for
the Straubing-Thérien and the dot-depth hierarchies, observe that FO(C) may
contain infinitely many predicates.

Similarly to the previous chapter, we can also define a generic quantifier
alternation hierarchy: for every positive integer n, we define Σn(C) as the
fragment of FO(C) with either less than n blocks of quantifiers, or precisely n
blocks of quantifiers, the first one being existential. As previously, its Boolean
closure is denoted by BΣn(C).

When the class C is nice enough, the generic concatenation hierarchy with
basis C coincides with the generic quantifier alternation hierarchy created using
the predicates associated to C. This is stated in the following result.

Theorem 4.1 ([Place and Zeitoun, 2017c]). Let C be a class of languages
closed under Boolean operations and quotient. Let n be an integer and L be a
language.

• L lies in the half-level n+ 1
2
of the generic concatenation hierarchy based

on C if and only if it is defined by a Σn+1(C)-formula.

• L lies in the full-level n of the generic concatenation hierarchy based on
C if and only if it is defined by a BΣn(C)-formula.

This result generalizes the equivalence between the (usual) quantifier alter-
nation hierarchy and the Straubing-Thérien hierarchy given by Theorem 3.4.
Indeed, for the basis {∅, A∗} the additional predicates satisfy the following:

• I∅, P∅, S∅ and N∅ are always false.

• PA∗ , SA∗ and NA∗ are always true.

• IA∗ corresponds to the predicate <. Indeed, a word a1 · · · an satisfies
IA∗(i, j) when ai+1 · · · aj−1 ∈ A∗. This is true as soon as this infix is a
(possibly empty) word, i.e. when j − 1 > i. Therefore IA∗(i, j) holds
whenever i < j.

In the same way, we may recover the link established in Theorem 3.3 be-
tween the dot-depth hierarchy and the quantifier alternation hierarchy with
predicates +1,min,max. Indeed, the predicates obtained when taking C =
{∅, {ε}, A+, A∗} satisfy:

• I{ε} is the successor predicate +1. Indeed, a word w = a1 · · · an satisfies
I{ε}(i, j) if and only if ai+1 · · · aj−1 = ε. This means that j = i+ 1.

Induction Schemes: From Language Separation to Graph Colorings 213

4.1. Introduction

• Using a similar argument, P{ε} and S{ε} corresponds respectively to min
and max.

• N{ε} is the predicate ε.

• The additional predicates corresponding toA+ can be expressed as Boolean
combinations of ε,+1,min and max.

These generic results thus emphasize how important are the Boolean and
polynomial closure operations for studying the previously defined hierarchies.
This is also illustrated for polynomial closure with the following result. It
gives a generic extension of Theorem 3.7, which again motivates the study of
separation for solving membership problems for higher levels of the hierarchies,
even for generic ones.

Theorem 4.2 ([Place and Zeitoun, 2018b]). If C is a nice enough class of
regular languages such that C-separation is decidable, then Pol(C)-membership
is also decidable.

The case C = AT (see Example 3.31) is a fundamental example. Indeed, AT
is a finite class satisfying nice properties. As a consequence, the decidability
results for finitely based generic concatenation hierarchies also hold when the
basis is AT. In this case, the class Pol(AT), which is level 1

2
of the AT-based

hierarchy, is also level 3
2
of the Straubing-Thérien hierarchy, as shown by the

following result.

Theorem 4.3 ([Pin and Straubing, 1981]). Let L be a regular language. The
following are equivalent:

• L lies in Pol(AT).

• L is defined in Σ1(AT).

• L is defined in Σ2({∅, A∗}).

This theorem ensures that the AT-based hierarchy and the Straubing-
Thérien are the same but with an offset. In particular, the generic results
for the AT-based concatenation hierarchy thus yields decidability of separa-
tion for level 5

2
and membership for level 7

2
in the Straubing-Thérien hierarchy.

4.1.2 Properties of polynomial closures

The goal of this chapter is to focus on the separation problem for classes
obtained as polynomial closures. We first recall the definition of this operation,
as well as the historical results about it.

214 Théo Pierron

4. The polynomial closure operation

Definition 4.4. The polynomial closure Pol(C) of a class C, is the smallest
class containing C and closed under union and marked concatenation: ifK,L ∈
Pol(C) and a is a letter, then KaL ∈ Pol(C).

It is easy to see that when the class C is closed under quotients, then so is
Pol(C). This is due to the fact that the quotient operation behaves well with
respect to union and marked concatenation. Indeed, we have, for all languages
K,L and letters a, b:

a−1(K ∪ L) = a−1K ∪ a−1L

a−1(KbL) =

{
(a−1K)bL if ε /∈ K or a 6= b

(a−1K)bL ∪ L if ε ∈ K and a = b

Similar formulas hold for right quotients.
Assuming that C is also closed under inverse morphisms, we can lift this

result to Pol(C), as shown by [Arfi, 1991], which gives an explicit description of
the inverse image of L ∈ Pol(C) under a morphism ϕ using only quotients and
inverse images of languages in C. The same paper proves that when C is closed
under quotient and Boolean operations, then Pol(C) is stable by intersection.
This result was then improved in [Branco and Pin, 2009] by getting rid of the
hypothesis that C is closed under complement, and in [Pin, 2013] by giving an
explicit formula for the intersection of two languages in Pol(C). The following
theorem summarizes these results.

Theorem 4.5. Let C be a class of languages closed under quotients. Then
Pol(C) is closed under quotients. Moreover,

• If C is closed under union and intersection, then so is Pol(C).

• If C is closed under inverse morphisms, then so is Pol(C).

Note that this theorem proves that if C is a positive variety, then so is
Pol(C). In particular, every half-level of any generic hierarchy based on some
positive variety is a positive variety, and every full-level is a variety.

4.1.3 A variant of the polynomial closure

When considering closure under operations based on concatenation, a clas-
sic restriction asks for the concatenations to be unambiguous. A concatenation
KL of two languages is said to be unambiguous if for every word w ∈ KL,
there exists a unique pair (u, v) ∈ K × L such that w = uv. In other words,
every word w in KL has a unique decomposition witnessing that w ∈ KL.

Note in particular that being an unambiguous concatenation is a semantic
property of the concatenation KL and not only of the language H = KL.
Indeed, the same language can be expressed as two different concatenations,

Induction Schemes: From Language Separation to Graph Colorings 215

4.1. Introduction

one being unambiguous and not the other one. This is for example the case
with A∗ · aA∗ and A∗a · (A \ {a})∗, which denote the same language.

With this notion, we can define the unambiguous polynomial closure UPol(C)
of a class C, as the smallest class containing C and closed under:

• disjoint unions: if K,L ∈ UPol C and K ∩ L = ∅ then K ∪ L ∈ UPol C,

• unambiguous marked concatenation: if K,L ∈ UPol C and a is a letter,
then KaL ∈ UPol C when KaL is an unambiguous concatenation, i.e.
when every word w ∈ KaL has a unique decomposition as uav with
u ∈ K and v ∈ L.

This operation is not just another artificial construction. For example,
when C = AT, the obtained class UPol(AT) is the well-studied class of un-
ambiguous languages. It enjoys a wealth of equivalent characterizations, for
example as the languages definable simultaneously by a Σ2-sentence and by
the negation of a Σ2-sentence, or with a FO sentence using only two variables
(see [Tesson and Thérien, 2002] for more characterizations).

Similarly to Pol(C), the class UPol(C) also satisfies some closure properties
inherited from C, as shown by the following result.

Theorem 4.6 ([Pin et al., 1988]). If C is a class of regular languages closed
under Boolean operations and quotients, then so is UPol(C).

Observe that, while it was not obvious from the definition, UPol(C) is
closed under complement. This is a big difference from Pol(C), for which this
property does not hold in most of the cases. This property can be better seen
with the following characterization.

Theorem 4.7 ([Pin and Weil, 1995]). If C is a class of regular languages closed
under Boolean operations and quotients, then UPol(C) is the class of languages
in Pol(C) whose complement also lies in Pol(C).

Regarding membership and separation, the class UPol(C) satisfies some
nice properties. The first one is generalization of Theorem 4.2: there is a
generic reduction from the UPol(C)-membership problem to C-membership.

Theorem 4.8 ([Almeida et al., 2015; Place and Zeitoun, 2018c]). Let C is a
class of regular languages closed under Boolean operations and quotients. If
C-membership is decidable, then so is UPol(C)-membership.

This result relies on the fact that if C is a nice enough class, then every
language L in UPol(C) can be built using disjoint unions and unambiguous
marked concatenations starting only from languages recognized by the syn-
tactic morphism of L. In particular, we have L ∈ UPol(C) if and only if
L ∈ UPol(D) where D is a finite class depending on L. This implies that
UPol(C)-membership reduces to UPol(D)-membership for a finite class D.

216 Théo Pierron

4. The polynomial closure operation

While this result is no longer valid for separation, we can nonetheless decide
the UPol(C)-separation problem when C is finite, using an extension of the
tools introduced in [Place and Zeitoun, 2017c] to decide the Pol(C)-separation
problem in this setting. This is summarized in the following result.

Theorem 4.9 ([Place and Zeitoun, 2018c]). If C is a finite class of regular
languages closed under Boolean operations and quotients, then the UPol(C)-
separation problem is decidable.

4.1.4 Organization of the chapter

The goal of this chapter is to present decidability and complexity results
about the Pol(C)-separation problem. Before presenting our contributions, we
first introduce the tools and the algorithm of [Place and Zeitoun, 2017c] solving
Pol(C)-separation when C is finite in Section 4.2. Even if finiteness of C is a
strong hypothesis, the problem is already challenging. This can be illustrated
in two ways. The first one relies on the situation for C = AT: recall that
Pol(AT) is level 3

2
of the Straubing-Thérien hierarchy by [Pin and Straubing,

1981]. In this case, the decidability of Pol(AT)-membership was established
in 1991, i.e. more than 15 years after that the same problem was solved for
piecewise-testable languages.

Another way to illustrate the importance of the case of a finite class C is
given by the restricted operation UPol. Indeed, recall that we can reduce the
UPol(C)-membership problem to the UPol(D)-membership problem for a finite
class D. Therefore, the problem is actually harder for finite classes.

(Variants of) the algorithm we present for Pol(C)-separation when C is
finite have also been considered in [Place and Zeitoun, 2018a]. In particular,
a PSpace upper bound is proved in the case C = AT. We prove in Section 4.3
a complementary result: when C is expressive enough, the Pol(C)-separation
problem is PSpace-hard. This is expressed by the following theorem.

Theorem 4.10. Let C be a positive variety of regular languages such that
AT ⊂ C and C 6= Pol(C). Then the Pol(C)-separation problem is PSpace-hard.

In particular, this theorem applies for C = AT, which yields the exact
complexity of Pol(AT)-separation.

Section 4.4 is devoted to the setting of infinite words. We extend the
two types of results presented in Sections 4.2 and 4.3. The first result is a
complexity result: it is a corollary of Theorem 4.10 when considering separation
for languages of infinite words.

The second result is a decidability result. We generalize the decidability of
separation for level 1

2
of finitely-based hierarchies (obtained in Section 4.2) to

the setting of infinite words. This is based on the decidability result of [Pierron
et al., 2016] for Pol(AT)-separation on infinite words. The result presented

Induction Schemes: From Language Separation to Graph Colorings 217

4.2. The case of finite words

here actually extends the one of [Pierron et al., 2016] since we consider Pol(C)-
separation for a finite class C instead of Pol(AT)-separation. Nonetheless, we
follow the same approach: the algorithm we present is based on its counterpart
on finite words: we reuse some of the tools presented in Section 4.2. For
instance, the algorithm for finite words is used as a black box.

4.2 The case of finite words
The goal of this section is to provide an overview of the generic framework

and techniques we use to tackle decidability of the Pol(C)-separation problem
when C is finite. We give a proof of Corollary 4.44 following the approach
of [Place and Zeitoun, 2017d] (leading to Theorem 4.43). As we will see, this
requires to introduce a wider framework. In particular, even if we only want to
consider classes obtained as polynomial closures, most of the tools we present
here actually apply to many classes (with some adjustments, as described
in [Place and Zeitoun, 2017c]).

4.2.1 From separation to pairs

In this subsection, we give more details about the approach followed in [Place
and Zeitoun, 2014a; Place, 2015; Pierron et al., 2016; Place and Zeitoun, 2017d]
to decide membership and separability for some classes. For this subsection,
we thus fix a class C closed under union, intersection and quotients, and which
contains ∅ and A∗.

We begin with an important but simple remark. Observe that the separa-
tion problem takes two regular languages as input. The analysis we describe
here has to be applied to the recognizers of each language. To avoid duplicates,
it is convenient to have a single object recognizing both of them. This is not
restrictive: if L1 is recognized by α1 : A∗ → M1 and L2 by α2 : A∗ → M2,
then L1 and L2 are both recognized by the morphism α : A∗ →M1×M2 with
α(w) = (α1(w), α2(w)). Observe that α is computable from α1, α2.

The goal now becomes to determine whether two languages recognized by
a given morphism α : A∗ → M are C-separable. Observe that if we want to
solve C-separation in the generic case, we have to be able to test separability
of every pair α−1(s) and α−1(t). This case is actually sufficient: determining
which pairs (s, t) ∈M2 satisfy “α−1(s) is C-separable from α−1(t)” is sufficient
to recover which pairs of languages recognized by α are C-separable. This
is shown by Lemma 4.11. Note that this is not really surprising since every
language recognized by α can be written as union of some α−1(s) for suitable
values of s.

Lemma 4.11. Let C be a class closed under union and intersection. Let α
be a monoid morphism recognizing two languages L1 and L2. Then L1 and

218 Théo Pierron

4. The polynomial closure operation

L2 are C-separable if and only if α−1(s1) is C-separable from α−1(s2) for every
s1 ∈ α(L1) and s2 ∈ α(L2).

Proof. First assume that L1 is C-separable from L2, and fix s1 ∈ α(L1), s2 ∈
α(L2). Then α−1(s1) ⊂ L1 and α−1(s2) ⊂ L2. Therefore, any language sepa-
rating L1 from L2 also separates α−1(s1) from α−1(s2).

Conversely, assume that α−1(s1) and α−1(s2) are separated by a language
Ks1,s2 ∈ C for every s1 ∈ α(L1) and s2 ∈ α(L2), that is:

α−1(s1) ⊂ Ks1,s2 ⊂ α−1(s2).

We use these languages Ks1,s2 to prove that there is a language of C sepa-
rating L1 from L2. As a candidate for this separator, define:

L =
⋃

s1∈α(L1)

⋂
s2∈α(L2)

Ks1,s2

By hypothesis, C is closed under union and intersection, hence we have
indeed L ∈ C.

It remains to prove that L separates L1 from L2. We first prove that L1 ⊂ L.
By construction, for every s1 ∈ α(L1), s2 ∈ α(L2), we have α−1(s1) ⊂ Ks1,s2 ,
hence α−1(s1) ⊂

⋂
s2∈α(L2) Ks1,s2 .

Since L1 is recognized by α, we have L1 =
⋃
s1∈α(L1) α

−1(s1), hence L1 ⊂ L.
Next, assume that there is a word w ∈ L2 ∩ L. Then by definition of L,

there exists s1 ∈ α(L1) such that for all s2 ∈ α(L2), w ∈ Ks1,s2 . In particular,
taking s2 = α(w) ∈ α(L2), we have w ∈ Ks1,α(w). We thus obtain that
w ∈ Ks1,α(w) ∩ α−1(α(w)), a contradiction since Ks1,α(w) ∩ α−1(α(w)) = ∅.
Finally, we obtain that L is a language in C separating L1 from L2.

Lemma 4.11 thus reduces C-separation of two languages L1, L2 to the com-
putation of all the pairs (s, t) ∈ α(L1)×α(L2) such that α−1(s) is C-separable
from α−1(t). This leads to the following definition.

Definition 4.12. Let α : A∗ → M be a monoid morphism. For any (s, t) ∈
M2, the pair (s, t) is a C-pair for α if α−1(s) is not C-separable from α−1(t).
We denote by PC[α] the set of such pairs.

Example 4.13. In this example, we consider FO-pairs for the syntactic mor-
phisms of the languages (aa)∗ and (ab)∗ (described in Example 3.14).

• Let M = Z/2Z and α : a∗ →M defined by α(a) = 1.

The set PFO[α] contains (0, 0) since (aa)∗ is not FO-separable from itself,
and (1, 1) for the same reason. Moreover, the languages (aa)∗ and a(aa)∗

are not FO-separable, hence (0, 1) and (1, 0) are also FO-pairs for α. In
this case, we thus have PFO[α] = M2.

Induction Schemes: From Language Separation to Graph Colorings 219

4.2. The case of finite words

• Let α : {a, b}∗ → M be the syntactic monoid of (ab)∗, where M =
{ε, a, b, ab, ba, aa}. Recall that this monoid is aperiodic. By Schützen-
berger’s theorem, every language of the form α−1(s) for s ∈ M is FO-
definable. In particular, α−1(s) and α−1(t) are FO-separable as soon as
they are disjoint, i.e. s 6= t. Therefore, PFO[α] contains only trivial pairs:
it is {(s, s), s ∈M}.

To illustrate the importance of pairs, we give an application for solving
Pol(C)-membership. Theorem 4.2, proved in [Place and Zeitoun, 2014a, 2018b]
reduces decidability of Pol(C)-membership to C-separation. The underlying
result is a characterization of Pol(C) parameterized by C-pairs, given by the
following theorem.

Theorem 4.14 ([Place and Zeitoun, 2018b]). Let C be a class of regular lan-
guages closed under union, intersection and quotient. A language L lies in
Pol(C) if and only if its syntactic morphism α : A∗ → (M,6M) satisfies

sω+1 6M sωtsω

for every C-pair (s, t) for α.

In view of this result, we obtain that solving C-separation allows us to
solve Pol(C)-membership. Indeed, recall that due to Lemma 4.11, computing
C-pairs is equivalent to solving C-separation. Therefore, Theorem 4.14 implies
Theorem 4.2, which states that Pol(C)-membership reduces to C-separation.

When C is finite, observe that C-separation (and thus computing C-pairs)
can be solved easily. Indeed, to test separability of two languages L1, L2 over an
alphabet A, we test for every L ∈ C over the alphabet A whether L separates
L1 from L2. Since there is a finite number of such languages L, this is decidable.
Therefore, Theorem 4.14 gives a decidable characterization of Pol(C), hence
Pol(C)-membership is always decidable when C is finite. In the rest of this
section, we show how to lift this result to Pol(C)-separation.

Considering non-separability to define pairs is much more robust than sep-
arability. Indeed, as we will see, the set of pairs enjoys some nice closure
properties, which would not be true for the set of non-pairs. This allows to use
fixpoint algorithms for computing sets of pairs: we start from the set of trivial
pairs (s, s) for s ∈ M , then compute more pairs using closure under several
operations, until we reach a fixpoint. Among these operations, a generic one is
the product. Indeed, due to the closure under quotients of C, the set of pairs
is a sub-monoid of M2, as stated in Proposition 4.15.

Proposition 4.15 ([Place and Zeitoun, 2018b]). Let C be a class of regular
languages closed under intersection and quotients. Let α : A∗ → M be a
monoid morphism. If (s, t) and (s′, t′) are C-pairs, then (ss′, tt′) is also a
C-pair.

220 Théo Pierron

4. The polynomial closure operation

This proposition is actually a consequence of the more generic result stating
that if K is not C-separable from K ′ and L is not C-separable from L′, then
KK ′ is not C-separable from LL′. Note that a similar statement is already
proved for the covering problem in Lemma 3.48, and can then be translated to
the separation problem when C is closed under complement using Lemma 3.43.

We first state a direct proof of Proposition 4.15 (as given in [Place and
Zeitoun, 2018b]).

Proof of Proposition 4.15. By contrapositive, assume that (ss′, tt′) is not a C-
pair. By definition, this means that there is a language K ∈ C separating
α−1(ss′) from α−1(tt′), i.e.

α−1(ss′) ⊂ K ⊂ α−1(tt′)

We prove that either (s, t) or (s′, t′) is not a C-pair. To this end, we construct
the following candidate for a separator of α−1(s) from α−1(t):

H =
⋂

w∈α−1(s′)

Kw−1

By Myhill-Nerode’s theorem, the intersection defining H is actually finite since
K is regular. Therefore, since C is closed under quotients, we obtain that
H ∈ C.

