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Abstract - We propose one geometric algorithm to solve both
the problem of circularity test and the problem of circularity
measure. The former problem consists in deciding whether a
given digital curve is a digitization of a circle or not, whereas
the latter problem consists in measuring how far a given
digital curve is from a digitization of a circle. Our new
circularity measure fulfills basic invariance properties and
equals 0 for all digital circles and is positive for all shapes
that are not digital circles. Experiments performed on

synthetic and real images are very good.
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1 Introduction

In digital image analysis, a basic task consists in
detecting or recognizing objects according to their shape. A
lot of methods of shape representation and description are
reviewed in [14]. Among all these methods, the ones based on
global features, like area, eccentricity, convexity, etc. are
efficient in numerous applications [11]. Discrete geometry
provides effective algorithms to deal with digital curves and
compute geometric estimators. For instance, a convergent
perimeter estimator [2] has been derived from a linear time
algorithm that recognizes digital straight segments [5].

This paper focuses on circularity test and circularity measure.
Many algorithms have been proposed the past twenty years to
recognize or detect digital circles or arcs (see for example [8,
6, 9, 4, 3]). However, to our knowledge, only a few papers
introduce a circularity measure that equals O (or is extremal)
for all digital circles ([8] for example).

After a study of the separating circle problem in section 2, an
algorithm to perform the circularity test and compute a

circularity measure is proposed in section 3. Experiments on
synthetic and real images are described in section 4.

2 The separating circle problem

Let S and T be two finite sets of points in z*. We want to
know whether S is separable from T by a circle C(o,r) of
center o(x,, y,) and radius r. If it is, then the set of separating
circles {C} is such that:
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Developing the previous inequalities, we get:
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2.1 Geometric interpretation of equation 1

Notice that equation 1 involves different interpretations
of the triplet (a, b, c), either as the coordinates of a 3D point
in a dual space or as the coefficients of a 3D plane in a space
that we call extended primal space. From now, in addition to
the original plane (or (xy)-plane) containing the points of z°
(figure 1.a), we work in a dual space (or (abc)-space) (figure
2.b) and in an extended primal space (or (xyz)-space) (figure
1.c). The extended primal space is built from the original
plane such that all the 2D points are lifted, along an extra axis
(the z-axis), according to a bivariate function f. Let S' = {s'(x,,
Vs, 2o and T' = {t'(x,, y,, zo} be the set of points that are raised
in the extended primal space. In equation 1, z = flx,y) = X’ +
y’. The extended primal space and the dual space are dual,
classical

according to the definition of duality in



computational geometry [12], that is a point in the former
space maps to a plane in the latter space and conversely. Due
to duality, the triplet (x, y, z = f{x,y)), like (a, b, c), may be
seen either as the coordinates of a 3D point in the extended
primal space or as the coefficients of a 3D plane in the dual
space.

The domain, defined as the complete set of solutions fulfilling
the two sets of inequalities of equation 1 in the dual space, is
a convex polyhedron. As a matter of fact, it is the intersection
of ISI and ITI half-spaces (where the cardinality of a set is
denoted by LI). The coordinates of each point belonging to
this polyhedron correspond to a separating circle of center
o(a,b) and radius r = v(a® + b> - ¢) . Hence, S and T are
separable by a circle if and only if the domain is not empty.
So, the separating circle problem may be solved by linear
programming in the dual space. This reformulation of the
problem has already been done in 4, but the Megiddo's
algorithm [10], which was proposed to find one solution, is
difficult to implement. We go further by working in the
extended primal space, where the separating circle problem
may be seen as a linear separability problem in 3D. This
interpretation of equation 1 provides a simple algorithm for
circularity test: S and T are circularly separable in the original
plane if and only if S' and T' are separable by a plane in the
extended primal space where f{(x, y) = x° + y". Obviously, S'
and T' may be reduced to their convex hull denoted by CH(S")
and CH(T'). In addition, checking if CH(S') and CH(T")
intersect each other or not is performed efficiently thanks to
convexity (see [12] or section 3).

o
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Figure 1: (a) S (crosses) and T (circles) in the original
plane, (b) the complete set of solutions fulfilling the two
sets of inequalities in the dual space, (c¢) CH(S') and
CH(T') in the extended primal space are separable by a
plane, because S and T are circularly separable.

