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Abstract

This paper focuses on the design of an effective method that computes the measure

of circularity of a part of a digital boundary. An existing circularity measure of a set

of discrete points, which is used in computational metrology, is extended to the case

of parts of digital boundaries. From a single digital boundary, two sets of points are

extracted so that the circularity measure computed from these sets is representative

of the circularity of the digital boundary. Therefore, the computation consists of two

steps. First, the inner and outer sets of points are extracted from the input part of a

digital boundary using digital geometry tools. Next, the circularity measure of these
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sets is computed using classical tools of computational geometry. It is proved that

the algorithm is linear in time in the case of convex parts thanks to the specificity

of digital data, and is in O(n log n) otherwise. Experiments done on synthetic and

real images illustrate the interest of the properties of the circularity measure.

Key words: circularity, compactness, digital circle, discrete geometry,

computational geometry

1 Introduction1

Accurately locate circles and accurately measure deviation with a circular2

template are common problems in many fields of science and engineering. The3

fields of application are as diverse as geology [1], archeology [2], computer4

vision such as raster-to-vector conversion [3] or video processing [4], compu-5

tational metrology to test the quality of manufactured parts [5–12], image6

processing and discrete geometry to recognize digital circles [13–20].7

This paper focuses on the design of an effective method that computes the8

measure of circularity of a part of a digital boundary previously extracted9

from a digital image. The circularity measure of a given part of a digital10

boundary is a quantity that increases with deviation from a piece of digital11

circle, called a digital arc. The reader may find in the literature terms as diverse12

as compactness [21,13], roundness [22,6,8–11], out-of-roundness [5,6,23], but13

we prefer “circularity” [24,7] because it recalls the template with which the14

data are compared to, that is the circle.15

? Work partially supported by the GEODIB ANR project (ANR-06-BLAN-0225)
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1 Author supported by a grant from the DGA
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Although plenty of papers present methods for assessing the circularity of a set16

of points, as far as we know, only one paper dealt with the circularity of digital17

boundaries, more than twenty years ago. In [13], a digital disk recognition18

algorithm in O(n2) is presented in the first part, and a digital compactness19

evaluation algorithm for digital convex objects in O(n3
√
n) is presented in20

the second part (where n is the number of pixels of the digital boundary).21

The digital compactness measure is defined as the ratio between area A of the22

shape and area A′ of the smallest enclosing digital disk (where “the smallest”23

is expressed in area unit, that is in number of pixels). As a smallest enclosing24

digital disk may not be unique and as the smallest enclosing euclidean disk25

may not be a smallest enclosing digital disk, areas of many digital disks have26

to be compared. This is why the computational cost is rather high. This first27

attempt shows that the problem is not trivial.28

Moreover, naive methods that consist to find an easy-to-compute point that is29

expected to be the centre of a circle separating the shape from the background30

are only approximative. For instance, in [25], the barycentre of a set of pixels31

is assumed to be the centre of a separating circle, but Fig. 1 shows that if the32

barycentre of a set of pixels is computed, pixels that do not belong to the set33

may be closer to the barycentre than pixels that belong to the set, even if it34

turns out that the set of pixels can be separated from the pixels that do not35

belong to the set.36

A well-known circularity measure in the Euclidean plane is 4πA/P 2 where A37

is the area and P the perimeter. The digital equivalent of this circularity mea-38

sure was introduced by [21], but even with a convergent perimeter estimation39

based on digital straight segment recognition (see [26] and [27]) the measure is40

theoretically unsatisfactory: digital circles may have different values that are41
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Fig. 1. A digital disk is depicted with pixels. In each pixel, the distance of its centre

to the barycentre of the digital disk (located with a cross) is written. Some pixels

that do not belong to the disk are closer (3.2) to the barycentre than some pixels

that belong to the disk (3.24)

always strictly less than 1. Moreover, this kind of measure has several other42

drawbacks in practice: (i) it is not perfectly scale invariant, (ii) it is not easy43

to interpret (iii) it is not computable on parts of a digital boundary and (iv) it44

is not able to provide the parameters of a circle that is close to the data. This45