By construction, since α−1(ss′) ⊂ K, we have α−1(s) ⊂ H. Therefore, if
H ∩ α−1(t) = ∅, we get that (s, t) is not a C-pair and the proof is over.

If this is not the case, there exists u ∈ H ∩α−1(t). We use u to construct a
language G separating α−1(s′) from α−1(t′). This concludes the proof: (s′, t′)
is not a C-pair. Define G = u−1K, which lies in C since C is closed under
quotients. We have to prove that α−1(s′) ⊂ G and G ∩ α−1(t′) = ∅.

Let w ∈ α−1(s′). Then, by definition of H, we have u ∈ Kw−1, hence
uw ∈ K and w ∈ u−1K, so w ∈ G. Therefore

α−1(s′) ⊂ G.

Next, assume that there exists v ∈ α−1(t′) ∩ G. By definition of G, we have
uv ∈ K, hence uv ∈ K ∩ α−1(tt′), a contradiction since K ∩ α−1(tt′) = ∅.
Finally, we have

α−1(t′) ∩G = ∅,

hence (t, t′) is not a C-pair, which concludes the proof.

In the following, we will present an alternative proof in the special case
of classes obtained as polynomial closures. This proof relies on an equivalent
definition of Pol(C)-pairs, which will also be helpful for finding other closure op-
erations. We thus devote the two next subsections to proving Proposition 4.15

Induction Schemes: From Language Separation to Graph Colorings 221

4.2. The case of finite words

when considering the class Pol(C) with C finite. The proof is based on two in-
gredients. We first prove that Proposition 4.15 holds for finite classes (closed
under intersection and quotients). Then, we apply this result to special classes
built on top of C to deduce Proposition 4.15 for Pol(C) when C is finite.

For the rest of this section, we thus fix a finite class C of regular languages,
closed under union, intersection and quotients. We also fix a monoid morphism
α : A∗ →M where M is finite.

4.2.2 First step for Proposition 4.15: the case of finite
classes

In this subsection, we give an alternative proof of Proposition 4.15 in the
special case when C is a finite class. Note that, in this case, C-separation can
be solved directly, without using the formalism of pairs. Indeed, we can just
test for each language whether it is a separator. However, the tools we present
here will help to tackle infinite classes such as Pol(C). We begin by introducing
the following tool.

Definition 4.16. Given w,w′ ∈ A∗, we write w 6C w′ if every language
K ∈ C containing w also contains w′. We also write w ∼C w′ when w 6C w′

and w′ 6C w.

Example 4.17. When C = AT, the relations 6C and ∼C coincide since AT is
closed under complement.

Indeed, if two words u, v satisfy u 6AT v, consider L ∈ AT containing v and
assume that it does not contain u. Then L contains u and is still a language
of AT (since AT is closed under complement). This implies that v ∈ L, a
contradiction. We thus obtain that u ∈ L, hence v 6AT u. Therefore, the
relations 6AT and ∼AT coincide.

Moreover, if u ∼AT v, then for every letter a appearing in u, we have
u ∈ A∗aA∗. Since A∗aA∗ ∈ AT, we have v ∈ A∗aA∗, hence a appears in v. By
exchanging u and v, we obtain that for all words u, v ∈ A∗, we have u ∼AT v
if and only if u and v have the same alphabet, i.e. alph(u) = alph(v).

It is easy to verify that 6C is reflexive and transitive (it is a quasi-order),
and that ∼C is an equivalence relation. The link between this quasi-order and
the separation problem is given by the following lemma.

Lemma 4.18. Let C be a finite class of regular languages, closed under union
and intersection. Let L1 and L2 be two languages. Then L1 is not C-separable
from L2 if and only if there exist u1 ∈ L1 and u2 ∈ L2 such that u1 6C u2.

Proof. Assume that there exist u1 ∈ L1 and u2 ∈ L2 such that u1 6C u2. Then
any language L ∈ C containing L1 contains u1, hence u2 by definition of 6C.
Therefore, L ∩ L2 contains u2, preventing L from separating L1 from L2.

222 Théo Pierron

4. The polynomial closure operation

Conversely, assume that L1 is not C-separable from L2. We consider the
language

L =
⋃
u∈L1

⋂
K∈C,u∈K

K

Since C is finite and closed under union and intersection, we have L ∈ C.
Observe that for every u ∈ L1, we have u ∈

⋂
K∈C,u∈K K, hence u ∈ L and

L1 ⊂ L. Since L ∈ C, it does not separate L1 from L2, therefore, there exists
u2 ∈ L2 ∩ L. Then, by definition of L, there exists u1 ∈ L1 such that every
K ∈ C containing u1 also contains u2. This ensures that u1 6C u2.

Applying Lemma 4.18 to L1 = α−1(s) and L2 = α−1(t) gives the following
alternative definition of pairs.

Definition 4.19. A pair (s, t) ∈ M2 is a C-pair for α if and only if there
exists u ∈ α−1(s) and v ∈ α−1(t) such that u 6C v. The words u, v are called
witnesses of the pair (s, t).

Observe that, even if the relation 6C is computable on A∗ (since C is finite),
the criterion given by Lemma 4.18 involves a quantification over infinitely many
words, thus does not give directly a decidable criterion for separability. How-
ever, it turns out that, in order to solve separation, it is sufficient to compute
the relation 6C only for a set of representative for the syntactic congruences
of the languages we want to separate. This is another motivation to study
pairs: this reformulation states that C-pairs are an abstraction of the relation
6C over a finite monoid, which encapsulates the information needed to solve
separation.

This equivalent definition is adapted to prove closure operations on the set
of pairs. Indeed, Proposition 4.15 is now a consequence of the fact that 6C is
compatible with concatenations, as shown by Lemma 4.20.

Lemma 4.20. Let C be a finite class of regular languages, closed under quo-
tients. Let u, u′, v, v′ be four words such that u 6C u′ and v 6C v′. Then
uv 6C u′v′.

Note that Lemma 4.20 also applies when C is infinite. Before proving this
lemma, let us show how to use it to conclude about Proposition 4.15 when C
is finite. We will then extend it to Pol(C) in the following subsection. Assume
that (s, t) and (s′, t′) are C-pairs for α. Then by definition, we can find witnesses
for these pairs, i.e. some words u, v, u′, v′ mapped on s, t, s′, t′ by α, and such
that u 6C v and u′ 6C v′. By Lemma 4.20, we have uu′ 6C vv′. Therefore, the
words uu′ and vv′ are witnesses of (ss′, tt′), which is thus a C-pair.

We end this subsection with the proof of Lemma 4.20. As we will see, we
only use closure under quotients, and not closure under union and intersection.

Induction Schemes: From Language Separation to Graph Colorings 223

4.2. The case of finite words

Proof of Lemma 4.20. Let u, u′, v, v′ be four words satisfying u 6C u′ and v 6C
v′. Consider K ∈ C containing uv. We want to show that K contains u′v′.

By definition, u ∈ Kv−1 and Kv−1 ∈ C since C is closed under quotients.
Hence since u 6C u′, we have u′ ∈ Kv−1 so u′v ∈ K.

This implies that v ∈ u′−1K. Again, since u′−1K ∈ C and v 6C v′, we have
v′ ∈ u′−1K hence u′v′ ∈ K.

We thus obtain that uv 6C u′v′, which concludes the proof of Lemma 4.20.

4.2.3 Second step for Proposition 4.15: stratifying Pol(C)
Recall that our goal is to decide the separation problem for Pol(C) when

C is a finite class closed under union, intersection and quotients. Since Pol(C)
is infinite, there is no guarantee that Lemma 4.18 is preserved. In particular,
the alternative definition of pairs given by definition 4.19 may not extend in
this case.

To obtain results about Pol(C)-pairs, the approach is to decompose Pol(C)
as an increasing union of finite classes (we say that we stratify Pol(C)), and
then lift results from these smaller classes to Pol(C) itself. Note that these
smaller classes have to satisfy some nice closure properties, to make sure that
the previous results such as Lemma 4.20 still apply.

Remark 4.21. This approach is similar but different from the one of [Place
and Zeitoun, 2017c], where a more generic result is presented, allowing to not
explicitly give a decomposition of Pol(C). It states that for every finite subclass
C ′ of a class C closed under union, intersection and quotients, there exists a
finite class D also closed under union, intersection and quotients such that
C ′ ⊂ D ⊂ C.

This is valid even (and especially) when C is infinite. This allows (for
example) to remove the finiteness hypothesis on C in Theorem 4.14, i.e. to
characterize Pol(C) using C-pairs even when C is infinite.

Recall that we fixed a finite class C closed under union, intersection and
quotients, as well as a morphism α : A∗ → M where M is a finite monoid.
We now present a possible stratification of the class Pol(C). The construction
relies on the following idea.

Intuitively, even if the class Pol(C) is infinite, each language of Pol(C) is
constructed as a finite union of a finite number of marked concatenations of
languages in C. Therefore, we can stratify the class Pol(C) in such a way that
each stratum is a finite class satisfying nice properties. Intuitively, a language
lies in the k-th stratum if it can be built from C using a bounded number of
marked concatenations depending on k.

Given an integer k, we define Polk(C) as follows:

• If k = 0, then Pol0(C) = C.

224 Théo Pierron

4. The polynomial closure operation

• If k > 0, then Polk(C) is the smallest class closed under union and inter-
section such that

– Polk−1(C) ⊂ Polk(C).
– for every K,L ∈ Polk−1(C) and a ∈ A, KaL ∈ Polk(C).

For the sake of readability, we write 6k instead of 6Polk(C), k-pairs instead of
Polk(C)-pairs and Pk[α] instead of PPolk(C)[α].

It is easy to check that the classes Polk(C) are all finite. Moreover, as
shown by the following result, they are also closed under quotients, hence the
results of the previous subsection hold for them. In particular, the alternative
definition of k-pairs using 6k holds.

Lemma 4.22. For every integer k, the class Polk(C) is closed under quotients.

Proof. We use induction on k. If k = 0, then Polk(C) = C, which is closed
under quotients.

Assume that k > 0 and take L ∈ Polk(C). To prove closure under quotients,
it is sufficient to prove that a−1L and La−1 lie in Polk(C) for every letter a.
By symmetry, we only consider the left quotient a−1L.

Note that the quotient operation commutes with union and intersection,
hence it is sufficient to consider the two following cases:

• L ∈ Polk−1(C)

• L is a marked concatenation of languages in Polk−1(C), i.e. L = K1bK2

where b is a letter and K1, K2 ∈ Polk−1(C).

In the former, the induction hypothesis ensures that a−1L ∈ Polk−1(C), hence
a−1L ∈ Polk(C).

In the latter, recall that

a−1L =

{
(a−1K1)bK2 if ε /∈ K1 or a 6= b

(a−1K1)bK2 ∪K2 if ε ∈ K1 and a = b

Using again the induction hypothesis, we have a−1K1 ∈ Polk−1(C), hence a−1L
can be written as a (union of) marked concatenation of languages in Polk−1(C).
Therefore, a−1L ∈ Polk(C), which concludes the proof.

This result ensures that the strata are nice classes. In order to use this
stratification, we still have to show how to recover results for Pol(C) using the
results about Polk(C). We illustrate this by proving Proposition 4.15 for the
class Pol(C). To this end, we link the set of pairs for these different classes.
The following lemma states that we can approximate the set of Pol(C)-pairs
using Polk(C)-pairs.

Induction Schemes: From Language Separation to Graph Colorings 225

4.2. The case of finite words

Lemma 4.23. Let s, t ∈M . We have:

• for every integer k, if (s, t) is a (k+1)-pair then it is a k-pair: Pk+1[α] ⊂
Pk[α].

• (s, t) is a Pol(C)-pair if and only if (s, t) is a k-pair for every integer k:
we have PPol(C)[α] =

⋂
k>0 Pk[α].

Proof.

• Let (s, t) be a (k+ 1)-pair for α. Then α−1(s) is not Polk+1(C)-separable
from α−1(t). Since Polk(C) ⊂ Polk+1(C), we obtain that α−1(s) is not
Polk(C)-separable from α−1(t), i.e. (s, t) is a k-pair.

• Using that Polk(C) ⊂ Pol(C) for every integer k, we can also obtain that
every Pol(C)-pair is a k-pair.
Conversely, let (s, t) be a k-pair for every integer k. Assume that there is
L ∈ Pol(C) separating α−1(s) from α−1(t). Then there exists an integer
k such that L ∈ Polk(C). We thus obtain that α−1(s) and α−1(t) are
Polk(C)-separable, a contradiction since (s, t) is a Polk(C)-pair.

This lemma implies that the set of k-pairs gets refined when k increases,
and that the limit object is the set PPol(C)[α] we want to compute. When the
monoid M is finite, the sequence (Pk[α])k∈N cannot be endlessly refined. We
summarize this in the following result.

Lemma 4.24. There exists an integer ` (depending on α) such that P`[α] =
PPol(C)[α].

While such an integer ` is guaranteed to exist, finding an effective bound
on ` (depending on α) is still a difficult problem, since it is equivalent to
computing the set of Pol(C)-pairs, and thus to solving Pol(C)-separation.

Note that due to Lemma 4.24, the set of Pol(C)-pairs for a morphism α
equals the set of `-pairs for α. In particular, it is a submonoid of M2, which
proves Proposition 4.15 for the class Pol(C).

The methodology described in this subsection to prove Proposition 4.15
can (and will) be applied to find some other closure properties of the set
of Pol(C)-pairs. To this end, we summarize the last two results with the
following lemma. It gives an alternative definition of Pol(C)-pairs, similar
to Definition 4.19. It is obtained by combining Lemmas 4.23 and 4.24 with
Definition 4.19 (instantiated for the finite class Polk(C)).

Lemma 4.25. There exists an integer ` such that for every (s, t) ∈ M2, the
following are equivalent:

• (s, t) is a Pol(C)-pair for α.

226 Théo Pierron

4. The polynomial closure operation

• For every k > 0, there exists uk ∈ α−1(s) and vk ∈ α−1(t) such that
uk 6k vk.

• There exists u` ∈ α−1(s) and v` ∈ α−1(t) such that u` 6` v`.

4.2.4 Specific closure operations

In the two previous subsections, we proved that the set of Pol(C)-pairs
forms a monoid, using a stratification specific to Pol(C). This method actually
applies to less specific classes, and can be used to prove Proposition 4.15, by
constructing a generic stratification for every (nice enough) class of regular
languages.

Observe that we never use any argument specific to the expressiveness of the
class Pol(C) in any of the two proofs of Proposition 4.15 we presented. Indeed,
we did not use any semantical properties of the classes Polk(C): the results rely
only on the inclusions between these classes and Pol(C). In particular, there is
no hope to find specific properties of Pol(C)-pairs using such generic arguments:
we still miss some closure operations that are specific to C and Pol(C). To find
such operations, we reuse the framework of the two last subsections. This
means that we first find some properties of the quasi-orders 6k for k > 0, and
then lift them to Pol(C) using the alternative characterization of Pol(C)-pairs
given in Lemma 4.25.

Therefore, we first consider the case of a finite class C. We begin with a
first example of non trivial words comparable for 6C (i.e. a first example of
non trivial C-pairs).

Lemma 4.26 ([Place and Zeitoun, 2018b]). If C is finite, there exists a natural
number p > 1, such that for any word u ∈ A∗ and any integers m,m′ > 1, we
have upm ∼C upm

′. The smallest such integer p is called the period of C.

Before giving the proof of this lemma, we state a remark about its conse-
quences in terms of C-pairs.

Remark 4.27. This result is exactly the kind of results we look for. Indeed,
it implies that for every s ∈M , (sω, sω+p) is a C-pair for α, where ω = ω(M).
To see this, consider a word u ∈ α−1(s), and observe that

α(upω) = spω = sω

α(upω+p) = spωsp = sω+p

Moreover, Lemma 4.26 gives that upω ∼C up(ω+1), ensuring that upω and upω+p

are witnesses for the C-pair (sω, sω+p).

Proof of Lemma 4.26. Consider the set A∗/ ∼C. Due to Lemma 4.20, ∼C is
compatible with concatenation, hence A∗/ ∼C is a monoid.

Induction Schemes: From Language Separation to Graph Colorings 227

4.2. The case of finite words

Moreover, we can check that it is finite. Indeed, for all words u, v ∈ A∗,
we have u ∼C v if and only if u and v lie in exactly the same languages of
C. Therefore, there are at most 2|C| classes for ∼C, corresponding to all the
possible subsets of C. Since C is finite, we obtain that A∗/ ∼C is also finite.

We define p as the integer ω(A∗/ ∼C) obtained by applying Proposition 3.15
to the finite monoid A∗/ ∼C. We thus have u2p ∼C up for every word u ∈ A∗.
This concludes the proof of Lemma 4.26.

Observe that the proof of this result relies crucially on the finiteness of
C. In particular, the integer p depends on the class C. Therefore, even us-
ing stratifications, we cannot extend this result directly to find Pol(C)-pairs.
Indeed, applying Lemma 4.26 to each class Polk(C), we obtain a sequence of
periods (pk)k such that for all integers k,m,m′ and every word u ∈ A∗, we
have upkm ∼k upkm

′ . This translates in the setting of pairs as (sω, sω+pk) is a
k-pair for every s and k. However, this pair depends on pk, hence it does not
directly yield a Pol(C)-pair. Nonetheless, the period of C will be fundamental
for stating results about Pol(C).

In order to state our next result on Pol(C)-pairs, we need to investigate the
structure of Pol(C), and its stratification. Besides finiteness and closure under
quotient of the strata, we can also find a recurrence relation on the quasi-orders
6k stated below.

Lemma 4.28 ([Place and Zeitoun, 2017c]). Let k be an integer and w and w′
two words. Then w 6k w

′ if and only if the two following properties hold:

• w 6C w′

• If k > 0, for every decomposition w = uav with a ∈ A, we can decompose
w′ = u′av′ in such a way that u 6k−1 u

′ and v 6k−1 v
′.

The proof of this result relies on the special structure of Polk(C). Indeed,
one can witness that a word w lies in a marked concatenation using the letter
a by providing a decomposition uav of w. Since Polk(C) is (up to closure
under union and intersection) the set of marked concatenations of languages
in Polk−1(C), it is not surprising that a Polk(C) condition on w translates as
Polk−1(C) conditions on u and v.

With the recurrence relation given by Lemma 4.28, we can state two last
properties of the quasi-order 6k we need. These are generic examples of non-
trivial elements that are comparable for 6k (and thus of non-trivial k-pairs).
These results are proven inductively using Lemma 4.28.

Lemma 4.29 ([Place and Zeitoun, 2017c]). Let p be the period of C, k be an
integer and let u ∈ A∗. Then for every m,n at least equal to 2k+1− 1, we have

upm 6k u
pn.

228 Théo Pierron

4. The polynomial closure operation

Remark 4.30. We can compare this result to the one obtained by instanti-
ating Lemma 4.26 for the class Polk(C), as done in Remark 4.27. This time,
the two witnesses upm and upn depend only on the period of C but not on
the period of Polk(C). In particular, we obtain that (sω, sω+p) is a k-pair for
every integer k, i.e. a Pol(C)-pair. Indeed, for every integer k and every word
u ∈ α−1(s), we have:

α(upω2k+1

) = spω2k+1

= sω

α(upω2k+1+p) = spω2k+1

sp = sω+p

together with upω2k+1
6k u

pω2k+1+p given by Lemma 4.29. Therefore, upω2k+1

and upω2k+1+p are witnesses of the k-pair (sω, sω+p). Using Lemma 4.25, we
obtain that (sω, sω+p) is a Pol(C)-pair.

Therefore, Lemma 4.29 allows us to find a first example of non-trivial
Pol(C)-pairs, which was not possible using only Lemma 4.26 on each stratum.

We end this section with a last example of non trivial words comparable
by 6k, yielding again a non-trivial example of k-pairs and Pol(C)-pairs.

Lemma 4.31 ([Place and Zeitoun, 2017c]). Let p be the period of C, k be an
integer and let u, v ∈ A∗ be two words such that up 6C v. Then for every m,m′1
and m′2 at least 2k+1 − 1, we have

upm 6k u
pm′1vupm

′
2 .

A final remark is that these results emphasize that the quasi-orders 6k are
much easier to study than 6Pol(C) since the classes Polk(C) are finite. This
justifies to focus on the preorders 6k in order to obtain results for Pol(C).