2.2  On the domain structure

The domain is defined by the intersection of ISI+ITI half-
spaces whose coefficients are computed from the points of S
and T (equation 1). The dual of the ISI half-spaces is the upper
convex hull of S', whereas the dual of the ITI half-spaces is the
lower convex hull of T' (equation 1 again).

Thanks to classical results in computational geometry [12],
we know that the projection on the (xy)-plane of the lower
convex hull of T' is the closest-points Delaunay triangulation
of T, that is the circumcircle of each triangle is empty,
whereas the projection on the (xy)-plane of the upper convex
hull of S' is the furthest-points Delaunay triangulation of S
where the circumcircle of each triangle contains all points of
S. In a dual way, the projection on the (ab)-plane of the
intersection of the IS| half-spaces is the closest-points Voronoi
diagram of S, whereas the projection on the (ab)-plane of the
intersection of the [Tl half-spaces is the furthest-points
Voronoi diagram of T.

Moreover, we prove that the projection on the (xy)-plane of
the intersection of the two groups of half-spaces is the arc
center domain defined in [3]. We illustrate these properties in
figure 2 from the example of figure 1.
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Figure 2: On the left, see the lower half (a)
and the upper half (c) of the domain.
Compare these halves to the Voronoi

diagrams of S in dashed lines (b) and of T in
dotted lines (d), with acd(S,T) in solid lines
drawn in (b) and (d).



Indeed, from equation 1, we derive the projection on the (xy)-
plane of the intersection of the two groups of half-spaces by
replacing c:
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Developing 2, one may recognizes the expression of the
bisector of segment [st/:
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where H(s,t) is the half-plane bounded by bisector of s and ¢
and containing s.

Expression 3 is exactly the definition of acd(S,T) in [3],
which concludes the proof.

3 Algorithm

3.1 How to compute S and T from a digital

curve ?

Let A\ be a 4-connected subset of z°. We say that A is a
digital object. /A is a digital circle too, if and only if it is the
OBQ (Object Boundary Quantization) digitization of a circle.
Let us recall that an interior point is a point of the object such
that its four 4-neighbors belong to the object too. Let Int(/\)
be the set of interior points. A\Int(A\) is a 8-connected digital
curve corresponding to the object boundary. Obviously, S
may be reduced to A\Int(/\) and T may be reduced in a similar
way.

Since a circle is convex, S may be reduced to the convex hull
of A\Int(A\). Moreover, T may be reduced to the points that
are the closest points to the edges of the convex hull of
A\Int(A) and their bisectors [3]. As a consequence, we use the
process running in linear time described in [3] in order to
compute S and T from a digital curve (figure 3).

It is stated in [3], using a result of [1], that m = ISI + ITl is

bounded by O(n*”), where 7 is the number of points of the

digital curve, if the digital curve is convex. Otherwise, m is
bounded by O(n).
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Figure 3: Given a digital curve (dots), S (crosses) and T
(circles) are computed in linear time [3]

3.2 Circularity test

Checking whether S and T are separable by a circle is
the core of the algorithm and is defined as follows:

Stepl : Compute CH(S') and CH(T'). We do not detail the
algorithm which may run in O(m.log(m)). The computation of
the convex hulls serves to facilitate the next step, because it
reduces the number of points to consider and provides the
property of convexity. Let us recall that it is equivalent to
compute and lift along the z-axis the closest-points Delaunay
triangulation of T and

the furthest-points Delaunay

triangulation of S (section 2.2).

