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Abstract

We are working in collaboration with geographers to
study a set of pebbles digital images. Among the features
geographers want to get automatically, pebble sides num-
ber is intuitively defined as shown in Fig 1. It is merely
computed after a thick polygonalisation of pebble contour.
We propose an incremental and linear algorithm, free of re-
strictive hypothesis, which relies on previous works of De-
bled et al. [3, 4, 5]. We give some results on synthetical and
real images.

Figure 1. Pebble sides number.

1. Introduction

We are working in collaboration with geographers. Their
objective is to establish a set of quantitative characteristics
of pebbles sedimented in a river bed. The basic assump-
tion in these studies is that pebbles size and shape are de-
termined by lithology, distance of transport, abrasion, river
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behavior, etc. The automatic computation of this set of
quantitative characteristics by digital image analysis allows
a minimization of the time spent on the field and a mini-
mization of the inter- and intra-operator variability. Among
the characteristics expected, there is pebble sides number.
For geographers, pebble sides number is intuitively defined
as shown in Fig 1. We can see that this number results from
a thick polygonalisation of pebbles contour.

Decomposition of digital curves into piecewise straight
segments, splines, quadratic arcs or elliptical arcs is one of
the contour-based techniques used in shape analysis, espe-
cially for a structural approach. See [9] or [14] for a review
of shape representation and description techniques.

Digital straight segments (or discrete segments) are now
well known and understood objects. See [8] for a review
of the concept of digital straightness. A linear time al-
gorithm for decomposition of digital curves into digital
straight segments has been proposed more than ten years
ago [6]. Discrete geometry provides effective algorithms,
which deal with integers, and permits perfect representa-
tions or reconstructions of discrete curves. However, the
number of digital straight segments obtained is too large
for irregular curves. To cope with this problem, Debled-
Rennesson et al. [3, 4, 5] have introduced the concept of
blurred segment as an extension of the arithmetical ap-
proach of Reveilles [12] and derived a polygonalisation al-
gorithm linear in time. Another concept, called α-thick dig-
ital line arc, and the polygonalisation algorithm which re-
sults from this concept [1], are very similar to Debled et al.’s
ones. Their algorithms seem to be well adapted, because
they produce an edge-based polygonalisation (the goal is to
find a sequence of sets of 8-connected points that may stand
for the edges), contrary to most of the classical methods
which are vertex-based ones (the goal is to find a subset of
dominant points as stated in [13]). Moreover classical meth-
ods that are available in C libraries, like Teh and Chin de-
tection of dominant points or Hough Transform, were used



for our application and gave more sides than expected.
However the algorithms presented in [1] and [3] assume

that the points are added with increasing x-coordinate or
y-coordinate. This hypothesis is restrictive if one wants to
deal with very noisy curves or if one wants to capture geom-
etry at a coarse scale. In the present paper, we show that we
can remove this hypothesis, while keeping the linearity of
the algorithm, and as a consequence, deal with any noisy
digital curves, with any maximal acceptable width.

The paper is organised as follows. In section 2, we re-
call some definitions and describe the algorithm presented
in [3]. In section 3, we describe and prove our algorithm.
Assessments and experiments are given in section 4 with
synthetical and real images. The paper ends with some con-
clusions and future works in section 5.

2. Blurred Segments

2.1. Definitions

The notions of blurred segments and strictly bounding
line rely on the arithmetical definition of discrete lines [12].

A set Σ of integer points belongs to the digital straight
lineD(a, b, µ, ω) with slope a

b , lower bound µ and thickness
ω (with a, b, µ and ω being integer such that gcd(a, b) = 1)
if and only if all integer points (x, y) of Σ verify the Dio-
phantine inequalities : µ ≤ ax− by < µ+ω. The real lines
ax − by = µ + ω − 1 and ax − by = µ are, respectively,
called the upper and lower leaning lines of D(a, b, µ, ω) [6].
The integer points of the leaning lines are called leaning
points [6]. If ω < max(|a|, |b|), the digital straight line is
disconnected. If ω = max(|a|, |b|), the digital straight line
is 8-connected (it is named naive line). Increasing ω makes
the digital straigth line thicker [12]. See Fig. 2 for an exam-
ple. The digital straight line is depicted with black disks.
It is a set of integer points located between two leaning
lines (straight lines) passing through some leaning points
(circles).
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Figure 2. The naive line D(2, 5, 0, 5) (left) and
the thick line D(2, 5, 0, 10) (right) with their
leaning points and leaning lines.