measure may be used for a coarse and quick approximation of the circularity46

of a digital boundary, but in the general case, another measure is needed.47

Three kinds of methods may be found is the literature:48

(1) Methods based on the circular Hough transform [28–30] allow extraction,49

detection and recognition of digital arcs. Even if these methods are ro-50

bust against shape distortions, noise and occlusions, they require massive51

computations and memory, and thresholds tuning. As the digital bound-52

ary is assumed to be extracted from the digital image in this paper, the53

following methods are more appropriate.54

(2) Methods based on the separating circle problem in discrete and com-55
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putational geometry [14–20] allow the recognition of digital arcs. These56

algorithms are not robust since one point can forbid the recognition of57

a digital arc. They need to be modified to measure the extent of the58

deviation with a digital arc.59

(3) Methods based on circle fitting are widely used. In computer vision [31–60

33,10,3,4], a circle is fitted to a set of pixels with the least square norm.61

In computational metrology [5,22,6,7,23,12], a circle is fitted to a set of62

points sampled on the boundary of a manufactured part by a Coordinate63

Measurement Machine (CMM) generally with the least L∞ norm (or64

Chebyshev or MinMax norm) because it is recommended by the American65

National Standards Institute (ANSI standard, B89.3.1-1972, R2002), but66

sometimes with the least square norm, like in [34].67

In this paper, a preliminary work presented in [35] is extended. Given a part68

of a digital boundary, the objective is to compute a circularity measure ful-69

filling some properties that will be enumerated in Section 2.2, as well as the70

parameters of one separating circle if it is a digital arc or the parameters of71

the closest circle otherwise. The proposed method is original because it is ap-72

plied on digital boundaries like in [13] and it links both methods based on the73

separating circle problem and methods based on circle fitting.74

We formally define a circularity measure for parts of digital boundaries in75

Section 2. From one digital boundary, two sets of points are extracted so that76

the circularity measure computed from these sets is representative of the cir-77

cularity of the digital boundary. Thanks to this trick, in spite of the specificity78

of the digital boundaries, an algorithm that only uses classical tools of com-79

putational geometry is derived in Section 3. Moreover, we show in Section 480

that the size of the two sets of points can be reduced in order to decrease the81
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burden of the computation. Some experiments are done on synthetic digital82

boundaries and on real-world digital images in Section 5. The paper ends with83

some concluding words and future works in Section 6.84

2 Circularity measure for parts of digital boundary85

2.1 Data86

A binary image I is viewed as a subset of points of Z2 that are located inside87

a rectangle of size M × N . A digital object O ∈ I is a 4-connected subset of88

Z2 without hole (Fig. 2.a). Its complementary set Ō = I\O is the so-called89

background. The digital boundary C (resp. C̄) of O (resp. Ō) is defined as the90

8-connected list of digital points having at least one 4-neighbour in Ō (resp.91

O) (Fig. 2.b). Without loss of generality, let us suppose that C is clockwise92

oriented. Each point of C is numbered according to its position in the list. The93

starting point, which is arbitrarily chosen, is denoted by C0. The last point is94

denoted by Cn−1, where n is equal to the number of points in C. A connected95

part Cij of C is the list of digital points from the i-th point to the j-th point96

of C (Fig. 2.c).97

A digital disk is defined as a digital object whose points are separable from the98

background by an Euclidean circle [13] (Fig. 2.d). A digital circle is defined as99

the boundary of a digital disk (Fig. 2.e) and a connected part of it is defined100

as a digital arc (Fig. 2.f).101

The goal of the following subsection is to define a measure of how much a102

given part of digital boundary is far from a digital arc.103
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) A digital object is depicted with black disks. The set of squares depicts

the whole (b) or a part of the (c) digital boundary. (d) A digital object that is a

digital disk. (e) A digital boundary that is a digital circle. (f) A part of a digital

boundary that is a digital arc.

