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Abstract. In this paper, the problem of digital circular arcs recognition
is investigated in a new way. The main contribution is a simple and
linear-time algorithm for solving three subproblems: online recognition
of digital circular arcs coming from the digitization of a disk having
either a given radius, a boundary that is incident with a given point, or
a center that is on a given straight line. Solving these subproblems is
interesting in itself, but also for the recognition of digital circular arcs.
Indeed the proposed algorithm can be iteratively used for the recognition
of circular arcs. Moreover, since the algorithm is online, it provides a way
for segmenting digital curves.

1 Introduction

This paper deals with three constrained versions of a well-known problem: the
recognition of digital circular arcs (DCAs for short). Many authors have proposed
a solution to the recognition of digital circles [7, 11, 6, 9, 12, 16, 5, 3, 2, 14]. Some
techniques are not adapted for DCAs, like [16], and only a few ones are online [9,
2]. Even if a linear algorithm has been proposed for a long time [11], using a
sophisticated machinery coming from linear programming [10], no solution is
known to be truly fast and easy to implement. That’s why further research on
the topic is needed.

We opt for an original approach of the problem. Indeed, we study three
constrained versions of the DCA recognition problem: (i) the case of disks of
given radius, (ii) the case of disks whose boundary is incident with a given
point, (iii) the case of disks whose center is on a given straight line. We show
that deciding whether a part of a digital boundary is the digitization of one of
these disks is done with a simple, online and linear-time algorithm.

Solving these constrained problems is interesting in itself. For instance, the
proposed algorithm can be applied to the case of disks of infinite radius in order
to provide a way for recognizing digital straight segments. Thus, our method is a
? Author supported by a grant from the DGA



nice tool to highlight what makes the problems studied in this paper be similar
or different from the problem of digital straight segments recognition.

Moreover solving such constrained problems is also useful to solve the uncon-
strained problem. Indeed the proposed algorithm can be iteratively used for the
recognition of DCAs. This new technique may be coarsely described as follows:
if a new foreground (resp. background) point is located outside (resp. inside) the
current smallest separating disk, then either the new point is on the new smallest
separating disk, or the sets of foreground and background points are not circu-
larly separable at all. In the aim of deciding between these two alternatives, the
proposed algorithm can be used in the case (ii), i.e. when the boundary of the
disks must be incident with a given point.

Section 2 is made up of formal definitions and a brief review of the literature.
The main results are presented in Section 3. The main algorithm is described
and proved in Section 3.3. We show how to use it for recognition of DCAs in
Section 4.

2 Preliminaries

2.1 Digital Boundary and Digital Contour

A binary image I is viewed as a subset of points of Z2 that are located inside a
rectangle of size M ×N . A digital object O is defined as a 4-connected subset of
Z2 (Fig. 1.a). Its complementary set Ō = I\O, which is assumed to be connected,
is the so-called background. The digital boundary B (resp. B̄) of O (resp. Ō) is
defined as the 8-connected clockwise-oriented list of the digital points having at
least one 4-neighbour in Ō (resp. O). (Fig. 1.b).

Let us assume that each digital point of O is considered as the center of a
closed square of size 1× 1. The topological border of the union of these squares
defines the digital contour C of O (Fig. 1.c). C is a 4-connected clockwise-oriented
list of points with half-integer coordinates (Fig. 1.c).

Each point of C is numbered according to its position in the list. The starting
point, which is arbitrarily chosen, is denoted by C0 and any arbitrary point of
the list is denoted by Ck. A part (CiCj) of C is the list of points that are ordered
increasingly from index i to j (Fig. 1.d).

An elementary part bounded by two consecutive points (CkCk+1) separates
a point of B (on its right side) from a point of B̄ (on its left side) (Fig. 2.a).
Let us denote by B(CiCj) (resp. B̄(CiCj)) the list of digital points of B (resp. B̄)
that are located on the right (resp. left) side of each elementary part (CkCk+1)
of (CiCj) with i ≤ k < j.

2.2 Digital Circle and Circular Arc

Definition 1 (Digital circle (Fig. 2.b)) A digital contour C is a digital cir-
cle iff there exists a Euclidean disk D(ω, r) that contains B but not B̄.