In the following, as a simplification, we assume that
0 ≤ y ≤ x. This hypothesis can be done without loss of

generality due to symmetries with respect to Ox, Oy and
the real line x = y.

Definition 1 [5] Let us consider a set of 8-connected points
S. A discrete line D(a, b, µ, ω) is said bounding, if all
points of S belong to D.

Definition 2 [4] A bounding line of S is said optimal if its
vertical distance is minimal, i.e. if the vertical distance of
S equals the vertical distance of its convex hull denoted by
conv(S).

Definition 3 [4] A set S is a blurred segment of width ν if
and only if its optimal bounding line has a vertical distance
less than or equal to ν.

See Fig. 3 for an example. The blurred segment S is
depicted with black disks. The convex hull conv(S) of S is
depicted with dotted lines. The vertical width of conv(S)
(double arrow) is computed from the leaning points (circles)
and leaning lines (straight lines). The optimal bounding line
(which is a thick digital straight line) is drawn with squares
on the right.
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Figure 3. The optimal bounding line
D(1, 6, 0, 11) (squares) of a blurred segment S
(black disks) of width ν = 2.

The recognition of blurred segments with width ν is thus
equivalent to the computation of the vertical (or horizon-
tal) width of the convex hull conv(S) [4]. Because of the
incremental property of the algorithm, the polygonalisation
is very simple: add points until the vertical (or horizontal)
width computed is strictly higher than the threshold value
ν. The current blurred segment ends and a new blurred seg-
ment begins.

It should be noticed that due to symmetry, we only have
to know how to compute the vertical width of the convex
hull for maintaining both vertical and horizontal width si-
multaneously and always choose the minimal value as the
width of the convex hull [4]. Thus, in the following, as a
simplification, we focus on the computation of the vertical
width.

It should be noticed that this definition of width is dif-
ferent from the one usually used in Computational Geome-
try, which is generally not computed with respect to Ox or



Oy [1] (see Fig. 4). However, basic ideas used to compute
this width are really close to the ones used in Computational
Geometry for the rotating calipers algorithm [11].
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Figure 4. The common (left) and vertical
(right) width computed from UL, UR and L.

The vertical width of a convex polygon P is the maxi-
mal length of the intersection of P with a vertical line. The
width function width(i) is the length of the intersection of
P with a vertical line given by x = i. It is clear that the
width function is concave (see Fig. 5).
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Figure 5. Vertical width and width function.

2.2. Restriction

A linear time incremental algorithm of segmentation into
blurred segments with width ν is given in [4]. For each
added point, there are two steps.

The first step consists in maintaining the convex hull
conv(S) of S with Melkman’s algorithm [10]. This is an
incremental and linear algorithm which assumes that added
points form a simple polyline (which does not intersect it-
self). For us, this hypothesis is not restrictive since we deal
with binary objects boundaries.

The second step consists in computing the vertical width
of the convex hull conv(S). As written in [4], we can con-
sider three cases (edge, vertex), (vertex, edge) and (vertex,
vertex) where the first element is located on the lower part
of the convex hull and the second element is located on the
upper part (see Fig. 4). We call UL and UR the left and
right extremities of the edge and L the vertex because the
two first cases are symmetrics. The third case is comparable
with a case (edge-vertex) or (vertex-edge) where the edge is

reduced to a single vertex. The edge and its parallel pass-
ing through the vertex (called supporting lines in Compu-
tational Geometry [11]) define exactly the lower and upper
leaning lines of an optimal bounding line for S [4]. Thus,
from UL, UR and L, we can compute the vertical width of
S. Comparing this value to ν, we can then decide if S is a
blurred segment of width ν or not.

The key point consists in updating the position of the
leaning points. The algorithm described in [3] is incremen-
tal and linear, but it is unusable for a computation of the
pebbles sides number because it assumes that the points are
added with increasing x-coordinate or y-coordinate. The
more the digital curve is noisy and the more ν (the max-
imal acceptable width) is high, the less this hypothesis is
fulfilled. Hence, we obtain too much sides by running this
algorithm. In Fig. 6 (which is drawn from figure 7 in [4]),
the points are neither added with increasing x-coordinate,
nor with increasing y-coordinate. As a consequence, the
blurred segment of width ν = 3.9 (the extremities of which
are the grey squares) is shorter than expected.