4.2.5 Deciding Pol(C)-separation
Recall that solving Pol(C)-separation amounts to computing the set of

Pol(C)-pairs for a given morphism α. As explained previously, the usual ap-
proach consists in starting from a set of trivial pairs, and then in constructing
inductively new pairs using some closure properties like Proposition 4.15 or (as
we will see just after) inspired by Lemma 4.31 (see how close are the equations
in Theorem 4.14 and in Lemma 4.31).

This leads to designing fixpoint algorithms by considering closure opera-
tions that are specific to the class Pol(C). Consider Lemma 4.31. The closure
operation it suggests is the following: if (r, s) is a Pol(C)-pair, then so is
(rω, sωtsω) for any t element of M “compatible” with rp, where p is the period
of C and ω = ω(M).

Induction Schemes: From Language Separation to Graph Colorings 229

4.2. The case of finite words

Morphism completion

To state this operation properly, we need to define more precisely what
“compatible” means. To this end, we use the finiteness of C to extend the
relation 6C on M . The key property we look for is that if two words u, v
satisfy u 6C v, we also have α(u) 6C α(v).

This leads to the following definition.

Definition 4.32. A monoid morphism α : A∗ → M is C-compatible if for all
words u, v ∈ A∗ such that α(u) = α(v), we have u ∼C v.

Note that when α is C-compatible, for all s ∈M , the class of s modulo ∼C
is well-defined as the class modulo ∼C of any element of α−1(s) (if s has no
preimage then we simply set its class to ∅). In particular, the above definition
of 6C gives a quasi-order on M , compatible with its product.

If α is not C-compatible, we can replace it by its C-completion. This new
morphism α recognizes all languages recognized by α and is C-compatible. To
construct this completion, observe that C is finite and contains only regular
languages, hence there is a monoid morphism β : A∗ → N recognizing all
languages in C. We then let α : A∗ → M × N be the morphism defined by
α(w) = (α(w), β(w)). Observe that the C-completion of α is computable from
α since C is finite.

The obtained morphism may not be surjective, meaning that some elements
of its co-domain are not useful (in terms of language recognition). However,
restricting the co-domain to the image of the morphism is harmless, so we may
always assume that we consider surjective morphisms. We may summarize the
previous transformations in the following lemma.

Lemma 4.33. Let L1, L2 be two regular languages. If C is a finite class of regu-
lar languages, we can compute a surjective C-compatible morphism recognizing
both L1 and L2.

Note in particular that the hypothesis that C is finite is crucial here for
ensuring that such a morphism is computable. Moreover, proving Lemma 4.33
without this hypothesis would yield an algorithm for solving C-separation for
any class C.

Example 4.34. We illustrate this construction in the case where C is AT, the
class of alphabet testable languages. In this case, we have u ∼AT v when-
ever u and v are two words with the same alphabet. Therefore, a morphism
α is AT-compatible if any two words with the same image under α use the
same alphabet. To obtain the AT-completion of α, observe that 2A is a
monoid when endowed with union and having ∅ as neutral element. Then
β(w) = (α(w), alph(w)) is an AT-compatible monoid morphism recognizing
the languages recognized by α.

230 Théo Pierron

4. The polynomial closure operation

Computing the Pol(C)-pairs

Assuming that α is C-compatible, we may state the aforementioned closure
property. Recall that we fix a finite class C of regular languages, closed under
union, intersection and quotients. We will proceed the same way with α: in
the following, we always assume that α : A∗ → M is a surjective monoid
morphism, which is C-compatible and such that M is a finite monoid.

Proposition 4.35. Let (e, f) be a Pol(C)-pair for α with e2 = e and f 2 = f .
For every t ∈M such that e 6C t, the pair (e, ftf) is a Pol(C)-pair for α.

Proof. Let (e, f) be a Pol(C)-pair with e2 = e and f 2 = f . Let t ∈ M such
that e 6C t. To prove the result, we follow the usual approach: we prove that
(e, ftf) is a k-pair for every k > 0.

Let k > 0. Since (e, f) is a Pol(C)-pair, there exists u ∈ α−1(e) and
v ∈ α−1(f) such that u 6k v.

Since α is surjective, there exists w ∈ α−1(t). Let p be the period of C.
Since α(up) = ep = e 6C t and α is C-compatible, we have up 6C w. We can
thus apply Lemma 4.31: taking ` = p2k+1, we have

u` 6k u
`wu`.

Since u 6k v, by Lemma 4.20, we have u`wu` 6k v
`wv`. Therefore, we have

u` 6k v
`wv`. Since α(u`) = e` = e and α(v`wv`) = f `tf ` = ftf , we obtain

that (e, ftf) is a k-pair.

We may derive a closure operation from this property, and state a first
attempt to compute Pol(C)-pairs using a fixpoint algorithm. Consider a set
S ⊂M2 satisfying the following properties:

• S contains all trivial pairs (s, s) for s ∈M .

• S is closed under product : if (s, s′) ∈ S and (t, t′) ∈ S, then (st, s′t′) ∈ S.

• S is closed under the special operation: if (r, s) ∈ S, then (rω, sωtsω) ∈ S
for all t ∈M such that rp 6C t where p is the period of C.

Note that if S and S ′ satisfy these properties, then so does S ∩ S ′. There-
fore, there exists a minimal such set, that we denote by Sat (Sat stands for
“saturated”). Observe that this set can be computed using a least fixpoint algo-
rithm: we start from the set of trivial pairs, and close it under both properties
until we reach a fixpoint.

Thanks to Propositions 4.15 and 4.35, we know that Sat ⊂ PPol(C)[α]: each
pair (s, t) computed by the algorithm is actually a Pol(C)-pair. However, we
do not know whether the converse inclusion holds: there may be Pol(C)-pairs
that are not computed by the algorithm.

Induction Schemes: From Language Separation to Graph Colorings 231

4.2. The case of finite words

To solve this issue, the answer provided in [Place and Zeitoun, 2014a] (in
the case C = AT) consists in considering objects capturing more properties of
Pol(C) than pairs. This approach relies on a refined notion of pairs: compatible
pairs. In the rest of this section, we define this refined notion, and show how to
compute compatible pairs, and how to use them to recover the desired pairs.

Consider a finite class D, and two D-pairs (s, t) and (s, t′). By definition,
there exist witnesses (u, v) and (u′, v′) for these pairs. We want to record
whether we can choose such witnesses with the constraint u = u′. In other
words, we want to determine when the two pairs (s, t) and (s, t′) can be “syn-
chronized”. We represent such “compatible” pairs as follows.

Definition 4.36. Let D be a finite class. A D-compatible pair for α is an
element (s, {t1, . . . , tn}) ∈M × 2M such that there exists u ∈ α−1(s) such that
for all i ∈ [1, n], there exists vi ∈ α−1(ti) satisfying u 6D vi.

The set of such compatible pairs is denoted by CD[α].

Observe that since Pol(C) is infinite, the previous definition does not apply.
To define Pol(C)-compatible pairs, we mimic Lemmas 4.23 and 4.25: we say
that (s, S) is a Pol(C)-compatible pair if (s, S) is a Polk(C)-compatible pair for
every integer k. We thus take

CPol(C)[α] =
⋂
k>0

CPolk(C)[α]

In particular, observe that Lemmas 4.23 and 4.24 naturally extend to com-
patible pairs, as summarized by the following result. Note that we also extend
the same convention as before: we write Ck[α] instead of CPolk(C)[α].

Lemma 4.37. Let α : A∗ →M be a monoid morphism.

• For every integer k, we have Ck+1[α] ⊂ Ck[α].

• There exists an integer ` such that CPol(C)[α] = C`[α].

Recovering Pol(C)-pairs from Pol(C)-compatible pairs

The algorithm we present will compute the set of Pol(C)-compatible pairs.
Before presenting it, we explain how to recover the set of Pol(C)-pairs from
this information. Note that each Pol(C)-pair (s, t) appears in every Ck[α] as
(s, {t}), hence (s, {t}) ∈ CPol(C)[α]. Conversely, for every Pol(C)-compatible
pair (s, T) and t ∈ T , the pair (s, t) is a k-pair for every integer k, hence
a Pol(C)-pair. Therefore, one can recover the set of pairs from the set of
compatible pairs, as shown by the following lemma.

Lemma 4.38. We have

PPol(C)[α] = {(s, t) | (s, {t}) ∈ CPol(C)[α]}.

232 Théo Pierron

4. The polynomial closure operation

Computing Pol(C)-compatible pairs

It remains to describe how to compute the set of Pol(C)-compatible pairs.
The algorithm from [Place and Zeitoun, 2017d] computes the set of Pol(C)-
compatible pairs for α using a least fixpoint algorithm. It starts from a set
of trivial pairs, and saturates it by several closure operations. We devote a
lemma for each of these steps. We first consider the trivial pairs.

Lemma 4.39. For every s ∈M , (s, {s}) is a Pol(C)-compatible pair for α.

Note that, due to the definition of Pol(C)-compatible pairs, the usual ap-
proach to prove that some pair (s, S) is a Pol(C)-compatible pair consists in
showing that it is a k-compatible pair for every integer k. This is the approach
followed to prove the Lemma 4.39, as well as the next results which consider
closure properties of CPol(C)[α].

Proof of Lemma 4.39. Let k > 0 and s ∈ M . Since α is surjective, there is
u ∈ α−1(s). Since u 6k u, we obtain that (s, s) is a k-pair, hence (s, {s}) is a
k-compatible pair.

Since this is valid for every integer k, we obtain that (s, {s}) is a Pol(C)-
compatible pair.

Such a compatible pair (s, {s}) is called trivial. We then consider some clo-
sure operations. The first one directly comes from the definition of compatible
pairs: their set is closed under inclusion.

Lemma 4.40. Let (s, S) be a Pol(C)-compatible pair. Then for every T ⊂ S,
(s, T) is also a Pol(C)-compatible pair.

Proof. Let k > 0, let (s, S) be a Pol(C)-compatible pair and let T ⊂ S.
By hypothesis, (s, S) is a k-compatible pair, hence there are some witnesses

for s and for each element of S. Since T ⊂ S, the same witnesses ensure that
(s, T) is also a k-compatible pair. Since this holds for every integer k, we
obtain that (s, T) is a Pol(C)-compatible pair.

Recall that the set of pairs is a sub-monoid of M2. We can prove a similar
result: the set of compatible pairs is also a sub-monoid of M × 2M , where the
multiplicative law is given by

(s, S)(t, T) = (st, {s′t′ | s′ ∈ S, t′ ∈ T})

This closure property is again a consequence of the fact that all the quasi-
orders 6k for k > 0 are compatible with concatenation. Its proof is a slight
extension of the one of Proposition 4.15: it relies on the compatibility of 6k

with concatenations.

Lemma 4.41. Let (s, S) and (t, T) be Pol(C)-compatible pairs for α. Then
(st, ST) is also a Pol(C)-compatible pair for α.

Induction Schemes: From Language Separation to Graph Colorings 233

4.2. The case of finite words

Note that Lemmas 4.39, 4.40 and 4.41 actually do not use that we consider
the class Pol(C). They only require that the classes Polk(C) are closed under
quotient and that α is surjective. In particular, they actually hold for every
class D closed under union, intersection and quotient.

In order to obtain an algorithm for Pol(C)-separation, we thus require a
closure property specific to the Pol(C) class. This is the goal of the following
result, an extension of Proposition 4.35.

Lemma 4.42. Let (e, E) be an idempotent Pol(C)-compatible pair, i.e. e2 = e
and {st, (s, t) ∈ E2} = E. Let T = {t ∈ M, t ∼C e}. Then (e, ETE) is also a
Pol(C)-compatible pair.

This is actually the only operation requiring that α is C-compatible. This
is not surprising, since this operation is the only one which is not generic, but
specific to the class Pol(C).

Proof. We fix a Pol(C)-compatible pair (e, E) with E = {s1, . . . , sn}. Let
T = {t ∈ M, t ∼C e}. We prove that (e, ETE) is a Pol(C)-compatible pair
by proving that it is a k-compatible pair for every integer k. We fix such an
integer k. To show that (e, ETE) is a k-compatible pair, we construct a word u
in α−1(e) such that for every s ∈ E, there exists v ∈ α−1(s) satisfying u 6k v.

By definition, there exists w,w1, . . . , wn such that

α(w) = e, α(wi) = si and w 6k wi, 1 6 i 6 n.

Let p be the period of C and ` = p2k+1. Let u = w`, and observe that
α(u) = e` = e. We shall use this word u as a witness in order to show that
(e, ETE) is a k-compatible pair.

It remains to construct witnesses for every element of ETE. Such an
element can be written rts where r, s ∈ E and t ∈ T . We thus look for a word
v such that

α(v) = rts and u 6k v.

Since α is surjective, we can find vt ∈ A∗ such that α(vt) = t. Note also
that since E is idempotent, we have E` = E, hence r and s can both be
decomposed as r1 · · · r` and s1 · · · s` where the ri’s and si’s lie in E. Using
that (e, E) is a Pol(C)-compatible pair, hence a k-compatible pair, we can find
words u1, . . . , u`, w1, . . . , w` mapped on r1, . . . , r`, s1, . . . , s` such that

w 6k ui and w 6k wi for 1 6 i 6 `.

We define v as u1 · · ·u`vtw1 · · ·w`. Observe that by definition

α(v) = r1 · · · r`ts1 · · · s` = rts

It thus remains to prove that u 6k v.

234 Théo Pierron

4. The polynomial closure operation

Note that we have α(vt) = t ∼C e = α(wp). Therefore, since α is C-
compatible, we have vt ∼C wp. We may therefore apply Lemma 4.31 and
obtain that

u = w` 6k w
`vtw

`

Moreover, by definition of ui and wi for 1 6 i 6 `, we have

u 6k w
`vtw

` 6k u1 · · ·u`vtw1 · · ·w` = v.

where the second inequality is obtained from the properties w 6k ui and
w 6k wi using that 6k is compatible with concatenations. This concludes the
proof.

Using Lemma 4.42, we may define a closure operation satisfied by the set
of Pol(C)-compatible pairs, and finally state the result of [Place and Zeitoun,
2017d] concluding about decidability of Pol(C)-separation.

Theorem 4.43 ([Place and Zeitoun, 2017d]). Let C be a finite class of regular
languages, closed under union, intersection and quotients. Let α : A∗ →M be
a surjective C-compatible morphism. The set of Pol(C)-compatible pairs for α
is the smallest set Sat satisfying:

• Sat contains all trivial pairs (s, {s}) for s ∈M .

• Sat is stable under downset: if (s, S) ∈ Sat, then (s, T) ∈ Sat for every
T ⊂ S.

• Sat is stable under product: if (s, S), (t, T) ∈ Sat, then (st, ST) ∈ Sat.

• Sat is stable under the special operation: if (e, E) ∈ Sat is idempotent,
then (e, ETE) ∈ Sat where T = {t ∈M, t ∼C e}.

The proof of Theorem 4.43 is separated in two parts, corresponding to
the inclusions Sat ⊂ CPol(C)[α] and CPol(C)[α] ⊂ Sat. The first one is called
the soundness part : indeed, we check that every element computed in Sat is
actually a Pol(C)-compatible pair. This is proved inductively on the several
operations defining Sat: we prove that applying each operation on a set of
compatible pairs yields a set of compatible pairs. This is a consequence of
Lemmas 4.39, 4.40, 4.41 and 4.42.

The converse part is called the completeness part : we have to prove that
every Pol(C)-compatible pair is actually constructed at some point in Sat. This
part is much harder, and requires some involved decomposition arguments.
We thus do not present the proof here, but refer to [Place and Zeitoun, 2019]
instead.

We end this section by summarizing the algorithm solving Pol(C)-separation.
Recall that the first step is to compute a surjective C-compatible morphism

Induction Schemes: From Language Separation to Graph Colorings 235

4.3. Pol(C)-separation is PSpace-hard

α recognizing the two input languages. Using a least fixpoint algorithm, we
then compute the smallest set containing trivial pairs, and stable by downset,
product and special operation. By Theorem 4.43, this set is the set of Pol(C)-
compatible pairs for α. We finally use Lemma 4.38 to recover the set of Pol(C)-
pairs for α, and solve separation using Lemma 4.11. We thus obtain the fol-
lowing result.

Corollary 4.44. Let C be a finite class of regular languages, closed under
Boolean operations and quotients. The Pol(C)-separation problem is decidable.

4.3 Pol(C)-separation is PSpace-hard
The algorithm of the previous section gives an upper bound for the com-

plexity of the Pol(C)-separation problem, but this bound depends on the class
C. Indeed, since we compute C-compatible morphisms, the size of the obtained
monoid depends on C. For example, when C is level 0 of Straubing-Thérien
hierarchy, i.e. {∅, A∗}, such a monoid has linear size with respect to the ones
recognizing the input languages. However, when C = AT, this monoid has now
exponential size with respect to the alphabet. Indeed, as presented in Exam-
ple 4.34, the AT-completion of a monoid morphism α : A∗ →M has codomain
M × 2A, which has exponential size with respect to A.

As shown in [Place and Zeitoun, 2018a], when |C| is independent of the
alphabet of the considered languages, we can prove a NLogSpace upper bound
for the Pol(C)-separation problem. In the case C = AT, this upper bound
becomes PSpace.

In this section, we prove the complementary result given by Theorem 4.10:
we give a lower bound on the complexity of the Pol(C)-separation problem
when C is a sufficiently large positive variety. By “sufficiently large”, we mean
that C should be able to distinguish words over different alphabets, i.e. that
it contains the variety AT. We recall the statement of this theorem.

Theorem 4.10. Let C be a positive variety of regular languages such that
AT ⊂ C and C 6= Pol(C). Then the Pol(C)-separation problem is PSpace-hard.

Observe that since AT is level 1 of Straubing-Thérien hierarchy, and this
hierarchy is strict. Therefore, Theorems 4.10 and 3.37 prove that separation
is PSpace-hard for every half-level of the hierarchy greater than 1

2
, regardless

of the input format. This is tight for example for level 3
2
[Place and Zeitoun,

2018a].
Before diving into the proof, we state two additional remarks. The first

one illustrates that both the hypotheses are needed.

Remark 4.46. Observe that the two hypotheses AT ⊂ C and C 6= Pol(C) are
needed: the Reg-separation problem is NLogSpace when the inputs are given

236 Théo Pierron

4. The polynomial closure operation

by automata (see the proof of Corollary 3.39), hence certainly not PSpace-
hard, but in this case Reg = Pol(Reg). Moreover, the variety {∅, A∗} does
not contain AT, and its polynomial closure is level 1

2
of Straubing-Thérien

hierarchy, for which separation for languages given by automata is NLogSpace
(see [Place and Zeitoun, 2018a]).

The second remark considers a generalization of Theorem 4.10 to the case
of unambiguous polynomial closure.

Remark 4.47. The construction we are about to present can be slightly mod-
ified to obtain a PSpace lower bound for the UPol(C)-separation problem when
C is a positive variety such that AT ⊂ C 6= UPol(C). However, the proof of
Theorem 4.10 is already rather technical, hence we choose to present it only
for the class Pol(C).

The end of this section is devoted to the proof of Theorem 4.10. We thus
fix a positive variety C of regular languages such that AT ⊂ C 6= Pol(C). By
Theorem 4.5, we know that Pol(C) is also a positive variety. Observe that the
statement of Theorem 4.10 does not precise the representation of the input
languages. In view of Theorem 3.37, since Pol(C) is a positive variety, it
is sufficient to prove Theorem 4.10 when the input languages are given by
automata.

Remark 4.48. This is the only place where we use that C (and hence Pol(C))
is a positive variety. In the rest of the proof, we only use that C (hence Pol(C))
is closed under union, intersection and quotients.

Indeed, even if we use Proposition 3.36 (whose statement requires Pol(C)
to be positive variety) later, the closure under inverse morphism is actually
not used in its proof from [Pin, 1995].

To prove the PSpace-hardness result, we first introduce the problem we
reduce, namely the 3-CNF-QBF-SAT problem. We devote a first subsection
to presenting this emblematic PSpace-complete problem.