Definition 2 is the analog of Definition 1 for parts of C.
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Fig. 1. (a) A digital object in black points and its complementary set in white points,
(b) their digital boundaries and (c) their digital contour. (d) Notations

Definition 2 (Circular arc (Fig. 2.c)) A part (CiCj) of C (with i < j) is a
circular arc iff there exists a Euclidean disk D(ω, r) that contains B(CiCj) but
not B̄(CiCj).

This definition is equivalent to the one of Kovalevsky [9].
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Fig. 2. (a) An elementary part. (b) A digital circle. (c) A circular arc. (d) A part that
is not a circular arc

Problem 1 (DCA recognition) Given a part (CiCj) of C, the DCA recogni-
tion problem consists in deciding whether (CiCj) is a DCA or not, and if so,
computing the parameters of (at least) one Euclidean disk separating B(CiCj)

from B̄(CiCj), i.e. containing B(CiCj) but not B̄(CiCj).

2.3 State of Art

Three different but related approaches are used to solve Problem 1 (see Appendix
A of [15]) - n is the length of the part (CiCj):

1. Problem 1 consists in searching for a 3D point belonging to the intersection
of 2n half-spaces in the (ωx, ωy, r) parameter space: [11, 16, 3]. Therefore,



Megiddo’s algorithm can be used [10] in order to derive an algorithm in O(n).
An online version of this algorithm exists [1] but is difficult to implement.

2. If the parameter space is projected along the r-axis onto the (ωx, ωy)-plane,
Problem 1 consists in searching for a 2D point belonging to the intersection
of n2 half-planes. This approach, which requires massive computation, has
been widely used [6, 9, 12, 2] and several optimizations have been proposed.
Kovalevsky [9] removes some points during the computation but without
improving the worst-case bound. Coeurjolly et al. [2] proposed a preprocess-
ing stage using the arithmetic properties of digital curves so that the time
complexity of their algorithm goes down from O(n2 log n) to O(n4/3 log n).
As noticed in [2], these algorithms may be made online with an incremental
convex hull algorithm [13].

3. In the space that is dual to the parameter space, Problem 1 consists in search-
ing for a plane separating two sets of n 3D points [11, 5, 14]. The quadratic
algorithm of Kim [8] can be straightforwardly interpreted in this way. Us-
ing classical results about the computation of 3D convex hulls [13] and the
computation of the vertical distance between two convex polyhedra [13],
this approach leads to an algorithm whose time complexity is bounded by
O(n log n) [14]. Though, this algorithm is not online.

3 Main Results

In this section, we study three constrained versions of Problem 1.

3.1 Definitions

We define three classes of constrained disks that fulfill the following property: a
constrained disk is uniquely defined by two points. The set of constrained disks
fulfilling one of the three conditions of Definition 3 is called a class of constrained
disks.

Definition 3 (Constrained disks) A constrained disk is such that one of the
three following conditions is fulfilled: (i) it has a given radius and an orientation
is arbitrarily chosen (Fig. 3.a and Fig. 3.b), (ii) its boundary is incident with a
third point (Fig. 3.c), (iii) its center is on a given straight line (Fig. 3.d).

Problems 2, 3 and 4 are the analog of Problem 1 for a specific class of con-
trained disks:

Problem 2 Computing the parameters of the set of Euclidean disks D(ω, r = r0)
separating B(CiCj) from B̄(CiCj), where r0 is fixed and given as input.

Problem 3 Computing the parameters of the set of Euclidean disks D(ω, r)
separating B(CiCj) from B̄(CiCj), such that D touches a fixed point P0 given as
input.
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Fig. 3. One and only one disk is incident with the two points, labeled by a cross each,
because a radius and an orientation have been chosen in (a) and (b), a third point
depicted with a square has been given in (c) and the center has to be on the solid
horizontal straight line in (d).

Problem 4 Computing the parameters of the set of Euclidean disks D(ω, r)
separating B(CiCj) from B̄(CiCj), such that ω belongs to a fixed straight line L0

given as input.