Step2: Check whether CH(S') and CH(T") intersect each other
or not. An elementary way to do this is to compute the
minimum height between the two polyhedra CH(S') and
CH(T") denoted by & = min Height(CH(S"),CH(T")).
Height(CH(S"),CH(T")) is a function that returns the distance
between the two polyhedra computed along the z-axis for
each point of the domain of the function. Note that
Height(CH(S"),CH(T")) is not defined anywhere. Indeed, the
domain of this function is the intersection of the projection on
the (xy)-plane of CH(S') and CH(T"), that is CH(S) N CH(T).
If (h > 0), CH(S") and CH(T'") are disjoints, S and T are
circularly separable, otherwise CH(S') and CH(T'") intersect
each other, they are not linearly separable, S and T are not
circularly separable.

The brute force algorithm to find the height is to compute the
graph G that is the intersection between the planar graph Gs
and the planar graph Gr, where Gs (resp. Gr) is the projection
on the (xy)-plane of the upper (resp. lower) convex hull of



S' (resp. T') (figure 4). If IG'l = 0, then CH(S) N CH(T) = @.
In this degenerate case, it is noticeable that the digital curve
from which S and T have been computed is a digital straight
segment (figure 4.a and 4.c). If IG'| > 0, it remains to compute
the height function for each vertex of G and take the
minimum. We may decide whether the digital curve from
which S and T have been computed is a digital circle or not
according to the sign of /& as explained before.
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Figure 4: Given a digital curve drawn in (a) and
(d), S (crosses) and T (circles) are computed in a
naive way (b) and (e) and in a clever way (c) and
(f) (subsection 3.1). Gg is the graph in dashed lines
whereas Gr is the one in dotted lines. G is the
intersection of the two graphs. It has 0 vertex in
(b) and (c) because (a) is a digital straight
segment. However, it has 4 vertices in (e) and (f)
because (d) is not a digital straight segment.

The brute force algorithm runs in O(m?), since G" has at most
m® vertices. However, it is possible to take advantage of the
convexity of the height function to get an algorithm in
O(mlogm). By lack of space, we will not detail this algorithm,

but the reader can refer to [12, pages 310-315] for example.

With this optimization, the whole algorithm is linear in time.
Indeed, if the digital curve is not convex, it is not a digital
circle. This decision may be taken during the preprocessing
step described in [3] running in linear time. Thus, the core of
the algorithm described before may only be applied on
convex digital curves. Since m is bounded by O(n””) in that
case, as stated in subsection 3.1, the core of the algorithm
runs in O(mlogm), that is O(n”*logn), which is sublinear.
Hence, the overall complexity of the algorithm is O(n).

4 Circularity measure

By working in the extended primal space, we are able to
measure how far a given digital curve is from a digital circle.
This is not possible by working in the dual space, since the
domain is empty if the digital curve is not a digital circle. The
algorithm proposed in section 3.2 does not need to be
modified. The minimum height between the two polyhedra
CH(S') and CH(T") is viewed as a circularity measure. When
h>0, CH(S'") and CH(T") are disjoints, the measure is set to O:
the digital curve is a digital circle. Otherwise, when h<O0,
CH(S') and CH(T") intersect each other, the measure is set to -
h. Our assumption is that this measure fulfills basic invariance
properties (subsection 4.1) and increases as the digital object
gets away from a digital circle (subsection 4.2). Notice that
the algorithm runs in O(nlogn), since the algorithm is applied
on convex or concave digital curves, contrary to the case of
circularity test (section 3.2).

4.1 Invariance properties

We study the impact of rigid transformations onto the z-
coordinate of points of S' and T'.

Rotation: Let us denote #i the image of point u after a rotation
of center the origin and angle 6, such that #i(x;=x,cosE-
Vu$in6, y;=x,5in0+y,cosO). Then f(xsy:) = fix,y.). As a
consequence, the measure is rotation invariant, if errors due to
digitization are neglected.