4.3.1 Satisfiability for quantified Boolean formulas

A Boolean formula is a logical formula, built from a set of variables us-
ing conjunctions, disjunctions and negations. It is a formula in 3-conjunctive
normal form (3-CNF) when it has the following shape:

p∧
i=1

(`i,1 ∨ `i,2 ∨ `i,3).

where each `i,j is a literal, i.e. a variable or its negation. Each sub-formula
(`i,1∨ `i,2∨ `i,3) is called a clause. This kind of formulas are well-known due to

Induction Schemes: From Language Separation to Graph Colorings 237

4.3. Pol(C)-separation is PSpace-hard

the famous NP-complete problem 3-SAT, asking for satisfiability of a logical
formula in 3-CNF. The 3-CNF-QBF-SAT problem is a generalization of this
problem to the setting of quantified formulas.

A quantified Boolean formula (QBF) ϕ is a formula of the form

Q1x1 · · ·Qnxnψ

where each Qi is a quantifier among {∀,∃}, each xi is a variable, and ψ is
a Boolean formula. If ψ is in 3-CNF, the formula ϕ is said to be a 3-CNF
quantified Boolean formula (3-CNF-QBF for short).

A variable x is free in ϕ if x occurs in ψ and ϕ does not contain the
quantifier ∀x or ∃x. A formula without free variables is said to be a sentence.

As explained before, the 3-CNF-QBF-SAT problem asks for satisfiability
of a QBF sentence in 3-CNF. To define properly this notion, we introduce
valuations.

A valuation val is a function V → {>,⊥} where V is a set of variables.
If x is a variable, the equality val(x) = > (resp. val(x) = ⊥) means that the
variable x is set to true (resp. false) by the valuation val. If val is defined on all
the free variables of a formula ϕ, we can define val(ϕ) inductively as follows:

• val(¬ϕ) = > if and only if val(ϕ) = ⊥.

• val(ϕ ∧ ψ) = > if and only if val(ϕ) = val(ψ) = >.

• val(ϕ ∨ ψ) = > if and only if val(ϕ) = > or val(ψ) = >.

• val(∃xϕ) = > if and only if valx(ϕ) = > or valx(ϕ) = >, where valx (resp.
valx) are valuations obtained by extending val by setting valx(x) = >
(resp. valx(x) = ⊥).

• val(∀xϕ) = > if and only if valx(ϕ) = valx(ϕ) = >.

We say that a formula ϕ is satisfiable if there exists a valuation val defined
on the set of free variables of ϕ such that val(ϕ) = >.

Example 4.49.

• The formula ϕ = ∀y(x ∧ ¬y) is a quantified Boolean formula where x is
a free variable but not y.

There are two valuations defined on x: the one setting val(x) = > and
the other one setting val(x) = ⊥. The first one satisfies ϕ but not the
second one.

• The formula ϕ = ∃x∀y∃z(x∨¬y∨z) is a QBF sentence since none of the
variables x, y, z are free. Moreover, x∨¬y∨ z is a 3-CNF formula, hence
ϕ is a 3-CNF-QBF sentence. It is satisfiable since the two valuations
defined by (val(x), val(y), val(z)) = (>,>,>) and (>,⊥,>) satisfy x ∨
¬y ∨ z.

238 Théo Pierron

4. The polynomial closure operation

We may finally state the problem we consider. The 3-CNF-QBF-SAT prob-
lem takes a 3-CNF-QBF sentence as input and asks whether it is satisfiable.
It is a canonical example of a PSpace-complete problem, see [Sipser, 1997].

4.3.2 Outline of the reduction

To prove Theorem 4.10, we reduce the 3-CNF-QBF-SAT problem to the
non-Pol(C)-separation problem. Note that this will prove that the Pol(C)-
separation problem is PSpace-hard since PSpace is closed under complement.
We thus fix a 3-CNF quantified Boolean sentence ϕ. Our goal is to construct
in LogSpace two automata recognizing some languages Lϕ, L′ϕ such that the
following holds.

Proposition 4.50. Given a QBF sentence ϕ in 3-CNF, ϕ is satisfiable if and
only if Lϕ is not Pol(C)-separable from L′ϕ.

Similarly to Section 3.3, we construct two languages of polynomial size in
ϕ, and we claim that they can be computed in LogSpace, although we do not
explicitly prove it. The construction is inductive: we start from the quantifier-
free part of ϕ and inductively add each quantifier. To handle this induction,
we need a stronger result which takes care of quantified formulas having free
variables, not only quantified sentences. As we will see, the free variables of a
formula ϕ will have an influence on the alphabet of Lϕ, L′ϕ.

The rest of this section is organized as follows. In Subsection 4.3.3, we de-
fine the alphabet of Lϕ, L′ϕ, and state this stronger result. In Subsection 4.3.4,
we give the construction for quantifier free formulas and prove the base case of
the induction. Then, we devote Subsection 4.3.5 and Subsection 4.3.6 to the
inductive steps (one for each type of quantifier).

4.3.3 Encoding valuations into alphabets

Let X = {x1, . . . , xn} be the variables of ϕ. For each variable x ∈ X, we
create two letters x and x. We denote by X the set {x | x ∈ X}. Together
with these letters, our construction needs a constant number p (depending
only on the class C) of fresh new letters at each inductive step. Therefore, if ϕ
has n quantifiers, the alphabet of the languages Lϕ, L′ϕ is a superset of X ∪X
containing np additional letters. We denote by M the set of these new letters,
so that the languages Lϕ, L′ϕ are defined over the alphabet A = X ∪X ∪M .

The induction result we prove establishes a link between satisfiability of
sub-formulas of ϕ and separability of some languages. Note that the satisfi-
ability of these sub-formulas may depend of the value of their free variables.
Thus, the languages may have to change according to these values. To this
end, we consider several languages by considering the intersection of a fixed

Induction Schemes: From Language Separation to Graph Colorings 239

4.3. Pol(C)-separation is PSpace-hard

language with suitable alphabets. With each valuation val, we associate the
alphabet

Aval = (X ∪X ∪M) \ ({x, val(x) = ⊥} ∪ {x, val(x) = >}) .

With this notation, we may state the generalization of Proposition 4.50 we
actually prove.

Proposition 4.51. Let ϕ be a QBF-formula and val be a valuation defined
exactly on the free variables of ϕ. Then we can construct two languages Lϕ, L′ϕ
over A such that val(ϕ) = > if and only if Lϕ ∩ A∗val is not Pol(C)-separable
from L′ϕ ∩ A∗val.

Observe that when ϕ is a sentence, we have Aval = A for any valuation val
satisfying Proposition 4.51. Then ϕ is satisfiable if and only if Lϕ is not Pol(C)-
separable from L′ϕ, which proves Proposition 4.50. We now prove Proposi-
tion 4.51 by induction on ϕ. The languages Lϕ, L′ϕ are constructed during the
proof. We actually give an inductive construction for regular expressions and
automata recognizing these languages, which can be done in LogSpace.

4.3.4 Base case: quantifier-free formulas

Let ψ be a quantifier-free formula in 3-CNF:

ψ =

p∧
i=1

(`i,1 ∨ `i,2 ∨ `i,3),

where each `i,j is a literal.
We define Lψ as a language whose words witness that the clauses of ψ are

satisfied:

Lψ =

p∏
i=1

(`i,1 + `i,2 + `i,3).

We also define L′ψ = (X + X)∗. Automata recognizing these languages are
given in Figure 4.1.

Let val be a valuation defined on all variables of ψ. Note that finding a
word w in Lψ ∩ A∗val proves that val satisfies ψ. Indeed, since w ∈ Lψ, it can
be written as `1,i1 · · · `p,ip . Since w ∈ A∗val, we have val(`j,ij) = > for 1 6 j 6 p.
Therefore, every clause of ψ contains a literal which is true for val, hence
val(ψ) = >.

Moreover, observe that Lψ ⊂ L′ψ, hence, Lψ ∩A∗val is Pol(C)-separable from
L′ψ ∩ A∗val if and only if Lψ ∩ A∗val = ∅ i.e. if val(ψ) = ⊥. This proves that
Proposition 4.51 holds for quantifier-free formulas.

240 Théo Pierron

4. The polynomial closure operation

· · ·
`1,2

`1,1

`1,3

`2,2

`2,1

`2,3

`p,2

`p,1

`p,3

X +X

Figure 4.1 – Automata for Lψ (above) and L′ψ (below).

4.3.5 Induction step: existential quantifier

Assume that ϕ = ∃xξ(x), and assume that there are two languages Lξ, L′ξ
such that Proposition 4.51 holds for ξ, i.e. for every valuation val defined
exactly on the free variables of ξ, we have val(ξ) = > if and only if Lξ ∩ A∗val
is not Pol(C)-separable from L′ξ ∩ A∗val. Our goal is to use Lξ, L′ξ to construct
two languages Lϕ, L′ϕ such that the following holds.

Proposition 4.52. For every valuation val defined on the free variables of ϕ,
Lϕ ∩ A∗val is not Pol(C)-separable from L′ϕ ∩ A∗val if and only if

• either Lξ ∩ (Aval \ {x})∗ is not Pol(C)-separable from L′ξ ∩ (Aval \ {x})∗,

• or Lξ ∩ (Aval \ {x})∗ is not Pol(C)-separable from L′ξ ∩ (Aval \ {x})∗.

We first show that Proposition 4.52 ensures that Proposition 4.51 holds for
ϕ. Take a valuation val defined on the free variables of ϕ. Recall that we can
construct two valuations valx (resp. valx) by setting x to > (resp. ⊥) in val.
By definition, we have val(ϕ) = > if and only if valx(ξ) = > or valx(ξ) = >.

Then note that Avalx = Aval \ {x} and Avalx = Aval \ {x}. Using induction
hypothesis, we get that val(ϕ) = > if and only if either Lξ ∩ (Aval \ {x})∗ is
not Pol(C)-separable from L′ξ ∩ (Aval \ {x})∗ or Lξ ∩ (Aval \ {x})∗ is not Pol(C)-
separable from L′ξ ∩ (Aval \ {x})∗. Using Proposition 4.52, this is equivalent
to say that Lϕ ∩A∗val is Pol(C)-separable from L′ϕ ∩A∗val, and Proposition 4.51
holds.

It remains to construct Lϕ, L′ϕ and prove Proposition 4.52. We first consider
a language K ∈ Pol(C) \ C, and we rename its letters so that it uses only fresh
letters. We also introduce a fresh letter #. We then define:

Lϕ = (K#(x+ x)Lξ(x+ x)#K#)∗,

L′ϕ = (K#(x+ x)L′ξ(x+ x)#K#)∗(Tx + Tx),

Induction Schemes: From Language Separation to Graph Colorings 241

4.3. Pol(C)-separation is PSpace-hard

where, for y ∈ {x, x},

Ty = (K#y(A \ y)∗y#K#) · (K#y(A \ y)∗y#K#)∗.

Automata for Lϕ and L′ϕ can be constructed from automata recognizing Lξ
and L′ξ as shown in Figure 4.2.

Lξ

K#x
K#x

x#K#
x#K#

L′ξ

K#x
K#x

x#K#
x#K#

K#xx#K#

K#x x#K#

A \ x

A \ x

K#x x#K#

K#x x#K#

A \ x

A \ x

Figure 4.2 – Existential case: Automata for Lϕ (above) and L′ϕ (below).

Before proving Proposition 4.52, we give some intuition about this con-
struction. First observe that L′ϕ is constructed as a union L′x ∪ L′x where, for
y ∈ {x, x},

L′y = (K#(x+ x)L′ξ(x+ x)#K#)∗Ty.

Hence Lϕ is not Pol(C)-separable from L′ϕ if and only if Lϕ is not Pol(C)-
separable from L′x or from Lx. In our case, L′x and L′x follow the same con-
struction, with x and x exchanged. We can actually prove that for y ∈ {x, x},
Lϕ ∩A∗val is not Pol(C)-separable from L′y ∩A∗val if and only if Lξ ∩ (Aval \ {y})∗
is not Pol(C)-separable from L′ξ ∩ (Aval \ {y})∗.

Recall that the characteristic property of the class Pol(C) given by Theo-
rem 4.14 states (in essence) that Pol(C) cannot distinguish two languages of
the form L∗ and (L′)∗K(L′)∗ when:

• L is not Pol(C)-separable from L′, and

• K is not C-separable from L.

242 Théo Pierron

4. The polynomial closure operation

Observe in particular that the languages Lϕ, L′x, L′x follow almost this pattern:
up to removing the technical details, we have, for y ∈ {x, x},

Lϕ = (KLξK)∗

L′y = (KL′ξK)∗ · (K(A \ {y})∗K)∗ · (K(A \ {y})∗K)∗

Observe that since K ∈ Pol(C) \ C, we know that K is Pol(C)-separable from
K but not C-separable from K by Lemma 3.6. Therefore, K(A \ {x})∗K is
not C-separable from K(Lξ ∩ (A \ {x})∗)K.

Assuming that Lξ ∩ (Aval \ {x})∗ is not Pol(C)-separable from Lξ ∩ (Aval \
{x})∗, we may thus obtain that Lϕ∩A∗val is not Pol(C)-separable from L′x∩A∗val.

Conversely, if Lξ∩(Aval\{x})∗ is Pol(C)-separable from L′ξ∩(Aval\{x})∗, we
can separate Lϕ ∩A∗val from L′x ∩A∗val with Pol(C). Indeed, given u ∈ Lϕ ∩A∗val
and u′ ∈ L′x ∩A∗val, we can either pinpoint factors v, v′ of u, u′ with v ∈ K and
v′ ∈ K or with v ∈ Lξ ∩ (Aval \ {x})∗ and v′ ∈ L′ξ ∩ (Aval \ {x})∗.

We now prove each direction of Proposition 4.52 in a separate part. First
fix a valuation val defined on the free variables of ϕ.

Inseparation transfer from Lϕ, L
′
ϕ to Lξ, L

′
ξ.

By contrapositive, assume that for y ∈ {x, x}, Sepy is a language in Pol(C)
separating Lξ ∩ (Aval \ {y})∗ from L′ξ ∩ (Aval \ {y})∗. We use the two languages
Sepx and Sepx to construct a language Sep ∈ Pol(C) separating Lϕ ∩A∗val from
L′ϕ ∩ A∗val.

Since (Aval \ {y})∗ is alphabet testable and AT ⊂ C, we may assume that
Sepy ⊂ (Aval\{y})∗. Indeed, otherwise, we may replace Sepy with Sepy∩(Aval\
{y})∗. This language still separates Lξ∩(Aval\{y})∗ from L′ξ∩(Aval\{y})∗ since
these languages are contained in (Aval \ {y})∗. We then construct a language
Sep ∈ Pol(C) as follows:

Sep = {ε}
∪ A∗#(A∗xA∗ ∩ A∗xA∗ \ A∗#A∗)#K#

∪ K#xSepxx#(A \ x)∗

∪ K#xSepxx#(A \ x)∗

∪ A∗#(A∗xA∗ \ A∗#A∗)#K#K#xSepxx#(A \ x)∗

∪ A∗#(A∗xA∗ \ A∗#A∗)#K#K#xSepxx#(A \ x)∗.

First note that Sep is constructed from K ∈ Pol(C) and alphabet testable
languages using marked concatenations and unions. Therefore, Sep ∈ Pol(C).
It remains to prove that it is a separator. We divide the proof in two lemmas.

Lemma 4.53. Lϕ ∩ A∗val ⊂ Sep.

Induction Schemes: From Language Separation to Graph Colorings 243

4.3. Pol(C)-separation is PSpace-hard

Proof. Let w ∈ Lϕ ∩A∗val. Then we can write w = u1#v1#w1# · · ·uk#vk#wk
with ui, wi ∈ K ∩ A∗val and vi ∈ (x+ x)Lξ(x+ x) ∩ A∗val for 1 6 i 6 k.

If k = 0, then w = ε lies in Sep. We thus assume k > 1. If x does not
appear in w, then v1 ∈ x(Lξ ∩ (Aval \ x)∗)x hence it lies in xSepxx. Thus,
w ∈ K#xSepxx#(A \ x)∗ ⊂ Sep. By symmetry, the same holds when w does
not contain x. We may thus assume that w contains both x and x.

Moreover, since # is a fresh letter, if vk contains both x and x, then we
have vk ∈ A∗xA∗ ∩ A∗xA∗ \ A∗#A∗, hence

w ∈ A∗#(A∗xA∗ ∩ A∗xA∗ \ A∗#A∗)#K# ⊂ Sep.

By symmetry, assume that vk contains x but not x. Consider the rightmost
occurrence of x. SinceK andK do not use x nor x, this occurrence lies in some
vi, and by hypothesis, i < k. Then we obtain that vi+1 ∈ x(Lξ ∩ (Aval \ x)∗)x,
hence vi+1 ∈ xSepxx. Moreover, wi+1#ui+2# · · ·#wk ∈ (A \ x)∗ by definition
of i. Therefore, w lies in A∗#(A∗xA∗ \ A∗#A∗)#K#K#xSepxx#(A \ x)∗ ⊂
Sep.

Lemma 4.54. (L′ϕ ∩ A∗val) ∩ Sep = ∅.

Proof. By contradiction, assume that there is a word w ∈ (L′ϕ ∩ A∗val) ∩ Sep.
By construction of L′ϕ,

w = u1#v1#w1# · · ·uk#vk#wk# · w′,

with ui, wi ∈ K ∩ A∗val, vi ∈ (x + x)L′ξ(x + x) ∩ A∗val and w′ ∈ Tx ∪ Tx for
1 6 i 6 k.

By symmetry, we may assume that w′ ∈ Tx and write

w′ = u#v#w#u′1#v′1#w′1# · · ·u′`#v′`#w′`#,

with u,w ∈ K, u′i, w′i ∈ K, and v, v′i ∈ x(A \ x)∗x for 1 6 i 6 `.
Note that Sep is defined as a union of several languages. We consider

several cases depending on which of these languages contains w.

• We have w 6= ε since ε /∈ Tx.

• If w ∈ A∗#(A∗xA∗ ∩ A∗xA∗ \ A∗#A∗)#K#, then either ` = 0 and
w ∈ K, or ` > 0 and v′` contains both x and x. In both cases, we obtain
a contradiction.

• If w ∈ K#xSepxx#(A \ x)∗, then either k = 0 and u ∈ K or k > 0 and
v1 ∈ xSepxx. Since v1 ∈ (x + x)L′ξ(x + x), there is a word in L′ξ ∩ Sepx.
Recall that Sepx ⊂ (A \ {x})∗, hence L′ξ ∩ Sepx = ∅ and we obtain a
contradiction. The case K#xSepxx#(A \ x)∗ is similar.

244 Théo Pierron

4. The polynomial closure operation

• Assume that w ∈ A∗#(A∗xA∗\A∗#A∗)#K#K#xSepxx#(A\x)∗. Thus,
both x and x appear in w. First observe that x may only appear in some
vi. Let vj be the factor containing the rightmost occurrence of x. If
j = k, then u ∈ K, a contradiction. Otherwise, vj+1 ∈ xSepxx, hence
again we have L′ξ ∩ Sepx 6= ∅.

• Assume that w ∈ A∗#(A∗xA∗\A∗#A∗)#K#K#xSepxx#(A\x)∗. Then
the letter x does not appear in w after the last occurrence of x. However,
the suffix w′ contains x but no x, a contradiction.

In each case, we obtain a contradiction, hence (L′ϕ ∩ A∗val) ∩ Sep = ∅.

Separation transfer from Lϕ, L
′
ϕ to Lξ, L

′
ξ

Assume that the language Sep ∈ Pol(C) separates Lϕ∩A∗val from L′ϕ∩A∗val.
Assume also by contradiction that Lξ ∩ (Aval \ {y})∗ is not Pol(C)-separable
from L′ξ ∩ (Aval \ {y})∗ for some y ∈ {x, x}. By symmetry, we assume that
y = x. We want to reach a contradiction with the fact that Sep separates
Lϕ ∩ A∗val from L′ϕ ∩ A∗val.

Let α : A∗ → (N,6N) be the syntactic morphism of Sep. In particular,
α(Sep) is upward-closed and Sep = α−1(α(Sep)). We use the non-separability
of Lξ ∩ (Aval \ {x})∗, L′ξ ∩ (Aval \ {x})∗ to construct two words w ∈ Lϕ ∩ A∗val
and w′ ∈ L′ϕ ∩ A∗val such that α(w) 6N α(w′).