In Sections 3.2 and 3.3, we assume that a class of constrained disks is given.

3.2 Circular Hulls and Points of Support

Definition 4 (Circular hull) Let L be an ordered list of points. Its inner (resp.
outer) circular hull is a list of some points of L such that, for each pair of con-
secutive points, all the points of L belong (resp. do not belong) to the constrained
disk defined by the two points.

Fig. 4 displays the inner and outer circular hulls of a list of points in the
case of a given radius. Notice that the intrinsic order of the points determines
a natural orientation so that one and only one disk of a given radius is defined
by two points. If the radius is infinite, the circular hull of L is a part of the
convex hull of L. As a consequence, the circular hull is easily computed with an
online and linear-time algorithm in the style of the Graham’s scan thanks to the
intrinsic order of the points.

In order to solve Problems 2, 3 and 4, the constrained disks separating B(CiCj)

from B̄(CiCj) have to be computed. Some special points, called points of support,
play a key role in the computation.

Definition 5 (Point of support) A point of B(CiCj) or B̄(CiCj) that is located
on the boundary of a constrained disk separating B(CiCj) from B̄(CiCj) is called
point of support.

The following propositions, which are related to the points of support, are
proved in Appendix B of [15]:
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Fig. 4. Inner (b) and outer (c) circular hull of a list of points (a) when the radius of
the disks is fixed (r0 = 4).

Proposition 1 B(CiCj) and B̄(CiCj) are separable by a constrained disk iff B(CiCj)

and B̄(CiCj) contain at least one point of support.

Proposition 2 The points of support of B(CiCj) (resp. B̄(CiCj)) are consecutive
points of the inner circular hull of B(CiCj) (resp. outer circular hull of B̄(CiCj)).

Proposition 3 The points of support of B(CiCj) and B̄(CiCj) define the whole
set of separating constrained disks.

The first and last points of support of the inner circular hull of B(CiCj),
respectively denoted by If and Il, as well as the first and last points of support
of the outer circular hull of B̄(CiCj), respectively denoted by Of and Ol, play a
key role in the algorithm that checks the separability of B(CiCj) and B̄(CiCj).

3.3 Separability

Algorithm 1 solves Problems 2, 3 and 4. The points of a part (CiCj) are processed
one by one. Assume that the k first points have already been processed. When
a new point Ck+1 is taken into consideration, the inner and outer points defined
by the elementary part (CkCk+1) (Fig. 2.b) are respectively added to the lists
B(CiCk) (lines 4 and 5) and B̄(CiCk) (lines 7 and 8).

Algorithm 1 calls Algorithm 2 on lines 5 and 8. It updates the inner and outer
circular hulls as well as the points of support when a new point N is added.

Let us assume that N is an inner point. The case where N is an outer point
is similar. If N does not belong to the constrained disk touching If and Ol (area
1 of Fig.5), B(CiCk+1) and B̄(CiCk) cannot be separated by a constrained disk
and the Algorithm 2 returns false (lines 1 and 2).

If N belongs to the constrained disk touching If and Ol (areas 2 and 3 of
Fig.5), B(CiCk+1) and B̄(CiCk) are still separable. If N does not belong to the
disk touching Of and Il (area 2 of Fig.5), the inner circular hull is updated (lines
5-7) and the points of support are updated too (lines 8-10).

After this brief description of Algorithm 1 and 2, let us prove the following
theorem:

Theorem 1 Algorithm 1 correctly retrieves the set of constrained disks separat-
ing B(CiCj) from B̄(CiCj) in linear time.