Scaling: Let us denote @ the image of point u after a scaling
by a factor a such that #(x;=ax,y,=ay.). Then f(x;y:) =
a f(xs,y.). As a consequence, the measure needs to be
normalized by the squared size of the object.

Translation: Let us denote # the image of point u# under a
translation by a translation vector v(x,, y,) such that #(x,=x,
+X,Ya=Yut ). Then fixaya) = fXuyu)-2%X-2y. 3% -y, The
problem is rather complex, because the effect of the
translation on the return value of f is not the same for all
points, contrary to scaling. It is difficult to know how to
normalize the measure. The simplest solution is to set the
origin of the coordinates system to center of inertia of S.

We generated hundreds of digital ellipses (OBQ digitization)
with various parameters : a (resp. b), small (resp. great) semi-
axis, ©, the angle between the main axis of the ellipse and the
x-coordinate axis, x, and y, the coordinates of the ellipse



center. As stated above, the origin of the coordinates system
is set to the center of inertia of S.

Figure 5.a shows that the circularity measure is quite
translation invariant in that case. Figure 5.b shows that the
circularity measure is also rotation invariant. As expected,
errors due to digitization are very small.
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Figure 5: One hundred of digital ellipses were generated
according to the following rules: w(0,0), a=80, b=160, O
is ranging from 0 to 12 in (a) ; a=80, b=160, © and y,,
are set to 0 and w,, is ranging from 0 to 100 in (b).
Circularity is plotted against © (a) and against x,, (b).

In order to make the circularity measure scale invariant, it has
been divided by d&° where d is the diameter of the convex hull
of the digital curve. The diameter is easily computed thanks to
the rotating calipers algorithm [13]. Figure 6 shows the
circularity measure before (a) and after (b) the normalization.

4.2 Descriptive Behavior

To verify that our circularity measure increases as the
digital object gets away from a digital circle, it is assessed
with digital ellipses

of increasing elongation, regular

polygons with increasing number of sides, noisy circles and
digital In figure 7, the circularity

logarithmically increases with the elongation of the ellipses.

images of fruits.
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Figure 6: One hundred of digital ellipses were generated
according to the following rules: w(0,0), ©= 0, a/b = 1/2
and b is ranging from 5 to /05 in (a) and (b). Circularity is

plotted against b, the size of the ellipses in both figures, but
the measure in normalized (b).

We generated fifty regular polygons of fixed perimeter but
increasing number of sides. In Figure 8, the circularity
decreases with the number of sides and converges towards 0.
The bigger the number of sides, the more the polygons look
like a circle and the closer to zero the circularity is.

In order to study the impact of the amount of noise onto the
circularity, we generated hundreds of noisy circles. We
implemented a degradation model very close to the one in [7].
In Figure 9, the circularity increases with the amount of noise.
The noisier the circle, the more it looks different from a circle
and the higher the circularity is. Notice that the measure
remains small, so it is rather robust.



Circularity of discrete ellipses of increasing eccentricity (b=50)
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Figure 7: One hundred of digital ellipses were generated
according to the following rules: w(0,0), 6= 0, b = 50
and a is ranging from /0 to 50. Normalized circularity is
plotted against a/b, the elongation of the ellipses.
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Figure 8: 50 regular polygons, the perimeter of which is
approximatively equals to 1325 (the unit is pixel).
Circularity is plotted against the number of sides.
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Figure 9: Nine sets of circles that are more and more noisy
have been generated. Parameter alpha ranging from 1 to 30
controls the amount of noise. The average circularity
measure is plotted against parameter alpha.

To end, the circularity measure has been applied to real digital
images of fruits. Figure 10 shows the images and gives the
corresponding circularity measures in the last row. It turns out
that the measure reflects fairly well the visual dissimilarity
between the shape of the fruits and the circular shape. The
apple has a shape that is the closest to the one of a circle. The
pear comes second. The banana and the pineapple have two
similar measures rather high but for two different reasons: the
banana is very elongated whereas the pineapple has many
concavities.

apple pear banana pineapple

<
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Figure 10: Four fruits with their circularity measure.