First assume that these words are constructed, and let us conclude the proof
of Proposition 4.52. Observe that since w ∈ Lϕ∩A∗val, we have w ∈ Sep, hence
α(w) ∈ α(Sep). Since Sep is recognized by α, the set α(Sep) is upward closed
for 6N . Therefore, α(w′) ∈ α(Sep), hence w′ ∈ Sep. This is a contradiction
since Sep ∩ (L′ϕ ∩A∗val) is empty and contains w′. Therefore, we conclude that
Lξ ∩ (Aval \ {x})∗ is Pol(C)-separable from L′ξ ∩ (Aval \ {x})∗. This concludes
the proof of Proposition 4.52.

Construction of w,w′. It remains to construct the words w,w′. Recall
that we have:

Lϕ = (K#(x+ x)Lξ(x+ x)#K#)∗,

L′ϕ = (K#(x+ x)L′ξ(x+ x)#K#)∗(Tx + Tx).

In view of the shape of Lϕ, L′ϕ, we look for two words w,w′ of the form:

w = (v#xux#v#)k, and
w′ = (v#xu′x#v#)`(v′#xu′x#v′#)(v#xu′x#v#)`.

for some words u, u′, v, v′ and some integers k, ` satisfying the following:

• u ∈ Lξ ∩ (Aval \ {x})∗

Induction Schemes: From Language Separation to Graph Colorings 245

4.3. Pol(C)-separation is PSpace-hard

• u′ ∈ L′ξ ∩ (Aval \ {x})∗

• v ∈ K

• v′ ∈ K.

To prove that w 6N w′, we want to use Theorem 4.14. We thus take
k = ω(N) + 1, ` = ω(N), and we want that

(α(v#xux#v#), α(v′#xux#v′#)) is a C-pair,
α(v#xux#v#) 6N α(v#xu′x#v′#) and
α(v′#xux#v′#) 6N α(v′#xu′x#v′#).

By Proposition 4.15, (α(v#xux#v#), α(v′#xux#v′#)) is a C-pair as soon as
(α(v), α(v′)) is a C-pair. Moreover, using that 6N is compatible with product,
the two last conditions are implied by α(u) 6N α(u′). We thus require that
u, u′, v, v′ also satisfy the following:

(α(v), α(v′)) is a C-pair (4.1)
α(u) 6N α(u′) (4.2)

Assume that these hypotheses are satisfied and define the following nota-
tion:

s = α(v#), s′ = α(v′#), t = α(xux#) and t′ = α(xu′x#).

Since (α(v), α(v′)) is a C-pair, Proposition 4.15 yields that (sts, s′ts′) is also
a C-pair. We may thus apply Theorem 4.14: we have

α(w) = (sts)ω+1 6N (sts)ωs′ts′(sts)ω

Using that α(u) 6N α(u′), we have t 6N t′, hence

(sts)ωs′ts′(sts)ω 6N (st′s)ωs′t′s′(st′s)ω = α(w′).

Therefore, we have α(w) 6N α(w′). It remains to construct the words u, u′, v, v′
satisfying Properties (4.1) and (4.2).

Construction of v, v′. Observe that K /∈ C, hence K and is not C-
separable fromK. Since C is closed under quotients,K# is also not C-separable
from K#. By Lemma 4.11, we can find s ∈ α(K#) and s′ ∈ α(K#) such that
(s, s′) is a C-pair. We then take v ∈ K and v′ ∈ K such that v# ∈ α−1(s) and
v′# ∈ α−1(s′).

Construction of u, u′. The construction of u, u′ relies on the following
lemma, applied with L = Sep, L1 = Lξ∩(Aval\{x})∗ and L2 = L′ξ∩(Aval\{x})∗.

246 Théo Pierron

4. The polynomial closure operation

Lemma 4.55. Let L1, L2 be two languages, and αL : A∗ → (ML,6L) be the
syntactic morphism of a language L ∈ Pol(C).

If L1 is not Pol(C)-separable from L2, then there exist u1 ∈ L1 and u2 ∈ L2

such that αL(u1) 6L αL(u2).

The end of this subsection is devoted to the proof of this lemma. Consider
the set F defined as the upward closure of αL(L1), i.e.

F = {s ∈ML | ∃u ∈ L1 s.t. αL(u) 6L s}

Observe that F is upward closed, hence α−1
L (F) is recognized by αL. Since αL

is the syntactic morphism of L which lies in Pol(C), Proposition 3.36 ensures
that α−1

L (F) ∈ Pol(C). Note also that α−1
L (F) contains L1 by construction.

Since L1 is not Pol(C)-separable from L2, we obtain that there is a word u2

in α−1
L (F) ∩ L2. By definition of F , there exists u1 ∈ L1 such that αL(u1) 6L

αL(u2), giving the requested words u1, u2.
This ends the proof of Proposition 4.52.

4.3.6 Induction step: universal quantifier

Assume that ϕ = ∀xξ(x), and assume that there are two languages Lξ, L′ξ
such that Proposition 4.51 holds for ξ, i.e. for every valuation val defined
exactly on the free variables of ξ, we have val(ξ) = > if and only if Lξ ∩A∗val is
not Pol(C)-separable from L′ξ∩A∗val. Our goal is to use Lξ, L′ξ to construct two
languages Lϕ, L′ϕ such that Proposition 4.56 holds. The approach followed in
this subsection is roughly the same than in Subsection 4.3.5: Proposition 4.51
follows from the following result.

Proposition 4.56. For every valuation val defined on the free variables of ϕ,
Lϕ ∩ A∗val is not Pol(C)-separable from L′ϕ ∩ A∗val if and only if

• Lξ ∩ (Aval \ {x})∗ is not Pol(C)-separable from L′ξ ∩ (Aval \ {x})∗, and

• Lξ ∩ (Aval \ {x})∗ is not Pol(C)-separable from L′ξ ∩ (Aval \ {x})∗.

Similarly to the existential case, Proposition 4.56 ensures that Proposi-
tion 4.51 holds for ϕ. Indeed, take a valuation val defined on the free variables
of ϕ. Recall that val(ϕ) = > if and only if valx(ξ) = > and valx(ξ) = >.

Recall that Avalx = Aval \ {x} and Avalx = Aval \ {x}. Using induction
hypothesis, we get that val(ϕ) = > if and only if either Lξ ∩ (Aval \{x})∗ is not
Pol(C)-separable from L′ξ ∩ (Aval \ {x})∗ and Lξ ∩ (Aval \ {x})∗ is not Pol(C)-
separable from L′ξ ∩ (Aval \ {x})∗. Using Proposition 4.56, this is equivalent to
say that Lϕ∩A∗val is not Pol(C)-separable from L′ϕ∩A∗val, and Proposition 4.51
holds.

Induction Schemes: From Language Separation to Graph Colorings 247

4.3. Pol(C)-separation is PSpace-hard

It remains to construct Lϕ, L′ϕ and prove Proposition 4.56. We reuse the
notation K,#, Tx, Tx defined in Subsection 4.3.5. Recall that # is a fresh letter
and K is a language in Pol(C) \ C using only fresh letters. We define:

Lϕ = (K#(x+ x)Lξ(x+ x)#K#)∗,

L′ϕ = Tx(K#(x+ x)L′ξ(x+ x)#K#)∗Tx.

where

Tx = (K#x(A \ x)∗x#K#) · (K#x(A \ x)∗x#K#)∗

Tx = (K#x(A \ x)∗x#K#)∗ · (K#x(A \ x)∗x#K#)

Note that Tx is the same as in the existential case, but Tx is a mirrored version
of the former Tx. Automata for Lϕ and L′ϕ are given in Figure 4.3.

Lξ

K#x
K#x

x#K#
x#K#

L′ξ

K#x
K#x

x#K#
x#K#

x#K#K#x

x#K#K#x

A \ x

A \ x

K#x x#K#

K#x x#K#

A \ x

A \ x

Figure 4.3 – Universal case: Automata for Lϕ (above) and L′ϕ (below).

Before proving Proposition 4.56, we also give some intuition about this
construction. First observe that L′ϕ is this time constructed as a concatenation
L′xL

′
x where

L′x = Tx(K#(x+ x)L′ξ(x+ x)#K#)∗

L′x = (K#(x+ x)L′ξ(x+ x)#K#)∗Tx.

A second note is that L2
ϕ = Lϕ. Therefore, the generic result of Proposi-

tion 4.15 ensures that if Lϕ is not Pol(C)-separable from Lx and from Lx, then
Lϕ is not Pol(C)-separable from L′ϕ. Due to the special shape of these lan-
guages, we will actually prove the converse statement also holds (which is not
true in general).

248 Théo Pierron

4. The polynomial closure operation

Finally, observe that L′x and L′x follow a similar construction as before,
allowing to use Theorem 4.14 to prove that for y ∈ {x, x}, Lϕ ∩ A∗val is not
Pol(C)-separable from L′y ∩ A∗val if and only if Lξ ∩ (Aval \ {y})∗ is not Pol(C)-
separable from L′ξ ∩ (Aval \ {y})∗.

We now prove each direction of Proposition 4.56 in a separate part. First
fix a valuation val defined on the free variables of ϕ.

Inseparation transfer from Lϕ, L
′
ϕ to Lξ, L

′
ξ.

By contrapositive, assume that, for some y ∈ {x, x}, there is a language
Sepy ∈ Pol(C) separating Lξ∩(Aval\{y})∗ from L′ξ∩(Aval\{y})∗. By symmetry,
we assume that y = x. We use the language Sepx to construct a language
Sep ∈ Pol(C) separating Lϕ ∩ A∗val from L′ϕ ∩ A∗val.

Since (Aval \ {x})∗ is alphabet testable and AT ⊂ C, we may assume that
Sepx ⊂ (Aval \ {x})∗ (up to replacing Sepx by Sepx ∩ (Aval \ {x})∗). We then
construct Sep as follows:

Sep = {ε}
∪ K#xSepxx#(A \ x)∗

∪ A∗#(A∗xA∗ \ A∗#A∗)#K#

∪ A∗#(A∗xA∗ \ A∗#A∗)#K#K#xSepxx#(A \ x)∗.

Again, Sep is constructed fromK ∈ Pol(C) and alphabet testable languages
using marked concatenations and unions. Therefore Sep ∈ Pol(C). It remains
to prove that it is a separator. We separate the proof in two lemmas.

Lemma 4.57. Lϕ ∩ A∗val ⊂ Sep.

Proof. Let w ∈ Lϕ ∩ A∗val. Then w = u1#v1#w1# · · ·#uk#vk#wk# where
ui, wi ∈ K and vi ∈ (x+ x)Lξ(x+ x) for 1 6 i 6 k.

If k = 0, then w = ε and w ∈ Sep. We may thus assume k > 0. If w does
not contain x, then v1 ∈ xSepxx, hence w in K#xSepxx#(A \ x)∗ ⊂ Sep.

We thus assume that x appears in w and we denote by vj the rightmost
factor containing x. If j = k, then w ∈ A∗#(A∗xA∗ \ A∗#A∗)#K# hence
w ∈ Sep. Otherwise, j < k and vj+1 ∈ xSepxx, hence

w ∈ A∗#(A∗xA∗ \ A∗#A∗)#K#K#xSepxx#(A \ x)∗ ⊂ Sep.

In each case, we obtain that w ∈ Sep.

Lemma 4.58. (L′ϕ ∩ A∗val) ∩ Sep = ∅.

Proof. By contradiction, assume that there is a word w ∈ (L′ϕ ∩ A∗val) ∩ Sep.
By construction of L′ϕ, we write w = wx · u1#v1#w1# · · · uk#vk#wk# · wx
where wx ∈ Tx, wx ∈ Tx, ui, wi ∈ K and vi ∈ (x+ x)L′ξ(x+ x) for 1 6 i 6 k.

Induction Schemes: From Language Separation to Graph Colorings 249

4.3. Pol(C)-separation is PSpace-hard

We may also decompose wx as u#v#w# · u′1#v′1#w′1# · · · u′`#v′`#w′`#
where u,w ∈ K, v, v′i ∈ x(A \ x)∗x and u′i, w′i ∈ K for 1 6 i 6 `.

We consider several cases, one for each language of the union defining Sep.

• We have w 6= ε since ε /∈ Tx.

• If w ∈ K#xSepxx#(A \x)∗, then wx does not contain x, a contradiction
by definition of Tx.

• If w ∈ A∗#(A∗xA∗ \ A∗#A∗)#K#, then either ` = 0 and w ∈ K or
` > 0 and v′` contains x, a contradiction in both cases.

• If w ∈ A∗#(A∗xA∗\A∗#A∗)#K#K#xSepxx#(A\x)∗, then consider the
rightmost occurrence of x in w. If it is in wx, then v1 ∈ xSepxx ∩ xL′ξx,
a contradiction. Otherwise, it is in some vj. If j = k, then u ∈ K,
otherwise vj+1 ∈ xSepxx ∩ xL′ξx, again a contradiction.

In each case, we obtain a contradiction, hence (L′ϕ ∩ A∗val) ∩ Sep = ∅.

Separation transfer from Lϕ, L
′
ϕ to Lξ, L

′
ξ

Assume that the language Sep ∈ Pol(C) separates Lϕ∩A∗val from L′ϕ∩A∗val.
By contradiction, assume also that for all y ∈ {x, x}, Lξ ∩ (Aval \ {y})∗ is not
Pol(C)-separable from L′ξ ∩ (Aval \ {y})∗. We want to reach a contradiction
with the fact that Sep separates Lϕ ∩ A∗val from L′ϕ ∩ A∗val.

Let α : A∗ → (N,6N) be the syntactic morphism of Sep, i.e. α(Sep) is
upward-closed and Sep = α−1(α(Sep)). Similarly to the existential case, we
use that, Lξ ∩ (Aval \ {y})∗ is not Pol(C)-separable from L′ξ ∩ (Aval \ {y})∗ for
y ∈ {x, x} to construct two words w ∈ Lϕ ∩A∗val and w′ ∈ L′ϕ ∩A∗val such that
α(w) 6N α(w′). Assuming that these two words are constructed, we reach a
contradiction since Sep has to contain both w and w′.

Construction of w,w′. It thus remains to construct the words w,w′. Due
to the construction of Lϕ, L′ϕ, we look for two words w,w′ of the form:

w = (v#xuxx#v#)k(v#xuxx#v#)k, and
w′ = (v#xu′xx#v#)`(v′#xu′xx#v′#)(v#xu′xx#v#)`

· (v#xu′xx#v#)`(v′#xu′xx#v′#)(v#xu′xx#v#)`.

for some words ux, u′x, ux, u′x, v, v′ and some integers k, ` satisfying the follow-
ing: for y ∈ {x, x},

• uy ∈ Lξ ∩ (Aval \ {y})∗

• u′y ∈ L′ξ ∩ (Aval \ {y})∗

• v ∈ K

250 Théo Pierron

4. The polynomial closure operation

• v′ ∈ K.

Similarly to the existential case, we choose k = ω(N) + 1 and ` = ω(N),
and we ask for the two additional properties:

• (α(v), α(v′)) is a C-pair.

• α(uy) 6N α(u′y) for y ∈ {x, x}.

These words are obtained using the same approach as in the existential case.
First, the existence of ux, u′x, ux and u′x is obtained by applying twice Lemma 4.55:
for y ∈ {x, x}, the words uy and u′y come from the lemma applied with
Lξ ∩ (Aval \ {y})∗ and Lξ ∩ (Aval \ {y})∗. Second, the words v, v′ are obtained
using that K /∈ C. We may now conclude the proof.

For y ∈ {x, x}, denote by (ty, t
′
y) = (α(yuyy#), α(yu′yy#)) and by (s, s′) =

(α(v), α(v′)).
By Proposition 4.15, (stys, s

′tys
′) is a C-pair. Then, applying Theorem 4.14

and using that 6N is compatible with concatenations, we have

(stys)
ω+1 6N (stys)

ωs′tys
′(stys)

ω 6N (st′ys)
ωs′t′ys

′(st′ys)
ω.

We thus obtain that

(stxs)
ω+1(stxs)

ω+1 6N (st′xs)
ωs′t′xs

′(st′xs)
ω · (st′xs)ωs′t′xs′(st′xs)ω,

ensuring that α(w) 6N α(w′), which concludes the proof of Proposition 4.56.

4.4 Extension to infinite words
For now, we only considered a single structure: finite words. However, the

logical formalism is not syntactically restricted to considering only finite words.
It can thus be transposed without any change in the more generic setting of
infinite words, i.e. sequences of letters indexed by N.

Definition 4.59. An infinite word over the alphabet A is a sequence of letters
of A indexed by N. We denote by Aω the set of infinite words over A. A
language of infinite words, or ω-language is thus a subset of Aω.

Remark 4.60. Observe that we cannot concatenate two infinite words. How-
ever, we may still construct infinite words using finite ones using the two
following operations:

• If u ∈ A∗ and v ∈ Aω, then we can concatenate u with v and obtain an
infinite word uv ∈ Aω.

• If u ∈ A+, then the infinite concatenation uω = uuu · · · is an infinite
word.

Induction Schemes: From Language Separation to Graph Colorings 251

4.4. Extension to infinite words

As we will see, these operations will be the ones we consider for defining an
algebraic structure recognizing ω-languages.

Most of the framework extends to infinite words, up to some slight modifi-
cations we illustrate below. This is the goal of the two following remarks. The
first one is an important note about the terminology used in this thesis.

Remark 4.61. The languages we consider contain only finite words (i.e., are
subsets of A∗), while ω-languages contain only infinite words (i.e., are subsets
of Aω). As we will see in Remark 4.65, we in fact no longer consider languages
in A∗ but in A+.

We may say that L is an (ω-)language if L is either a language of finite
words or an ω-language. Note in particular that we do not consider “mixed
languages”, i.e. languages containing both finite and infinite words.

We state a consequence of this remark for classes of languages.

Remark 4.62. For languages of infinite words, we have to redefine the notion
of quotients: given an ω-language L, a word u and an infinite word v, we have
three kind of quotients. The first two are natural generalizations of the case
of finite words, while the third one is specific to infinite words (see [Perrin and
Pin, 2004]).

• the left quotient u−1L is the ω-language {w ∈ Aω | uw ∈ L}.

• the right quotient Lv−1 is the language of finite words {w ∈ A+ | wv ∈
L}.

• the quotient Lu−ω is the language of finite words {w ∈ A+ | (xu) ∈ L}.

Note that the two last operations yield languages in A+, not in A∗. This is
harmless and will be motivated in Remark 4.65.

Since quotients of an ω-language may be languages of finite words, consid-
ering classes closed under quotient requires to handle classes containing both
languages of finite words and of infinite words at the same time.

In this case, observe that we also have to be careful with closure under
Boolean operations. Indeed, since we do not consider mixed languages, these
operations have to be understood as restricted to languages of the same type.
In other words, the class C is closed under Boolean operations if the class
containing all the languages of finite words (resp. ω-languages) of C is closed
under Boolean operations.

Similarly, the polynomial closure operation is still defined on classes con-
taining ω-languages. However, we have to extend carefully the marked con-
catenation: to consider the language KaL, we need K to be a language of
finite words.

252 Théo Pierron

4. The polynomial closure operation

The goal of this section is to generalize both the decidability result of
Section 4.2 and the complexity result of Section 4.3 to the setting of infinite
words. We begin by the latter, and generalize the PSpace lower bound given
by Theorem 4.10 to the setting of infinite words with the following reduction.

Let K1, K2 be two languages of finite words and a letter # not appearing
in K1, K2. We define L1 = K1#ω and L2 = K2#ω.

Let C be a class containing AT and closed under quotients. Observe that
AT is understood here as a class containing languages of finite words (the
Boolean combinations of A∗aA∗) and ω-languages (the Boolean combinations
of A∗aAω). This extends the initial definition to the setting of infinite words:
a language L lies in AT if and only if testing whether w ∈ L depends only on
the alphabet of w (regardless of whether w is finite or infinite).

We claim that the language of finite words K1 is Pol(C)-separable from K2

if and only if the ω-language L1 is Pol(C)-separable from L2.

• If Sep ∈ Pol(C) separates K1 from K2, then the marked concatenation
Sep##ω also lies in Pol(C) since #ω is an alphabet-testable ω-language,
thus an ω-language in C. Moreover, this languages separates L1 from L2.

• Conversely, if Sep ∈ Pol(C) is an ω-language separating L1 from L2, then
Sep(#ω)−1 is also a language of Pol(C) (since it is closed under quotients).
This language separates K1 from K2.