Algorithm 1: Algorithm that solves Problems 2, 3 and 4
Input: A part (CiCj) (with i < j).
Output: The boolean value areSeparable and OHull, IHull, Of , Ol, If , Il.
/* Initialization */

Initialization of IHull, If , Il (resp. OHull, Of , Ol) with the inner (resp. outer)1

point of (CiCi+1);
areSeparable← true; k ← i + 1;2

/* Scan */

while Ck < Cj and areSeparable do3

N ← inner point of (CkCk+1);4

areSeparable← Separability(N ,OHull,IHull,Of ,Ol,If ,Il);5

if areSeparable then6

N ← outer point of (CkCk+1);7

areSeparable← Separability(N ,IHull,OHull,If ,Il,Of ,Ol);8

k ← k + 1;9

return areSeparable10

Algorithm 2: Separability(N , OHull, IHull, Of , Ol, If , Il)
Input: OHull, IHull, Of , Ol, If , Il and a new point N
Output: a boolean value and updated OHull, IHull, Of , Ol, If , Il

if N is outside the constrained disk touching If and Ol then1

return false;2

else3

if N is outside the constrained disk touching Of and Il then4

/* update of the inner circular hull */

while N is outside the constrained disk touching the last two points of5

IHull do
The last point of IHull is removed from IHull;6

N is added to IHull;7

/* update of the points of support */

Il ← N ;8

while N is outside the constrained disk touching the first two points of9

support of OHull do
Of ← the point of OHull that is just after Of ;10

return true;11
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Fig. 5. The points of support are encircled. To help the reader to figure out why the
role of the points of support is so important, here are two examples. In (a) the radius
of the constrained disks is equal to 5, whereas in (b) the radius is infinite. The first
and last points of support of each hull delineate 5 areas numbered from 1 to 5.

Proof. Thanks to Proposition 3, we know that the whole set of separating con-
strained disks is given by the points of support of B(CiCj) and B̄(CiCj). Therefore,
showing that the algorithm properly retrieves the points of support of B(CiCj)

and B̄(CiCj) in linear time is sufficient to prove Theorem 1. Moreover, since Al-
gorithm 1 completely depends on the correctness of Algorithm 2, we can focus
on Algorithm 2. To prove that it properly updates the points of support, we have
to show that a new point involves the removal of the p last points of support of
B(CiCj) and the removal of the q first points of support of B̄(CiCj). Because of
the intrinsic order of the points, a new point cannot be in areas 4 and 5 of Fig. 5,
but only in areas 1, 2 or 3. As a consequence, the points of support lying in the
middle of the list of consecutive points of support of B(CiCj) (resp. B̄(CiCj))
cannot be removed if those lying at the front (resp. back) are not removed too.
Algorithm 2 correctly computes p and q, because the points of the circular hulls
are sequentially scanned respectively from front to back (lines 5-7) and back to
front (lines 9 and 10).

Each point is added and removed once at most in the inner circular hull as
well as in the list of points of support, implying that Algorithm 1 is linear-time.

ut

Our algorithm applies to Problems 2, 3 and 4: the only thing that change is
the implementation of the predicate: “is N outside the constrained disk touching
P1 and P2 ?” (lines 1, 4, 5 and 9 in Algorithm 2). In addition, notice that in the
three different implementations the computation may use integers only.

Fig. 6.a illustrates the outcome of Algorithm 1. A part of a digital ellipse has
been scanned and iteratively decomposed into DCAs of radius 10.



4 Digital Circular Arc Recognition

In this section, we propose a method that iteratively solves Problem 3 (online
recognition of a DCA coming from the digitization of a disk having a boundary
that is incident with a given point) to solve the unconstrained problem, i.e.
Problem 1.

The method computes the smallest disk that separates B(CiCj) from B̄(CiCj).
In the (ωx, ωy, r)-space (Section 2.3), the smallest separating disk corresponds
to a 3D point that belongs to the intersection of 2n half-spaces and that is the
closest to the paraboloid of equation r2 = ωx

2 + ωy
2. Due to the convexity of

the paraboloid, a classic result of convex programming [4] implies the following
property: if a new inner (resp. outer) point is located outside (resp. inside) the
current smallest separating disk, then either the new point is on the new smallest
separating disk, or the sets of inner and outer points are not circularly separable
at all. In the aim of deciding between these two alternatives, Algorithm 1 can
be used in the case where the disks have to be incident with a given point.

Similarly to Algorithm 1, the points of a part (CiCj) are processed one by
one in Algorithm 3.