5 Conclusions

One geometric algorithm has been presented to solve
both the problem of circularity test and the problem of
circularity measure. It runs in O(n) in the former case (which
is better than [8, 6, 9, 3]) and in O(nlogn) in the latter case
(which is better than [8]). It is based on classical tools of
computational geometry and as a consequence, it is rather
easy to implement. The circularity measure is normalized in
order to fulfill basic invariance properties: translation,
rotation, scale invariance. Moreover, the measure may be
computed on pieces of digital circle and equals O for all pieces
of digital circle and is positive for all digital curves that are
not pieces of digital circle, contrary to naive implementations
with area and perimeter estimators. Experiments done on
synthetic and real images show that the measure reflects fairly
well the visual dissimilarity between a given digital curve and
a digital circle.

For the future, we think about carrying out an experimental
study about the circularity of pieces of digital curves (i.e.
digital arcs), in order to see how the proposed measure deals
with occlusions. Moreover, we would like make the algorithm
on-line, without decreasing its complexity, for the robust
recognition of digital arcs. Finally, we are interested in the
shapes that can be studied in a similar way: it seems
straightforward for parabolas, but more difficult for ellipses.



6 References

[1] D. Acketa and J. Zuni¢. On the maximal number of edges
of convex digital polygons included into a m x m-grid.
Journal of Combinatorial Theory, Series A, 69:358-368,
1995.

[2] D. Coeurjolly and R. Klette. A comparative evaluation of
length estimators of digital curves. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26:252-257,
2004.

[3] D. Coeurjolly, Y. Gérard, J.-P. Reveilles, and L. Tougne.
An elementary algorithm for digital arc segmentation.
Discrete Applied Mathematics, 139(1- 3):31-50, 2004.

[4] P. Damaschke. The linear time recognition of digital
arcs. Pattern Recognition Letters, 16:543-548, 1995.

[5] I. Debled-Renesson and J.-P. Reveilles. A linear
algorithm for segmentation of digital curves. International
Journal of Pattern Recognition and Artificial Intelligence,

9:635-662, 1995.

[6] S. Fisk. Separating points sets by circles, and the
recognition of digital disks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8:554— 556, 1986.

[7] T. Kanungo, R. M. Haralick, H. S. Baird, W. Stuezle, and
D. Madigan. A statistical, nonparametric methodology for
document degradation model validation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22:1209-1223,
2000.

[8] C. E. Kim and T. A. Anderson. Digital disks and a digital
compactness measure. In Annual ACM Symposium on Theory
of Computing, pages 117-124, 1984.

[9] V. A. Kovalevsky. New definition and fast recognition of

digital straight segments and arcs. In International
Conference on Pattern Analysis and Machine Intelligence,

pages 31-34, 1990.

[10] N. Megiddo. Linear programming in linear time when
the  dimension is  fixed.  SIAM
Computing, 31:114-127, 1984.

Journal on

[11] M. Peura and J. livarinen. Efficiency of simple shape
descriptors.
Form, 1997.

In 3rd International Workshop on Visual

[12] F. P. Preparata and M. 1. Shamos. Computational
geometry : an introduction. Springer, 1985.

[13] G. Toussaint. Solving geometric problems with the
MELECON 83,
Mediterranean Electrotechnical Conference, 1983.

rotating calipers. In  Proceedings

[14] D. Zhang and G. Lu. Review of shape representation and
description techniques. 37(1):1-19,

2004.

Pattern Recognition,



	1Introduction
	2The separating circle problem
	2.1Geometric interpretation of equation 1
	2.2On the domain structure

	3Algorithm 
	3.1How to compute S and T from a digital curve ?
	3.2Circularity test

	4Circularity measure
	4.1Invariance properties
	4.2Descriptive Behavior

	5Conclusions
	6References