We thus obtain a LogSpace reduction from the Pol(C)-separation problem
for languages on finite words, to the same problem for ω-languages. We thus
obtain the following extension of Theorem 4.10.

Theorem 4.63. Let C be a positive variety of regular (ω-)languages, contain-
ing AT and such that C 6= Pol(C). Then the Pol(C)-separation problem is
PSpace-hard.

The rest of this section is dedicated to extending the result of Section 4.2.
A first step is to extend the notions of pairs to the setting of infinite words.
We begin with a few words on how to extend recognition by monoids to this
setting.

4.4.1 Algebraic framework: ω-semigroups

To follow the approach of the previous section, we first need to extend the
algebraic framework to the infinite words. The canonical notion to consider
is ω-semigroups, an extension of semigroups able to handle infinite products.
We follow here the presentation given in [Perrin and Pin, 2004]. In particular,
in order to avoid confusions between the ordinal ω and the idempotent power
ω of a monoid, we rename the latter as π, according to the convention given
in [Perrin and Pin, 2004].

Induction Schemes: From Language Separation to Graph Colorings 253

4.4. Extension to infinite words

Definition 4.64. An ω-semigroup is a pair (S+, Sω), where S+ is a semigroup
and Sω is a set. Moreover, (S+, Sω) is equipped with two additional products: a
mixed product S+×Sω → Sω mapping s, t ∈ S+, Sω to an element st of Sω, and
an infinite product (S+)ω → Sω mapping an infinite sequence s1, s2, · · · ∈ (S+)ω

to an element s1s2 · · · of Sω. We require these products to satisfy all possible
forms of associativity:

• for every r, s, t ∈ S+, we have (rs)t = r(st),

• for every r, s ∈ S+ and t ∈ Sω, we have (rs)t = r(st),

• for every s0, s1, s2, . . . ∈ S+, and every increasing sequence of integers
(kn)n∈N, we have (s0 · · · sk0)(sk0+1 · · · sk1) · · · = s0s1s2 · · · ,

• for every s0, s1, s2, . . . ∈ S+, we have s0(s1s2 · · ·) = (s0s1)s2 · · · ,

For s ∈ S+, we let sω be the infinite product sss · · · ∈ Sω.

Remark 4.65. In the case of infinite words, we use ω-semigroups instead of
“ω-monoids”. This aims to avoid indeterminations (or artificial conventions)
regarding the value of 1ω. This is not restrictive. Indeed, all the previous
results apply when replacing monoid morphisms by semigroup morphisms.

Moreover, the classes we consider are always expressive enough to detect
the language {ε} reduced to the empty word, so we could also assume that the
regular languages we consider do not contain ε, i.e. are subsets of A+.

A first example of ω-semigroup is the free ω-semigroup (A+, Aω), endowed
with concatenation.

We say that (S+, Sω) is finite if both S+ and Sω are. Note that even
if a given ω-semigroup is finite, it is not clear how to represent the infinite
product, since the set of infinite sequences of S+ is uncountable. However, it
has been shown in [Wilke, 1991] that the infinite product is fully determined
by the mapping s 7→ sω. This makes it possible to finitely represent any finite
ω-semigroup.

Morphisms of ω-semigroups are defined in the natural way, as an extension
of morphisms of semigroups: (ϕ+, ϕω) is a morphism of ω-semigroups from
(S+, Sω) to (T+, Tω) if:

• ϕ+ is a morphism of semigroups from S+ to T+,

• ϕω is an application from Sω to Tω,

• the mixed product is preserved: for every s ∈ S+ and t ∈ Sω, we have
ϕω(st) = ϕ+(s)ϕω(t).

• the infinite product is preserved: for every sequence s1, s2, · · · ∈ S+, we
have ϕω(s1s2 · · ·) = ϕ+(s1)ϕ+(s2) · · · .

254 Théo Pierron

4. The polynomial closure operation

In particular, observe that any morphism of ω-semigroups α : (A+, Aω)→
(S+, Sω) defines two maps: a semigroup morphism α+ : A+ → S+ and a map
αω : Aω → Sω (when there is no ambiguity, we shall write α(w) to mean
α+(w) if w ∈ A+ or αω(w) if w ∈ Aω). Therefore, a morphism recognizes
both languages of finite words (the languages α−1

+ (F+) for F+ ⊂ S+) and ω-
languages (the ω-languages α−1

ω (Fω) for Fω ⊂ Sω). An ω-language is regular if
and only if it may be recognized by a morphism into a finite ω-semigroup.

Example 4.66. We present two examples of ω-semigroups, based on Exam-
ple 3.14.

• Recall that S+ = Z/2Z is a monoid, and hence a semigroup. We can
extend its structure naively into an ω-semigroup by setting Sω = {ω}
and defining 0 · ω = 1 · ω = 0ω = 1ω = ω.

In particular, the morphism α : (a+, aω)→ (S+, Sω) defined by α(a) = 1
recognizes the languages of finite words (aa)∗ and a(aa)∗, and the ω-
language aω.

• The set S+ = {a, b, ab, ba, aa} endowed with the law presented in Exam-
ple 3.14 is a semigroup. It is the set obtained by removing the neutral
element from the monoid given in Example 3.14.

Let Sω = {abω, baω, aaω}, and define the mixed product as:

× abω baω aaω
ab abω aaω aaω
ba aaω baω aaω
a aaω abω aaω
b baω aaω aaω
aa aaω aaω aaω

Moreover, we define aω = bω = (aa)ω = aaω, (ab)ω = abω and (ba)ω =
baω. Then (S+, Sω) is an ω-semigroup. Moreover, the morphism α :
(A+, Aω) → (S+, Sω) defined by α(a) = a and α(b) = b recognizes the
ω-languages obtained as Boolean combinations of (ab)ω and (ba)ω.

Similarly to the finite words case, for any regular ω-language L, there exists
a canonical morphism αL : (A+, Aω) → (S+, Sω) recognizing L. This object
is called the syntactic morphism of L, and can be computed from any ω-
semigroup morphism recognizing L. We refer the reader to [Perrin and Pin,
2004] for the detailed definition of this object.

Induction Schemes: From Language Separation to Graph Colorings 255

4.4. Extension to infinite words

4.4.2 Computing pairs

The goal of this section is to prove the following result. It generalizes the
decidability of Pol(AT)-separation on infinite words proven in [Pierron et al.,
2016]. It also extends the result of Section 4.2 to the setting of infinite words.

Theorem 4.67. Let C be a finite class containing regular languages of finite
words and regular ω-languages, stable under Boolean operations and quotients.
Then Pol(C)-separation is decidable on infinite words.

In this section, we fix a class C satisfying the hypothesis of Theorem 4.67.
To prove this theorem, we follow the same approach as in Section 4.2, meaning
that we will again compute the set of Pol(C)-pairs for an ω-semigroup mor-
phism recognizing both input ω-languages. The first step is thus to construct
this morphism. This can be done with a construction similar to the one on
finite words. If L0 ⊂ Aω is recognized by α0 : (A+, Aω) → (S+, Sω) and
L1 ⊂ Aω by α1 : (A+, Aω)→ (T+, Tω), then L0 and L1 are both recognized by
α : (A+, Aω)→ (S+ × T+, Sω × Tω) with α(w) = (α0(w), α1(w)).

We thus fix a morphism of ω-semigroups α : (A+, Aω) → (S+, Sω) recog-
nizing both the ω-languages given as input of the Pol(C)-separation problem.
As previously, we may assume that α is surjective and C-compatible: the C-
completion construction still holds since C is finite (as well as the co-domain
restriction).

We now look for a generalization of the notion of Pol(C)-pairs when α is
an ω-semigroup morphism. This is the goal of the following definition.

Definition 4.68. Let α be an ω-semigroup morphism. The C-pairs for α are
given by two sets:

• the set of all (s, t) ∈ S2
+ such that α−1

+ (s) is not C-separable from α−1
+ (t),

denoted by PC[α+].

• the set of all (s, t) ∈ S2
ω such that α−1

ω (s) is not C-separable from α−1
ω (t),

denoted by PC[αω].

We denote by PC[α] the pair (PC[α+],PC[αω]).

Observe that, since Pol(C)-separation is decidable on finite words, the set
PPol(C)[α+] is already known to be computable by Theorem 4.43. This is where
we use [Place and Zeitoun, 2017d] (i.e. Section 4.2) as a black box: we show
how to construct Pol(C)-pairs for αω starting from Pol(C)-pairs for α+, but we
do not need any information about how exactly these pairs are constructed. In
particular, we do not need to consider compatible pairs. Computing Pol(C)-
pairs for αω is the goal of the actual main theorem of this section, stated
below.

256 Théo Pierron

4. The polynomial closure operation

Theorem 4.69. Let C be a finite class containing regular languages and ω-
languages, closed under Boolean operations and quotients.

The set of Pol(C)-pairs for αω consists in all the pairs

(r1s
ω
1 , r2s

π
2 t2)

where (r1, r2) and (s1, s2) are Pol(C)-pairs for α+, and t2 ∈ Sω satisfies sω1 6C
t2.

Observe that the condition sω1 6C t2 is well-defined since α is C-compatible.
Before proving Theorem 4.69, we first explain how it gives an algorithm for
deciding Pol(C)-separation on infinite words.

Since C is finite, we can decide whether u 6C v for any two given infinite
words u, v. Since α is C-compatible, we can also decide whether s 6C t for
every (s, t) ∈ S2

ω by taking two infinite words u, v such that α(u) = s and
α(v) = t, and deciding whether u 6C v. We can thus compute the relation 6C
on Sω.

Therefore, since we can also compute the Pol(C)-pairs for α+, Theorem 4.69
ensures that the Pol(C)-pairs for αω are also computable. Using Lemma 4.18,
we obtain the following corollary.

Corollary 4.70. Let C be a finite class containing regular languages and ω-
languages, closed under Boolean operations and quotients.

Then Pol(C)-separation is decidable on infinite words.

The rest of this section is devoted to the proof of Theorem 4.69. We thus
define by Sat(α) the set described in Theorem 4.69, i.e.

Sat(α) = {(r1s
ω
1 , r2s

π
2 t2) |(r1, r2) ∈ PPol(C)[α+],

(s1, s2) ∈ PPol(C)[α+],

t2 ∈ Sω, sω1 6C t2}.

The goal is then to prove that PPol(C)[αω] = Sat(α). We separate this
equality in two propositions, and prove each one in a different subsection.
While computing Sat(α) does not require a least fixpoint algorithm, we still
use the vocabulary introduced for the case of finite words. The first proposition
thus considers the soundness inclusion.

Proposition 4.71. The algorithm is sound: we have Sat(α) ⊂ PPol(C)[αω].

This proves that every constructed pair is indeed a valid Pol(C)-pair. The
other proposition is devoted to the dual result, and states that the algorithm
is complete: every Pol(C)-pair is actually obtained by some r1, r2, s1, s2, t2.
Together, these two results imply Theorem 4.69, and yield an algorithm for
deciding Pol(C)-separation for infinite words.

Proposition 4.72. The algorithm is complete: we have PPol(C)[αω] ⊂ Sat(α).

Induction Schemes: From Language Separation to Graph Colorings 257

4.4. Extension to infinite words

4.4.3 Soundness of the algorithm

In this subsection, we prove Proposition 4.71. The analogous statement
for finite words is proved using Lemmas 4.39, 4.40, 4.41 and 4.42. These
lemmas are actually refined versions of Lemmas 4.20 and 4.31 designed to
handle Pol(C)-compatible pairs.

Since we consider only Pol(C)-pairs instead of the compatible ones, we may
only consider these two last lemmas. Therefore, to prove soundness of the
algorithm, we first have to lift these results to the setting of infinite words.
This is done by the following lemmas.

The first lemma generalizes that the relation 6C (now defined on A+ ∪
Aω) behaves well with concatenation. Its proof is actually the same as for
Lemma 4.20. As a consequence, we may also mimic the proof of Proposi-
tion 4.15 to deduce that PC[α] has an ω-semigroup structure.

Lemma 4.73. Let C be a class of (ω-)languages closed under quotients. Let
u, u′ be two words and v, v′ two infinite words such that u 6C u′ and v 6C v′.
Then uv 6C u′v′.

The second result is a counterpart of Lemma 4.31 in the setting of infinite
words. It gives an example of non-trivial comparable infinite words for 6k.

Lemma 4.74. Let p be the period of C, k be an integer and let u be a word and
v an infinite word such that uω 6C v. Then for every m greater than 2k+1− 1,
we have

uω 6k u
pmv.

Before proving Lemma 4.74, we show how to use it to conclude about
Proposition 4.71. We thus take two pairs (r1, r2) and (s1, s2) in PPol(C)[α+], as
well as t2 ∈ Sω such that sω1 6C t2. Our goal is to prove that (r1(s1)ω, r2(s2)πt2)
is a pair in PPol(C)[αω].

Recall that PPol(C)[αω] is the intersection of all the Pk[αω]. It is therefore
sufficient to prove that (r1(s1)ω, r2(s2)πt2) lies in each of these sets. Let k > 0.
By definition, we need to find two infinite words w1 and w2 such that w1 6k w2,
α(w1) = r1(s1)ω and α(w2) = r2(s2)πt2.

By hypothesis, (r1, r2) is a Pol(C)-pair for α+. In particular it is a k-
pair, hence we can find x1, x2 ∈ A+ such that x1 6k x2 and α+(x1) = r1,
α+(x2) = r2. Similarly, there exist y1, y2 ∈ A+ such that y1 6k y2, α(y1) = s1

and α(y2) = s2.
Moreover, since α is C-compatible, the inequality sω1 6C t2 implies that for

every u, v ∈ Aω such that α(u) = sω1 and α(v) = t2, we have u 6C v. By
choosing u as yω1 and z as any infinite word in α−1(t2), we obtain that yω1 6C z.

Let p be the period of C. We define w1 = x1(y1)ω and w2 = x2(y2)p2
k+1πz.

Observe that, by definition, we have α(w1) = r1(s1)ω and α(w2) = r2(s2)πt2.
Therefore, it remains to prove w1 6k w2.

258 Théo Pierron

4. The polynomial closure operation

By Lemma 4.74 applied to u = y1 and v = z, we obtain (y1)ω 6k (y1)p2
k+1πz.

Moreover, using y1 6k y2 and z 6k z together with Lemma 4.73, we obtain
(y1)p2

k+1πz 6k (y2)p2
k+1πz. Therefore, by transitivity, (y1)ω 6k (y2)p2

k+1πz.
Finally, we use the inequality x1 6k x2 and Lemma 4.73 to conclude that we
have x1(y1)ω 6k x2(y2)p2

k+1πz, i.e. w1 6k w2.
Therefore, (α(w1), α(w2)) ∈ PPol(C)[αω], which proves the soundness inclu-

sion and concludes the proof of Proposition 4.71.

It remains to prove Lemma 4.74. The proof relies on the recurrence relation
on 6k given by the following generalization of Lemma 4.28 to the case of
infinite words. The proof of this generalization is similar to the original proof
of Lemma 4.28 in [Place and Zeitoun, 2017c].

Lemma 4.75. Let k be an integer and w and w′ two infinite words. Then
w 6k w

′ if and only if the two following properties hold:

• w 6C w′

• If k > 0, for every decomposition w = uav with a ∈ A, we can decompose
w′ = u′av′ in such a way that u 6k−1 u

′ and v 6k−1 v
′.

Using Lemma 4.75, we can then prove Lemma 4.74 by induction on the
integer k.

First consider the case k = 0. Note that the relation 60 coincides with
6C. Consider a word u and an infinite word v such that uω 6C v. Let m be a
positive integer. By hypothesis, we have uω 6C v, hence by Lemma 4.73, we
have upmuω 6C upmv, initializing the induction.

Assume now that Lemma 4.74 holds for some k > 0. Let u be a word and
v be an infinite word such that uω 6C v. Fix an integer m > 2k+1 − 1. To
prove that uω 6k u

pmv, we apply Lemma 4.75.
We can prove that uω 6C upmv similarly to the case k = 0. Consider now

a decomposition of uω as u1au2 where a ∈ A, u1 ∈ A∗ and u2 ∈ Aω. We want
to find a decomposition of upmv as v1av2 where u1 6k−1 v1 and u2 6k−1 v2.

By construction, the letter a falls into a factor up of uω. We can thus
rewrite the previous decomposition as up`u′1au′2uω where u′1, u′2 are finite words
such that u′1au′2 = up. We separate two cases:

• Assume that ` < 2k−1. Then we decompose upmv as up`u′1au′2up(m−`−1)v.
Define v1 = up`u′1 ∈ A∗ and v2 = u′2u

p(m−`−1)v ∈ Aω. Note that v1 = u1,
hence we have u1 6k−1 v1. Observe also that m− `− 1 > 2k − 1, hence
by induction hypothesis, we have uω 6k−1 u

p(m−`−1)v. Moreover, using
Lemma 4.73, we thus obtain that u2 6k−1 v2.

• Conversely, assume that ` > 2k − 1. This time, we decompose upmv as
up(2

k−1)u′1au
′
2u

p(m−2k)v, and define v1 = up(2
k−1)u′1 and v2 = u′2u

p(m−2k)v.

Induction Schemes: From Language Separation to Graph Colorings 259

4.4. Extension to infinite words

By Lemma 4.29, we have up` 6k−1 up(2
k−1). Using Lemma 4.73, we

thus obtain u1 6k−1 v1. Moreover, we have m − 2k > 2k − 1, hence by
induction hypothesis, we get uω 6k−1 u

p(m−2k)v. Therefore u2 6k−1 v2

by Lemma 4.73.

In both cases, we obtain a decomposition of upmv satisfying the hypothesis
of Lemma 4.75. We thus obtain that uω 6k u

pmv, ensuring that Lemma 4.74
holds.

4.4.4 Completeness of the algorithm

The end of this section is now devoted to the proof of Proposition 4.72
(corresponding to completeness: all pairs are computed). Before we start the
proof, we require an additional result that we will use. The result we need is
a standard decomposition lemma stated below.

Lemma 4.76. Let γ : A+ → S be a morphism into a finite semigroup S. Then
for every infinite word w ∈ Aω, there exists an idempotent e ∈ S and a decom-
position w = u0u1u2u3 · · · of w into infinitely many factors u0, u1, u2, · · · ∈ A+

satisfying γ(uj) = e for all j > 1 (there is no constraint on u0).

The proof of Lemma 4.76 is standard and is a consequence of Ramsey
Theorem over infinite graphs (see [Wilke, 1991] for example).

We may now prove Proposition 4.72.

Proof of Proposition 4.72. To prove the result, we exhibit a number ` > 1 such
that P`[αω] ⊂ Sat(α). Since every Pol(C)-pair is an `-pair, this will prove that
PPol(C)[αω] ⊂ Sat(α).

We begin with the choice of the number ` > 1. We know from Lemma 4.24
that there exists a number `+ such that PPol(C)[α+] = P`+ [α+]. We then define
` = `+ + |S+|+ 1.

It now remains to prove that P`[αω] ⊂ Sat(α). Let (q, q′) ∈ P`[αω], we have
to prove that (q, q′) ∈ Sat(α). By definition of Sat(α), this means that we have
to find r1, r2, s1, s2 ∈ S+ and t2 ∈ Sω such that

(r1, r2) ∈ PPol(C)[α+]
(s1, s2) ∈ PPol(C)[α+]
sω1 6C t2

and q = r1(s1)ω

q′ = r2(s2)πt2
(4.3)

We proceed as follows. First, we use the definition of P`[αω] to obtain two
infinite words w and w′ with images q and q′ such that w 6` w

′. We then use
the hypothesis w 6` w

′ together with our decomposition lemma, Lemma 4.28,
to split w and w′ into factors. Finally, we use this decomposition to find the
appropriate r1, r2, s1, s2 and t such that (4.3) holds.

260 Théo Pierron

4. The polynomial closure operation

Using Lemma 4.76 (with α+ as the morphism γ) we may decompose w as
an infinite product w = u0u1u2 · · · (u0, u1, u2, . . . ∈ A+) such that α(u1) =
α(u2) = α(u3) = · · · is an idempotent e of S+.

We now apply Lemma 4.28 m times to the infinite words w 6` w
′ where

m = |S+|+1. This yields a decomposition w′ = u′0u
′
1 · · ·u′m−1v (u′0, u′1, . . . , u′m−1 ∈

A+ and v ∈ Aω) which satisfies the following (recall that ` = `+ +m):

• For all j 6 m− 1, uj 6`+ u
′
j, and

• upup+1 · · · 6`+ v.