Figure 6. The problem of the algorithm in [4].

3. Our algorithm

3.1. Description

Let us consider that we add a new point M to S, S′ =
S ∪ M .

At a first level, there are three cases (see Fig. 7).
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Figure 7. The three cases while adding M .

If M belongs to D, the position of UL, UR and L do not
change after the application of Melkman’s algorithm. So
S′ remains a blurred segment with the same vertical width
and with the same optimal bounding line D. In the other
cases, M is above or below D, the position of UL, UR and
L change and the vertical width has to be recomputed.



At a second level, for both cases where M does not be-
long to D, there are several cases again.

Let us called UL
′, UR

′ and L′, the new leaning points af-
ter the update. Given a point P of the convex hull conv(S),
we denote next(P ) (resp. prev(P )) the functions which
return the point after (resp. before) P in a trigonometric
orientation.

• First, suppose that M is above D.

Let us suppose that M is after L (i.e. the x-coordinate
of M is strictly higher than the x-coordinate of L). See
case a) in Fig. 8.

We start by setting UL
′ and UR

′ to the two convex hull
points that are neighbors of M . In Fig. 8, case a), UL

′

and UR
′ are, respectively set to UL and UR.

As M is above D, the slope of (UL
′M) is greater than

the slope of (ULUR). As a consequence, the width
function increases from UL

′ to L.
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Figure 8. What may happen if M is above
(ULUR) and after L.

If the slope of the edge [L next(L)] is greater than the
slope of (UL

′M), the width function decreases from L
to M (see case b) in Fig. 8). UR

′ is set to M and L′ is
set to L. We can compute the vertical width from UL

′,
UR

′ and L′.

If the slope of the edge [L next(L)] is lower than the
slope of (UL

′M) and if next(L) is before M , the
width function increases from L to next(L). In this
case, L moves along the lower part of the convex hull.

As a matter of fact, L is moving until next′(L) such
that slope(next(L), next′(L)) > slope(UL

′, M).

– If next′(L) is before M , then UR
′ = M and

L′ = next′(L) (see case c) in Fig. 8).

– If next′(L) is after M , then UL
′ = next(L),

UR = next′(L) and L′ = M (see case d) in
Fig. 8). The configuration is reversed because the
vertical width is given by an edge from the lower
part of the convex hull and by a vertex from the
upper part of the convex hull.

The case where M is before L is symmetric to the
previous case.

The particular case where M and L have a same x-
coordinate is straightforward. Both UL and UR move
to M . The vertical width is the length of [ULL] or
[URL]. The slope of D is equal to zero.

• Next, suppose that M is below D.

The case where M is after UR is identical to the case
where M is above D and after L, but the configuration
is reversed. It is enough to exchange the leaning points
to have M above D and after L.

The case where M is before UL is symmetric to the
previous case, i.e. comparable with the case where M
is above D and after L.

The particular case where M is between UL and UR is
straightforward. As the width function increases until
M and decreases from M , we set L′ to M , UL

′ to UL

and UR
′ to UR.

Given a digital curve which does not intersect itself,
there is an incremental algorithm which maintains the con-
vex hull of the digital curve thanks to the Melkman’s algo-
rithm and which computes the vertical width of the convex
hull thanks to the algorithm above.

3.2. Complexity

To study the algorithm complexity, the idea is to study
leaning point displacements. It is enough to focus on the
lower leaning point because the upper leaning points are
the extremities of the edge on which L project vertically.
The algorithm described in the previous section has two in-
teresting properties about the lower leaning point straight-
forwardly deduced from the different cases studied in sec-
tion 3.1.

Property 1 For each added point M , the lower leaning
point does not move or moves towards M .

Property 2 For each added point M , the lower leaning
point never goes beyond M .



M moves along the digital curve and L always moves
towards M without going beyond it. Thus, in case of con-
nected points as input (what is not a restrictive hypothesis
for us), L moves are bounded by M moves, i.e. the update
of L for the insertion of n connected points do not require
more than the test of n points. We can conclude that the
overall complexity of the algorithm is O(n) in that case.

4. Experiments

We implemented our algorithm. It takes as input, chain
code, extracted from objects boundary by contour tracking.
The starting point is first an extremal point (i.e. with mini-
mal x-coordinate and y-coordinate). We shift then the start-
ing point to the last point of the first blurred segment recog-
nized in order to avoid over-segmentation. In addition to
the chain code, our algorithm takes as input, ν, the maximal
acceptable width. We studied the behavior of our algorithm
both with synthetical images and real images.