Algorithm 3: Algorithm that solves Problem 1
Input: A part (CiCj) (with i < j).
Output: The boolean value areSeparable and Dmin.
/* Initialization */

Dmin is set to a disk of null radius and whose center is on the inner point of1

(CiCi+1);
areSeparable← true; k ← i + 1;2

/* Scan */

while Ck < Cj and areSeparable do3

N ← inner point of (CkCk+1);4

areSeparable← CircularSeparability(N ,Dmin,(CiCk));5

if areSeparable then6

N ← outer point of (CkCk+1);7

areSeparable← CircularSeparability(N ,Dmin,(CiCk));8

k ← k + 1;9

return areSeparable10

Algorithm 4 is called instead of Algorithm 2 when a new inner (resp. outer)
point N is added to B(CiCk) (resp. B̄(CiCk)) (lines 5 and 8 of Algorithm 3).

Let us assume that N is an inner point. The case where N is an outer point
is similar. If the inner point is located inside the current smallest separating
disk, then Algorithm 4 returns true (line 2) because the current disk is still
separating. Otherwise, the constrained disks are defined as touching the new
point that makes the current disk not separating. We use Algorithm 1 to decide
whether B(CiCk) and B̄(CiCk) are separable by a disk whose boundary is incident



Algorithm 4: CircularSeparability(N ,Dmin,(CiCk) )
Input: A new point N , the smallest separating disk Dmin and the part (CiCk).
Output: A boolean value and updated Dmin.
if N is inside Dmin then1

return true;2

else3

/* The boundary of the constrained disks has to be incident with

N */

Use Algorithm 1 to decide whether B(CiCk) and B̄(CiCk) are separable by a4

constrained disk whose boundary is incident with N ;
if B(CiCk) and B̄(CiCk) are separable then /* update of Dmin */5

Dmin ← Dnew, the smallest separating disk that is incident with N ;6

return true;7

else8

return false;9

with N (line 4). If B(CiCk) and B̄(CiCk) cannot be separated by a constrained
disk whose boundary is incident with N (line 5), then it is a classical result of
quadratic programming [4] that B(CiCk) and B̄(CiCk) are not circularly separable
at all. Algorithm 4 returns false (line 9). Otherwise, the set of points of support
defines the set of Euclidean disks whose boundary is incident with the new point
N and that separate B(CiCk) from B̄(CiCk) according to Proposition 3. Among
all these disks, finding the smallest one, denoted by Dnew, is done in linear time
and Dmin, the current smallest separating disk, is thus updated in linear time
(line 6).

All the points of B(CiCk) and B̄(CiCk), i.e O(n) points, are scanned at each
call of Algorithm 4. Moreover, Algorithm 4 is called at most n times in Al-
gorithm 3. Hence, the whole algorithm is quadratic. However, we can use the
preprocessing stage proposed by Coeurjolly et al. [2] so that the time complexity
of the algorithm goes down from O(n2) to O(n4/3).

Since the algorithm is online, the segmentation of digital curves into DCAs
is done without any increase of the time complexity, that is in O(n4/3). This
technique has been implemented and Fig. 6.b illustrates the segmentation of a
part of a digital ellipse into DCAs. For each DCA, the circle drawn is the smallest
separating circle.

5 Conclusion

A simple, online and linear-time algorithm is introduced to cope with three
constrained problems: recognition of digital circular arcs coming from the digi-
tization of a disk having either a given radius, a boundary that is incident with
a given point or a center that is on a given straight line.

In addition to its theoretical interest, solving such constrained problems is
valuable for the recognition of digital circular arcs. Our algorithm can be used
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Fig. 6. Segmentation of a part of a digital ellipse into DCAs of given radius (r = 10) in
(a) and of any radius in (b). The black polygonal line depicts the digital contour. The
black and white points are those retained for the computation. In (b), the preprocessing
stage proposed in [2] has discarded a great amount of black and white points. The
arrows point to the end points of the DCAs



as a routine each time a new point is taken into consideration. Due to the
optimization proposed in [2], this last method runs in O(n4/3), instead of being
quadratic. Moreover, it is easy to implement, may use integers only and provides
a way for fastly segmenting digital curves.
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