We may now use the decomposition of w and w′ to construct the appropri-
ate r1, r2, s1, s2 and t2 such that (4.3) holds.

Since m = |S+| + 1, by the pigeonhole principle, we obtain i < j 6 m− 1
such that α+(u′0 · · ·u′i) = α+(u′0 · · ·u′j) = α+(u′0 · · ·u′i)α+(u′i+1 · · ·u′j). Hence,
α+(u′0 · · ·u′i) is stable by right multiplication by α+(u′i+1 · · ·u′j). Iterating this
equality, we get

α+(u′0 · · ·u′i) = α+(u′0 · · ·u′i)(α+(u′i+1 · · ·u′j))π.

Let x1 = u0 · · ·ui ∈ A+, x2 = u′0 · · ·u′i ∈ A+, y1 = ui+1 · · ·uj ∈ A+ and
y2 = u′i+1 · · ·u′j ∈ A+. Moreover, we let r1 = α+(x1), r2 = α+(x2), s1 = α+(y1)
and s2 = α+(y2). Note that by the equality above, we have

r2 = r2(s2)π.

Finally, we let z = u′i+1 · · ·u′mv and t2 = αω(z).
It remains to prove that (4.3) holds. By definition, s1 = α+(ui+1 · · ·uj) is

the idempotent e, therefore

q = αω(w) = r1(s1)ω.

Moreover, we have w′ = x2z, therefore,

q′ = r2t2 = r2(s2)πt2.

To conclude that (4.3) holds, it remains to prove that (r1, r2), (s1, s2) ∈
PPol(C)[α+] and sω1 6C t2. This is what we do now.

Using Lemma 4.20, we have x1 6`+ x2 and y1 6`+ y2. This exactly says that
(r1, r2), (s1, s2) ∈ P`+ [α+]. Therefore, by choice of `+, we have (r1, r2), (s1, s2) ∈
PPol(C)[α+].

Moreover, by Lemma 4.28, the inequality ui+1ui+2 · · · 6`+ z implies that
ui+1ui+2 · · · 6C z, therefore sω1 6C z. This terminates the proof of Proposi-
tion 4.72.

Induction Schemes: From Language Separation to Graph Colorings 261

4.5. Conclusion

4.5 Conclusion

In this chapter, we study the separation problem for classed defined by
polynomial closures. We first presented a simplified version of the generic
framework introduced in [Place and Zeitoun, 2017d] designed to handle Pol(C)-
separation when C is finite. This framework can be extended to prove decidabil-
ity of Bool(Pol(C))-separation on finite words (see again [Place and Zeitoun,
2014a, 2017d]). The main idea here is to understand how pairs are constructed
during the fixpoint algorithm, in order to isolate specific ones characterizing
Bool(Pol(C)). This approach is also used to obtain complexity results in [Place
and Zeitoun, 2018a].

We then presented in Section 4.3 a generic lower bound for the separation
problem. As soon as we consider the polynomial closure of classes recognizing
alphabets, the problem becomes PSpace-hard. This is a generalization of the
result of [Place and Zeitoun, 2018a]: it applies for almost all levels of the hier-
archies excepted for the lower ones. Moreover, up to some slight modifications,
the reduction we present also applies to unambiguous polynomial closures (a
restriction of polynomial closure where we ask for unions to be disjoint and
for marked concatenations to be unambiguous), and thus gives a PSpace lower
bound for such classes. While it is tight for Pol(AT), we do not know whether
this bound is tight for higher levels of the hierarchies, even for the ones with
decidable separation.

We believe this is not the case, and conjecture that if separation is decidable
for all the levels of an infinite hierarchy, the complexity of separation must
(strictly) grow when considering increasing levels of the hierarchy. Indeed, we
only used here that we can detect alphabets. When considering higher levels,
the classes can distinguish much more properties, which should allow to encode
more information and obtain reductions to greater complexity classes.

A final note about complexity comes from the last reduction from [Place
and Zeitoun, 2018a], from Pol(AT)-separation to Bool(Pol(AT))-separation.
Combined with the previous result, it proves that Bool(Pol(AT))-separation
is PSpace-hard. We believe that this reduction can also be generalized into a
generic reduction from Pol(C)-separation to Bool(Pol(C))-separation whenever
C is variety. This would settle a PSpace lower bound for every high enough
level of a hierarchy with decidable separation.

In a last part, we presented an extension of the framework to the setting
of infinite words. This allowed us to extend the PSpace lower bound to this
setting. Note in particular that, while our reduction is only stated for the
class Pol(C), we did not use any property specific to this class, except that it
is closed under quotients, and contains AT. This reduction is actually generic,
and proves that for a nice enough class C, the C-separation problem is harder
on ω-languages than on languages of finite words.

We also considered decidability of the separation problem for infinite words,

262 Théo Pierron

4. The polynomial closure operation

and extended a result from [Pierron et al., 2016]: when C is a finite nice class,
then the Pol(C)-separation problem is decidable for infinite words.

Many questions remain open regarding infinite words. A first direction
would be to investigate which results of [Place and Zeitoun, 2017c] extend to
this setting. In particular, the characterization of Pol(C) in terms of C seems to
be an interesting result to look for, as a decisive step for extending Theorem 4.2
to infinite words and for finding a generic transfer result from C-separation to
Pol(C)-membership in the infinite words setting.

Note that it is likely that this transfer result (if it exists) also uses C-
separation on finite words. Indeed, considering finite words is useful when
studying problems in the setting of infinite words: given an ω-semigroup mor-
phism α = (α+, αω), the set of pairs for αω has no special structure, but the
set of pairs for α is an ω-semigroup. It is then natural that separation on
finite words plays a role to solve separation on infinite words, as shown by
Theorem 4.69.

A final remark is that while the recent results tend to encapsulate many
proofs in a unified framework, the classes we introduced are far from being an
exhaustive list of interesting classes. First of all, the hierarchies we consider are
all finitely-based. While this allows to derive nice properties of each level, there
are interesting hierarchies for which there is no finite base, for example the one
constructed starting from group languages. In [Place and Zeitoun, 2019], the
authors considered this kind of hierarchies, and solved separation for the lower
levels. This proves that there is still hope for infinitely-based hierarchies, and
thus raises the question of what can be extended in this context.

Induction Schemes: From Language Separation to Graph Colorings 263

4.5. Conclusion

264 Théo Pierron

Conclusion

This thesis presents results from two fields. The first two chapters are
devoted to graph theory, and more precisely to the study of graph colorings.
In Chapter 1, we use a standard discharging argument to establish a bound
on total coloring of planar graphs. In Chapter 2, we color powers of graphs,
and we especially focus on squares of planar graphs. We use a variant of the
discharging method to characterize cycle obstructions for obtaining a constant
difference between upper and lower bounds. The results presented in this thesis
are parts of several papers: [Choi et al., 2018], [Bonamy et al., 2019b], [Pierron,
2019], [Pierron et al., 2016] and [Place and Zeitoun, 2018a]. The last one
generalizes the result of Section 3.3, while Section 4.3 generalizes another result
of this paper.

We recall briefly here some of the main open problems raised in the first
two chapters, starting from the ones that seem the most reachable.

Question 5.1. For every k > 2, do all but finitely many graphs G satisfy
χ(Gk) 6 f(k,∆(G)) + 1− k? Can we improve this when considering graphs G
with ∆(G) > g(k)?

Question 5.2. Does every planar graph G without cycles of length 2 modulo
4 satisfy χ(G2) 6 ∆(G) +O(1)?

While the class of planar graphs with such restrictions seems quite artificial,
it contains the set of all graphs obtained from a bipartite planar multigraph
where each edge is subdivided once. In this case, coloring the square of such
a graph is equivalent to totally color the initial multigraph. However, this can
be done with ∆ + O(1) colors due to [Borodin et al., 1997a]. Therefore, to
disprove the statement of Question 5.2, we have to look for some other kind
of graphs.

Question 5.3. Is the square of every C4-free planar graph (∆+O(1))-choosable
when ∆ > ∆0, when ∆0 is less than (say) 100?

Question 5.4. For which values of ∆ every planar graph of maximum degree
∆ can be totally (∆ + 1)-colored? (Open for 4 6 ∆ 6 8.)

Question 5.5. Can every planar graph of maximum degree 7 be list totally
9-colored?

265

The last questions are special cases of the aforementioned (but still seem-
ingly unreachable) conjectures: the list edge coloring conjecture, its total col-
oring version (total list coloring conjecture) and their relaxations introduced
in [Vizing, 1976].

Conjecture 5.6 ([Vizing, 1976]). Every simple graph G satisfies χ′`(G) 6
∆(G) + 1.

Conjecture 5.7 ([Behzad, 1965; Vizing, 1976]). Every simple graph G satisfies
χ′′(G) 6 ∆(G) + 2.

The second part of this thesis concerns regular languages. The goal here
is to understand the expressiveness of some classes of languages. This is done
by deciding the so-called membership problems. To this end, we investigate
a stronger problem called separation. In Chapter 3, we present these two
problems, together with a first complexity result. We show that separation is
a more robust problem than membership: its complexity does not depend on
the representation of the input languages.

In Chapter 4, we study a special operation: the polynomial closure. We
first consider some decidability questions, and present a generic framework to
develop algorithms solving Pol(C)-separation when C is a finite class. We then
investigate the complexity of Pol(C)-separation, by proving a PSpace lower
bound when C is a sufficiently expressive class. We finally extend the frame-
work to handle the case of infinite words, and we prove that the previous
results also apply to the setting of infinite words.

We recall again some of the open questions we introduced in Chapter 4.

Question 5.8. Is there a generic transfer result from C-separation to Pol(C)-
membership in the setting of infinite words?

Question 5.9. When the membership/separation problem is decidable for all
the levels of a given hierarchy, does it complexity (strictly) increases with the
levels?

Question 5.10. Can we extend the results we presented to classes that are not
necessarily positive varieties?

266 Théo Pierron

Bibliography

Abbott, H.L. and Zhou, B., 1991. On small faces in 4-critical planar graphs.
Ars Combinatoria, 32:203–207.

Agnarsson, G. and Halldórsson, M.M., 2003. Coloring powers of planar
graphs. SIAM Journal on Discrete Mathematics, 16(4):651–662.

Almeida, J., 1999. Some algorithmic problems for pseudovarieties. Publica-
tiones Mathematicae Debrecen, 54(1):531–552.

Almeida, J., Bartoňová, J., Klíma, O. and Kunc, M., 2015. On decid-
ability of intermediate levels of concatenation hierarchies. In International
Conference on Developments in Language Theory, pages 58–70. Springer.

Almeida, J., Costa, J.C. and Zeitoun, M., 2008. Pointlike sets with respect
to r and j. Journal of Pure and Applied Algebra, 212(3):486–499.

Almeida, J. and Klíma, O., 2015. Representations of relatively free
profinite semigroups, irreducibility, and order primitivity. arXiv preprint
arXiv:1509.01389.

Almeida, J. and Zeitoun, M., 1997. The pseudovariety is hyperdecidable.
RAIRO-Theoretical Informatics and Applications, 31(5):457–482.

Alon, N., 1999. Combinatorial Nullstellensatz. Combinatorics, Probability
and Computing, 8(1-2):7–29.

Alon, N. and Tarsi, M., 1992. Colorings and orientations of graphs. Combi-
natorica, 12(2):125–134.

Amini, O., Esperet, L. and Van Den Heuvel, J., 2013. A unified approach
to distance-two colouring of graphs on surfaces. Combinatorica, 33(3):253–
296.

Appel, K., Haken, W. et al., 1977. Every planar map is four colorable. Part
I: Discharging. Illinois Journal of Mathematics, 21(3):429–490.

Arfi, M., 1991. Opérations polynomiales et hiérarchies de concaténation.
Theoretical Computer Science, 91(1):71–84.

267

BIBLIOGRAPHY

Behzad, M., 1965. Graphs and their chromatic numbers. PhD thesis, Michigan
State University.

Beineke, L.W., 1970. Characterizations of derived graphs. Journal of Com-
binatorial theory, 9(2):129–135.

Bojańczyk, M., 2008. The common fragment of ACTL and LTL. In Roberto
Amadio, editor, Foundations of Software Science and Computational Struc-
tures, FoSSaCS’08, volume 4962 of Lecture Notes in Computer Science,
pages 172–185. Springer-Verlag. doi:10.1007/978-3-540-78499-9_13.
URL http://dx.doi.org/10.1007/978-3-540-78499-9_13

Bojańczyk, M., 2015. Star height via games. In Proceedings of the 2015
30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 214–219. IEEE Computer Society.

Bollobás, B. and Harris, A.J., 1985. List-colourings of graphs. Graphs and
Combinatorics, 1(1):115–127.

Bollobás, B. and Hind, H.R.F., 1989. A new upper bound for the list
chromatic number. Discrete Mathematics, 74(1-2):65–75.

Bonamy, M., 2015. Planar graphs with ∆ > 8 are (∆ + 1)-edge-choosable.
SIAM Journal on Discrete Mathematics, 29(3):1735–1763.

Bonamy, M. and Bousquet, N., 2014. Brooks’ theorem on powers of graphs.
Discrete Mathematics, 325:12–16.

Bonamy, M., Cranston, D.W. and Postle, L., 2019a. Planar graphs of
girth at least five are square (∆ + 2)-choosable. Journal of Combinatorial
Theory, Series B, 134:218–238.

Bonamy, M., Lévêque, B. and Pinlou, A., 2014. List coloring the square
of sparse graphs with large degree. European Journal of Combinatorics,
41:128–137.

Bonamy, M., Pierron, T. and Sopena, É., 2019b. Every planar graph with
∆ > 8 is totally (∆ + 2)-choosable. In preparation.

Borodin, O.V., 1987. Coupled colorings of graphs on a plane (in Russian).
Metody Diskretnogo Analiza, 45:21–27.

Borodin, O.V., 1989. On the total coloring of planar graphs. Journal für die
reine und angewandte Mathematik, 394:180–185.

Borodin, O.V., 1990. Generalization of a theorem of Kotzig and a prescribed
coloring of the edges of planar graphs. Mathematical Notes of the Academy
of Sciences of the USSR, 48(6):1186–1190.

268 Théo Pierron

http://dx.doi.org/10.1007/978-3-540-78499-9_13

BIBLIOGRAPHY

Borodin, O.V., 1996a. Structural properties of plane graphs without adja-
cent triangles and an application to 3-colorings. Journal of Graph Theory,
21(2):183–186.

Borodin, O.V., 1996b. To the paper of H.L. Abbott and B. Zhou on 4-critical
planar graphs. Ars Combinatoria, 43:191–192.

Borodin, O.V., 2013. Colorings of plane graphs: A survey. Discrete Mathe-
matics, 313(4):517–539.

Borodin, O.V., Broersma, H.J., Glebov, A. and Van den Heuvel, J.,
2002. Stars and bunches in planar graphs. Part II: General planar graphs
and colourings. CDAM Research Report, 5:2002.

Borodin, O.V., Glebov, A.N., Ivanova, A.O., Neustroeva, T.K. and
Tashkinov, V.A., 2004. Sufficient conditions for planar graphs to be
2-distance (∆ + 1)-colourable. Sibirskie Ehlektronnye Matematicheskie
Izvestiya [electronic only], 1:129–141.

Borodin, O.V., Glebov, A.N., Jensen, T.R. and Raspaud, A., 2006. Pla-
nar graphs without triangles adjacent to cycles of length from 3 to 9 are 3-
colorable. Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only],
3:428–440.

Borodin, O.V., Glebov, A.N., Raspaud, A. and Salavatipour, M.R.,
2005. Planar graphs without cycles of length from 4 to 7 are 3-colorable.
Journal of Combinatorial Theory, Series B, 93(2):303–311.

Borodin, O.V. and Ivanova, A.O., 2009a. 2-distance (∆ + 2)-coloring of
planar graphs with girth six and ∆ > 18. Discrete Mathematics, 309(23-
24):6496–6502.

Borodin, O.V. and Ivanova, A.O., 2009b. List 2-distance (∆ + 2)-coloring
of planar graphs with girth six. European Journal of Combinatorics,
30(5):1257–1262.

Borodin, O.V., Kostochka, A.V. and Woodall, D.R., 1997a. List edge
and list total colourings of multigraphs. Journal of Combinatorial Theory,
Series B, 71(2):184–204.

Borodin, O.V., Kostochka, A.V. andWoodall, D.R., 1997b. Total color-
ings of planar graphs with large maximum degree. Journal of Graph Theory,
26(1):53–59.

Borodin, O.V. and Raspaud, A., 2003. A sufficient condition for pla-
nar graphs to be 3-colorable. Journal of Combinatorial Theory, Series B,
88(1):17–27.

Induction Schemes: From Language Separation to Graph Colorings 269

BIBLIOGRAPHY

Branco, M.J.J. and Pin, J.-É., 2009. Equations defining the polynomial
closure of a lattice of regular languages. In International Colloquium on
Automata, Languages, and Programming, pages 115–126. Springer.

Brooks, R.L., 1941. On colouring the nodes of a network. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 37, pages 194–
197. Cambridge University Press.

Brzozowski, J.A., 1962. Canonical regular expressions and minimal state
graphs for definite events. Mathematical theory of Automata, 12(6):529–561.

Brzozowski, J.A., 1980. Open problems about regular languages. In Formal
Language Theory: Perspectives and Open Problems, pages 23–47. Academic
Press.

Brzozowski, J.A. and Knast, R., 1978. The dot-depth hierarchy of star-free
languages is infinite. Journal of Computer and System Sciences, 16(1):37–55.

Bu, Y., Chen, D., Raspaud, A. and Wang, W., 2009. Injective coloring of
planar graphs. Discrete Applied Mathematics, 157(4):663–672.

Bu, Y., Lu, K. and Yang, S., 2015. Two smaller upper bounds of list injective
chromatic number. Journal of Combinatorial Optimization, 29(2):373–388.

Büchi, J.R., 1960. Weak second-order arithmetic and finite automata. Math-
ematical Logic Quarterly, 6(1-6):66–92.

Cajori, F., 1918. Origin of the name “mathematical induction.”. The Amer-
ican Mathematical Monthly, 25(5):197–201.

Calamoneri, T., 2011. The L(h, k)-labelling problem: an updated survey
and annotated bibliography. The Computer Journal, 54(8):1344–1371.

Chang, G.J. and Kuo, D., 1996. The L(2, 1)-labeling problem on graphs.
SIAM Journal on Discrete Mathematics, 9(2):309–316.

Chen, M., Hahn, G., Raspaud, A. and Wang, W., 2012. Some results
on the injective chromatic number of graphs. Journal of Combinatorial
Optimization, 24(3):299–318.

Chetwynd, A. and Häggkvist, R., 1996. An improvement of Hind’s up-
per bound on the total chromatic number. Combinatorics, Probability and
Computing, 5(2):99–104.

Cho, S. and Huynh, D.T., 1991. Finite-automaton aperiodicity is PSPACE-
complete. Theoretical Computer Science, 88(1):99–116.

270 Théo Pierron

BIBLIOGRAPHY

Choi, I., Cranston, D.W. and Pierron, T., 2018. Painting and correspon-
dence coloring of squares of planar graphs with no 4-cycles. Combinatorica
(Accepted with minor revision).

Cohen, N. and Havet, F., 2010. Planar graphs with maximum degree
∆ > 9 are (∆ + 1)-edge-choosable—A short proof. Discrete Mathematics,
310(21):3049–3051.

Cohen, R.S. and Brzozowski, J.A., 1971. Dot-depth of star-free events.
Journal of Computer and System Sciences, 5(1):1–16.

Cohen-Addad, V., Hebdige, M., Li, Z., Salgado, E. et al., 2017. Stein-
berg’s conjecture is false. Journal of Combinatorial Theory, Series B,
122:452–456.

Cranston, D.W. and Kim, S.-J., 2008. List-coloring the square of a subcubic
graph. Journal of Graph Theory, 57(1):65–87.

Cranston, D.W. and Rabern, L., 2016. Painting squares in ∆2− 1 shades.
The Electronic Journal of Combinatorics, 23(2):P2–50.

Cranston, D.W. and West, D.B., 2017. An introduction to the discharging
method via graph coloring. Discrete Mathematics, 340(4):766–793.