4.1. Synthetical images

We drew 48 binary objects with a raster graphics edi-
tor. We first drew 27 objects with the polygon function.
These objects were (convex or concave) polygons (see a)
in Fig. 9). Then, we sketched 21 objects with the pencil
function while trying to imitate the previously drawn poly-
gons. As a result, these objects look like noisy polygons
(see b) in Fig. 9). The points number of the set of objects is
ranging from 371 to 2870 and the sides number of the set of
objects is ranging from 3 to 26.

Binary objects Thick polygons ν∗

a) 1.5

b) 13.7

Figure 9. Results for two triangles.

For each object, we performed polygonalisations with
width ν ranging from 0.5 to 15, with a step of 0.1. Ob-
jects sides number was deduced from the polygonalisations

by counting the blurred segments obtained. We focused on
the minimal width denoted by ν∗ from which we found the
true sides number (see Fig. 9). Binary objects drawn with
the polygon function, called standard objects, are used as
ground truth.

For standard objects, the minimal width average is 1.87
(ν∗ ranging from 1 to 2.7), while for noisy objects, the min-
imal width average is 7.77 (ν∗ ranging from 4.7 to 13.7).
See Tab. 1.

objects min max average

standard objects 1 2.7 1.87
noisy objects 4.7 13.7 7.77

Table 1. The minimal width ν∗ from which we
found the true sides number for each object.

As object sides number is rather stable with respect to the
increase of ν beyond ν∗, we reach a perfect prediction rate
(i.e. 100%) with ν = 3 for standard objects and with ν = 14
for noisy objects. However, there is no value, which allows
to reach a perfect prediction rate for both standard and noisy
objects. With ν = 14, we found one side less than expected
for 4 standard objects (the predection rate is 44/48). Indeed,
even if object sides number is rather stable with respect to
the increase of ν, it decreases and tends to 1 for sufficiently
large ν (one optimal bounding line D contains S).

4.2. Real images

We used our algorithm in order to study pebbles digital
images. Twenty samples of pebbles taken in the bed of an
Indonesian river at various distances from the sea were pho-
tographed. We have approximately 1500 pebbles contours
of about 350 pixels to analyze.

Figure 10. Pebbles images. The 3-sides peb-
ble located in the center of the images was
processed in Fig 11.

In a first step we detected pebbles with clustering meth-
ods, transforming the original color image into a binary im-
age as shown in Fig. 10. In a second step, we extracted



chain codes from pebbles boundaries. In a third step we
computed the number of sides. The input parameter ν was
set up at 13 by trial and error.

Pebbles size variation is very small in both real world
and images. Acquisition process and digitization are iden-
tical for all images. According to previous study with syn-
thetical images, it seems that ν∗ depends on size and noise.
It was thus relevant to set up the value of ν, once for all.
Statistical and geographical analysis are under progress. An
exemple of polygonalisation is shown in Fig. 11 and some
pebbles with their sides number are gathered in Fig. 12.

Figure 11. Pebble polygonalisation with ν =
13. The number of sides found is 3.

4 5 6 7 8

Figure 12. Some pebbles sides number.

5. Conclusion and perspectives

The objective was to compute the number of sides that
pebbles have. We opted for an edge-based polygonalisa-
tion which is exactly the geographers’ intuitive definition
(see Fig. 1 and Fig. 11). We proposed an incremental and
linear algorithm, free of restrictive hypothesis, contrary to
what we can read in the litterature [1, 3, 4, 5]. We assessed

our algorithm with synthetical images. It turns out that the
input parameter ν controls the polygonalisation according
to noise, the objects size and the study scale. We experi-
mented our algorithm with real pebbles images too. Pebble
sides number seems to be an interesting feature.

For the future, we think about fixing the input parame-
ter in an automatic way (once for all) or in a dynamic way
(tuning it during the process). We need a framework for as-
sessing thick polygonalisations which are different of thor-
oughly studied polygonal approximations [13]. To end the
paper, an interesting way of investigation is the extension to
the concept of blurred tangent in order to compute robust
curvature estimators (see [2] for a first attempt) or to deter-
mine the minimal number of necessary blurred segments for
a thick polygonalisation (like the min-DSS problem [7]).
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