Czerwiński, W., Martens, W. and Masopust, T., 2013. Efficient sepa-
rability of regular languages by subsequences and suffixes. In Fomin F.V.,
Freivalds R., Kwiatkowska M., Peleg D. (eds) Automata, Languages, and
Programming. ICALP 2013. Lecture Notes in Computer Science, volume
7966, pages 150–161. Springer, Berlin, Heidelberg.

Diekert, V., Gastin, P. and Kufleitner, M., 2008. A survey on small
fragments of first-order logic over finite words. International Journal of
Foundations of Computer Science, 19(03):513–548.

Diekert, V. and Kufleitner, M., 2011. Fragments of first-order logic over
infinite words. Theory of Computing Systems, 48(3):486–516.

Dong, W. and Xu, B., 2017. 2-distance coloring of planar graphs without
4-cycles or 5-cycles. Manuscript.

Doyon, A., Hahn, G. and Raspaud, A., 2010. Some bounds on the injective
chromatic number of graphs. Discrete Mathematics, 310(3):585–590.

Dvořák, Z., Nejedlỳ, P., Škrekovski, R. et al., 2008. Coloring squares of
planar graphs with girth six. European Journal of Combinatorics, 29(4):838–
849.

Induction Schemes: From Language Separation to Graph Colorings 271

BIBLIOGRAPHY

Dvořák, Z. and Postle, L., 2018. Correspondence coloring and its applica-
tion to list-coloring planar graphs without cycles of lengths 4 to 8. Journal
of Combinatorial Theory, Series B, 129:38–54.

Eggan, L.C. et al., 1963. Transition graphs and the star-height of regular
events. The Michigan Mathematical Journal, 10(4):385–397.

Elgot, C.C., 1961. Decision problems of finite automata design and related
arithmetics. Transactions of the American Mathematical Society, 98(1):21–
51.

Erdős, P., Rubin, A.L. and Taylor, H., 1979. Choosability in graphs. In
Proceedings of West Coast Conference on Combinatorics, Graph Theory and
Computing, Congressus Numerantium, volume 26, pages 125–157.

Esik, Z. and Ito, M., 2003. Temporal logic with cyclic counting and the
degree of aperiodicity of finite automata. Acta Cybernetica, 16(1):1–28.

Folkman, J. and Fulkerson, D.R., 1966. Edge colorings in bipartite graphs.
Technical report, RAND Corp. Santa Monica, CA.

Glaßer, C. and Schmitz, H., 2008. Languages of dot-depth 3/2. Theory of
Computing Systems, 42(2):256–286.

Gonçalves, D., 2008. On the L(p, 1)-labelling of graphs. Discrete Mathe-
matics, 308(8):1405–1414.

Griggs, J.R. and Yeh, R.K., 1992. Labelling graphs with a condition at
distance 2. SIAM Journal on Discrete Mathematics, 5(4):586–595.

Griggs, J.R. et al., 2009. Graph labellings with variable weights, a survey.
Discrete Applied Mathematics, 157(12):2646–2658.

Grötzsch, H., 1959. Ein Dreifarbensatz fur dreikreisfreie Netze auf der Kugel.
Wissenschaftliche Zeitschrift / Martin-Luther-Universität, Halle-Wittenberg
Mathematisch-naturwissenschaftliche Reihe, 8:109–120.

Häggkvist, R. and Janssen, J., 1997. New bounds on the list-chromatic
index of the complete graph and other simple graphs. Combinatorics, Prob-
ability and Computing, 6(3):295–313.

Hahn, G., Kratochvıl, J., Širáň, J. and Sotteau, D., 2002. On the
injective chromatic number of graphs. Discrete Mathematics, 256(1-2):179–
192.

Hashiguchi, K., 1983. Representation theorems on regular languages. Jour-
nal of computer and system sciences, 27(1):101–115.

272 Théo Pierron

BIBLIOGRAPHY

Hashiguchi, K., 1988. Algorithms for determining relative star height and
star height. Information and Computation, 78(2):124–169.

Havet, F., Reed, B. and Sereni, J.-S., 2012. Griggs and Yeh’s conjecture
and L(p, 1)-labelings. SIAM Journal on Discrete Mathematics, 26(1):145–
168.

Havet, F., Van den Heuvel, J., McDiarmid, C. and Reed, B., 2007. List
colouring squares of planar graphs. Electronic Notes in Discrete Mathemat-
ics, 29:515–519.

Henckell, K., 1988. Pointlike sets: the finest aperiodic cover of a finite
semigroup. Journal of Pure and Applied Algebra, 55(1-2):85–126.

Henckell, K., Rhodes, J. and Steinberg, B., 2010. Aperiodic pointlikes
and beyond. International Journal of Algebra and Computation, 20(02):287–
305.

Hind, H.R., 1990. An upper bound for the total chromatic number. Graphs
and Combinatorics, 6(2):153–159.

Hind, H.R.F., 1988. Restricted edge-colourings. PhD thesis, University of
Cambridge.

Hoffman, A.J. and Singleton, R.R., 1960. On moore graphs with diameters
2 and 3. IBM Journal of Research and Development, 4(5):497–504.

Hoffman, A.J. and Singleton, R.R., 2003. On moore graphs with diameters
2 and 3. In Selected Papers Of Alan J Hoffman: With Commentary, pages
377–384. World Scientific.

Holyer, I., 1981. The NP-completeness of edge-coloring. SIAM Journal on
Computing, 10(4):718–720.

Jensen, T.R. and Toft, B., 1995. Graph Coloring Problems. Series in Dis-
crete Mathematics and Optimization. Wiley-Interscience, John Wiley, New
York,.

Jonas, K., 1993. Graph Coloring Analogues with a Condition at Distance
Two: L(2, 1)-labellings and List λ-labellings. PhD thesis, University of South
Carolina.

Jones, N.D., 1975. Space-bounded reducibility among combinatorial prob-
lems. Journal of Computer and System Sciences, 11(1):68–85.

Juvan, M., Mohar, B. and Škrekovski, R., 1998. List total colourings of
graphs. Combinatorics, Probability and Computing, 7(2):181–188.

Induction Schemes: From Language Separation to Graph Colorings 273

BIBLIOGRAPHY

Juvan, M., Mohar, B. and Škrekovski, R., 1999. Graphs of degree 4 are
5-edge-choosable. Journal of Graph Theory, 32(3):250–264.

Kahn, J., 1996. Asymptotically good list-colorings. Journal of Combinatorial
Theory, Series A, 73(1):1–59.

Kirsten, D., 2005. Distance desert automata and the star height problem.
RAIRO-Theoretical Informatics and Applications, 39(3):455–509.

Kleene, S.C., 1951. Representation of events in nerve nets and finite au-
tomata. Technical report, RAND PROJECT AIR FORCE SANTA MON-
ICA CA.

Knast, R., 1983. A semigroup characterization of dot-depth one languages.
RAIRO – Theoretical Informatics and Applications, 17(4):321–330.

Kostochka, A.V., 1977. The total coloring of a multigraph with maximal
degree 4. Discrete Mathematics, 17(2):161–163.

Kostochka, A.V., 1996. The total chromatic number of any multigraph with
maximum degree five is at most seven. Discrete Mathematics, 162(1-3):199–
214.

Kowalik, Ł., Sereni, J.-S. and Škrekovski, R., 2008. Total-coloring of
plane graphs with maximum degree nine. SIAM Journal on Discrete Math-
ematics, 22(4):1462–1479.

Král’, D. and Škrekovski, R., 2003. A theorem about the channel assign-
ment problem. SIAM Journal on Discrete Mathematics, 16(3):426–437.

Kufleitner, M. and Walter, T., 2018. Level two of the quantifier alterna-
tion hierarchy over infinite words. Theory of Computing Systems, 62(3):467–
480.

Lam, P.C.B., Shiu, W.C. and Song, Z.M., 2005. The 3-choosability of plane
graphs of girth 4. Discrete Mathematics, 294(3):297–301.

Lih, K.-W., Wang, W.-F. et al., 2006. Coloring the square of an outerplanar
graph. Taiwanese Journal of Mathematics, 10(4):1015–1023.

Lužar, B., Škrekovski, R. and Tancer, M., 2009. Injective colorings of
planar graphs with few colors. Discrete Mathematics, 309(18):5636–5649.

Margolis, S.W. and Pin, J.-É., 1985. Products of group languages. In
International Conference on Fundamentals of Computation Theory, pages
285–299. Springer.

274 Théo Pierron

BIBLIOGRAPHY

Masopust, T., 2018. Separability by piecewise testable languages is PTime-
complete. Theoretical Computer Science, 711:109–114.

McNaughton, R., 1960. Symbolic logic and automata. Wright Air Develop-
ment Division, Air Research and Development Command.

McNaughton, R. and Papert, S.A., 1971. Counter-Free Automata (MIT
research monograph no. 65). The MIT Press.

Miao, L.Y. and Fan, Y.Z., 2014. The distance coloring of graphs. Acta
Mathematica Sinica, English Series, 30(9):1579–1587.

Molloy, M. and Reed, B., 1998. A bound on the total chromatic number.
Combinatorica, 18(2):241–280.

Molloy, M. and Reed, B., 2000. Near-optimal list colorings. Random Struc-
tures & Algorithms, 17(3-4):376–402.

Molloy, M. and Salavatipour, M.R., 2005. A bound on the chromatic
number of the square of a planar graph. Journal of Combinatorial Theory,
Series B, 94(2):189–213.

Perrin, D., 1984. Recent results on automata and infinite words. In Interna-
tional Symposium on Mathematical Foundations of Computer Science, pages
134–148. Springer.

Perrin, D. and Pin, J.-É., 1986. First-order logic and star-free sets. Journal
of Computer and System Sciences, 32(3):393–406.

Perrin, D. and Pin, J.-É. (Eds), 2004. Infinite words: automata, semigroups,
logic and games, volume 141 of Pure and Applied Mathematics Series. El-
sevier.

Pierron, T., 2019. A Brooks-like result for graph powers. In European
Conference on Combinatorics, Graph Theory and Applications, Eurocomb
2019.

Pierron, T., Place, T. and Zeitoun, M., 2016. Quantifier alternation for
infinite words. In Jacobs B., Löding C. (eds) Foundations of Software Science
and Computation Structures. FoSSaCS 2016. Lecture Notes in Computer
Science, volume 9634, pages 234–251. Springer, Berlin, Heidelberg.

Pin, J.-É., Straubing, H. and Thérien, D., 1988. Locally trivial cate-
gories and unambiguous concatenation. Journal of Pure and Applied Alge-
bra, 52(3):297–311.

Pin, J.-É., 1986. Varieties of formal languages. Plenum Publishing Co.

Induction Schemes: From Language Separation to Graph Colorings 275

BIBLIOGRAPHY

Pin, J.-É., 1995. A variety theorem without complementation. Russian Math-
ematics (Izvestija vuzov. Matematika), 39:80–90.

Pin, J.-É., 1997. Syntactic semigroups. In Handbook of formal languages,
pages 679–746. Springer.

Pin, J.-É., 2013. An explicit formula for the intersection of two polynomi-
als of regular languages. In International Conference on Developments in
Language Theory, pages 31–45. Springer.

Pin, J.-É. and Straubing, H., 1981. Monoids of upper triangular boolean
matrices. In Semigroups. Structure and Universal AIgebraic Problems, vol-
ume 39, pages 259–272. North-Holland.

Pin, J.-É. and Weil, P., 1995. Polynomial closure and unambiguous product.
In International Colloquium on Automata, Languages, and Programming,
pages 348–359. Springer.

Pin, J.-É. and Weil, P., 1997. Polynomial closure and unambiguous product.
Theory of Computing Systems, 30(4):383–422.

Pin, J.-É. and Weil, P., 2002. The wreath product principle for ordered
semigroups. Communications in Algebra, 30(12):5677–5713.

Place, T., 2015. Separating regular languages with two quantifiers alterna-
tions. In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 202–213. IEEE Computer Society.
doi:10.1109/LICS.2015.28.

Place, T. and Zeitoun, M., 2014a. Going higher in the first-order quan-
tifier alternation hierarchy on words. In Esparza J., Fraigniaud P., Hus-
feldt T., Koutsoupias E. (eds) Automata, Languages, and Programming.
ICALP 2014. Lecture Notes in Computer Science, volume 8573, pages 342–
353. Springer, Berlin, Heidelberg.

Place, T. and Zeitoun, M., 2014b. Separating regular languages with first-
order logic. In Proceedings of the Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-
LICS ’14, pages 75:1–75:10. Association for Computing Machinery, New
York, NY, USA. ISBN 978-1-4503-2886-9. doi:10.1145/2603088.2603098.
URL http://doi.acm.org/10.1145/2603088.2603098

Place, T. and Zeitoun, M., 2017a. Adding successor: A transfer theorem
for separation and covering. arXiv preprint arXiv:1709.10052.

276 Théo Pierron

http://doi.acm.org/10.1145/2603088.2603098

BIBLIOGRAPHY

Place, T. and Zeitoun, M., 2017b. The covering problem. arXiv preprint
arXiv:1707.03370.

Place, T. and Zeitoun, M., 2017c. Generic results for concatenation hier-
archies. Theory of Computing Systems, pages 1–53.

Place, T. and Zeitoun, M., 2017d. Separation for dot-depth two. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12. IEEE.

Place, T. and Zeitoun, M., 2018a. The complexity of separation for levels
in concatenation hierarchies. arXiv preprint arXiv:1810.09287.

Place, T. and Zeitoun, M., 2018b. A generic characterization of Pol(C).
arXiv preprint arXiv:1802.06141.

Place, T. and Zeitoun, M., 2018c. Separating without any ambiguity. In
45th International Colloquium on Automata, Languages and Programming,
ICALP 2018.

Place, T. and Zeitoun, M., 2019. Separation and covering for group based
concatenation hierarchies. arXiv preprint arXiv:1902.04957.

Prowse, A. and Woodall, D.R., 2003. Choosability of powers of circuits.
Graphs and Combinatorics, 19(1):137–144.

Rosenfeld, M., 1971. On the total coloring of certain graphs. Israel Journal
of Mathematics, 9(3):396–402.

Sakai, D., 1994. Labeling chordal graphs: distance two condition. SIAM
Journal on Discrete Mathematics, 7(1):133–140.

Sanders, D.P. and Zhao, Y., 1995. A note on the three color problem.
Graphs and Combinatorics, 11(1):91–94.

Sanders, D.P. and Zhao, Y., 1999. On total 9-coloring planar graphs of
maximum degree seven. Journal of Graph Theory, 31(1):67–73.

Schützenberger, M.P., 1965. On finite monoids having only trivial sub-
groups. Information and Control, 8(2):190–194.

Simon, I., 1975. Piecewise testable events. In Automata Theory and Formal
Languages 2nd GI Conference Kaiserslautern, May 20–23, 1975, pages 214–
222. Springer.

Sipser, M., 1997. Introduction to the theory of computation. PWS Publishing.

Induction Schemes: From Language Separation to Graph Colorings 277

BIBLIOGRAPHY

Steinberg, B., 2001. A delay theorem for pointlikes. Semigroup Forum,
63(3):281–304. doi:10.1007/s002330010051.
URL https://doi.org/10.1007/s002330010051

Steinberg, R., 1993. The state of the three color problem. In Annals of
Discrete Mathematics, volume 55, pages 211–248. Elsevier.

Straubing, H., 1981. A generalization of the Schützenberger product of finite
monoids. Theoretical Computer Science, 13(2):137–150.

Straubing, H., 1985. Finite semigroup varieties of the form V ∗D. Journal
of Pure and Applied Algebra, 36:53–94.

Straubing, H., 2018. First-order logic and aperiodic languages: a revisionist
history. ACM SIGLOG News, 5(3):4–20.

Tesson, P. and Thérien, D., 2002. Diamonds are forever: The variety DA.
In Semigroups, Algorithms, Automata and Languages, pages 475–499. World
Scientific.

Thérien, D., 1981. Classification of finite monoids: the language approach.
Theoretical Computer Science, 14(2):195–208.

Thomas, W., 1982. Classifying regular events in symbolic logic. Journal of
Computer and System Sciences, 25(3):360–376.

Thomassen, C., 1994. Every planar graph is 5-choosable. Journal of Combi-
natorial Theory, Series B, 62(1):180–181.

Thomassen, C., 1995. 3-list-coloring planar graphs of girth 5. Journal of
Combinatorial Theory, Series B, 64(1):101–107.

Thomassen, C., 2018. The square of a planar cubic graph is 7-colorable.
Journal of Combinatorial Theory, Series B, 128:192–218.

Trakhtenbrot, B.A., 1961. Finite automata and the logic of single-place
predicates. In Doklady Akademii Nauk, volume 140, pages 326–329. Russian
Academy of Sciences.

van den Heuvel, J. and McGuinness, S., 2003. Coloring the square of a
planar graph. Journal of Graph Theory, 42(2):110–124.

Van Rooijen, L. and Zeitoun, M., 2013. The separation problem for regular
languages by piecewise testable languages. arXiv preprint arXiv:1303.2143.

Vijayaditya, N., 1971. On total chromatic number of a graph. Journal of
the London Mathematical Society, 2(3):405–408.

278 Théo Pierron

https://doi.org/10.1007/s002330010051

BIBLIOGRAPHY

Vizing, V.G., 1964. On an estimate of the chromatic index of a p-graph (in
Russian). Metody Diskretnogo Analiza, 3:25–30.

Vizing, V.G., 1965. Critical graphs with given chromatic class (in Russian).
Metody Diskretnogo Analiza, 5:9–17.

Vizing, V.G., 1976. Vertex colourings with given colours (in Russian). Metody
Diskretnogo Analiza, 29:3–10.

Voigt, M., 1993. List colourings of planar graphs. Discrete Mathematics,
120(1-3):215–219.

Voigt, M., 1995. A not 3-choosable planar graph without 3-cycles. Discrete
Mathematics, 146(1-3):325–328.

Wang, W., 2007. Total chromatic number of planar graphs with maximum
degree ten. Journal of Graph Theory, 54(2):91–102.

Wang, W. and Cai, L., 2008. Labelling planar graphs without 4-cycles with
a condition on distance two. Discrete Applied Mathematics, 156(12):2241–
2249.

Wang, W.-F. and Lih, K.-W., 2003. Labeling planar graphs with condi-
tions on girth and distance two. SIAM Journal on Discrete Mathematics,
17(2):264–275.

Wang, Y., Wu, Q. and Shen, L., 2011. Planar graphs without cycles of length
4, 7, 8, or 9 are 3-choosable. Discrete Applied Mathematics, 159(4):232–239.

Wegner, G., 1977. Graphs with given diameter and a coloring problem.
Technical report, University of Dortmund.

Wernicke, P., 1904. Über den kartographischen vierfarbensatz. Mathema-
tische Annalen, 58(3):413–426.

Wilke, T., 1991. An Eilenberg theorem for ∞-languages. In International
Colloquium on Automata, Languages, and Programming, pages 588–599.
Springer.

Wong, S.A., 1996. Colouring graphs with respect to distance. PhD thesis,
University of Waterloo.

Zhang, L., 2000. Every planar graph with maximum degree 7 is of class 1.
Graphs and Combinatorics, 16(4):467–495.

Zhu, H.-Y., Lu, X.-Z., Wang, C.-Q. and Chen, M., 2012. Labeling planar
graphs without 4, 5-cycles with a condition on distance two. SIAM Journal
on Discrete Mathematics, 26(1):52–64.

Induction Schemes: From Language Separation to Graph Colorings 279

	Contents
	Introduction (French version)
	Histoire des méthodes inductives
	Organisation de la thèse

	Introduction
	The tale of induction schemes
	And so the tale goes...

	An example of what (not) to do: the raw power of discharging
	Introduction
	Proof overview
	Configurations
	Reducing configurations
	Discharging process
	Open questions

	Discharging without discharging: the power of pigeons
	Introduction
	A Brooks-like result on graph powers
	Coloring squares of planar graphs
	Small reducible configurations
	Reducing regions
	Finding a large region
	Extension to correspondence coloring
	Open questions

	Separation of regular languages
	Introduction
	Preliminaries
	Input format vs complexity
	Conclusion

	The polynomial closure operation
	Introduction
	The case of finite words
	`39`42`"613A``45`47`"603APol(C)-separation is PSpace-hard
	Extension to infinite words
	Conclusion

	Conclusion
	Bibliography