2.2 Circularity measure of a part of a digital boundary104

A circularity measure for parts of digital boundaries is naturally expected to105

fulfil the following properties:106

(1) be robust to translation, rotation, scaling.107

(2) range from 0 to 1, equal 1 for a digital arc.108

(3) be intuitive. For instance, it is naturally expected to increase as the num-109

ber of sides of regular polygons increases or as the eccentricity of ellipses110
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least square norm Chebyshev norm

radial mean square error minimum width annulus

distances [31,33,34] [5,22,6,7,9,10,12]

areal modified mean square error minimum area annulus

distances [32] [5,23]

Table 1

Some references for the four most used instances of the problem of fitting a circle

to a set of points

decreases or as the amount of noise decreases. It is also expected that the111

measure is robust: for example, the measure of a noisy digital circle has112

to be higher than the measure of a digital triangle or a digital square, if113

the noise is limited and does not affect the form.114

In metrology, the circularity of an arbitrary set of points in the plane is defined115

from the minimum cost of fitting a circle to the set given a certain norm. The116

most often used norm is either L2 (least square norm) or L∞ (MinMax or117

Chebyshev norm). Moreover, for both norms, the quantity that is minimized118

is either the sum of the radial distances or the sum of the areal distances. The119

four instances of the problem of fitting a circle to a set of points have been120

thoroughly studied for a long time as it is shown in Table 1.121

Fitting a circle to the points of a digital boundary with any of the above122

techniques does not lead to a satisfactory measure, because property 2 does123

not hold.124

In the aim of fulfilling property 2, two sets of points, denoted by S and T , are125
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extracted from the digital boundary, so that: (i) S ⊆ O, (ii) T ⊆ Ō, (iii) S126

and T are separable by a circle if and only if C is a digital circle.127

Let S = C and T = C̄. According to the definitions introduced in Section 2.1),128

the three previous criteria are obviously fulfilled.129

Let the minimum signed area annulus A of centre ω, inner radius r1 and outer130

radius r2 be such that the outer disk contains all the points of S and the inner131

disk does not contain any point of T :132

Find A that minimizes (r2
2 − r12)

subject to
∀S ∈ S, (Sx − ωx)2 + (Sy − ωy)

2 ≤ r2
2

∀T ∈ T , (Tx − ωx)2 + (Ty − ωy)
2 > r1

2

(1)

Notice that the problem of finding a minimum signed area annulus enclosing a133

first set of points but not a second set of points is more general than, but may134

be reduced to the usual problem of finding a minimum area annulus enclosing135

a set of points (right bottom case of Table 1).136

The circularity measure of S and T is the squared ratio between r1 and r2:137

circ(S, T ) =
r1

2

r22
(2)

Now, we define the circularity measure of C as the circularity measure of S138

and T :139
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(a) (b)

Fig. 3. Two parts of two digital boundaries are depicted with gray squares. S (resp.

T ) is the set of black disks (resp. white disks). In (a), the minimum area annulus

has an area of 4 and the circularity measure equals 8.5/12.5 = 0.68. However in (b),

it has a null area and the circularity measure equals 1, because the part of digital

boundary is a digital arc.


circ(C) = circ(S, T ) if (circ(S, T ) < 1)

circ(C) = 1 otherwise

(3)

If the signed area π(r2
2−r12) of A is stricly less than 0, S and T are separable140

by a circle and circ(S, T ) > 1, but if π(r2
2 − r12) ≥ 0, S and T are not sepa-141

rable by a circle and circ(S, T ) ≤ 1 (Fig. 3). As a consequence the circularity142

measure defined in equation 3 fulfils property 2. Moreover, it is clear that the143

measure is also intuitive and is robust to rigid transformations such that it144

fulfils properties 1 and 3.145
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3 Computation of circ(S, T )146

This section focuses on the computation of circ(S, T ). First, we show that147

this computation may be achieved by linear programming in a space of di-148

mension 4. Next, we derive a simple geometric algorithm working in a space149

of dimension 3 only.150

3.1 Linear programming problem151

Developing the set of constraints of equation 1, we get:152


∀S ∈ S,−2aSx − 2bSy + f(Sx, Sy) + c2 ≤ 0

∀T ∈ T ,−2aTx − 2bTy + f(Tx, Ty) + c1 > 0

where



a = ωx, b = ωy,

c1 = (a2 + b2 − r12) c2 = (a2 + b2 − r22)

f(x, y) = x2 + y2

(4)

Instead of characterizing a circle by its centre and its radius, we characterize153

a circle by its centre and the power of the origin with respect to the circle.154

Thanks to this change of variables, solving equation 1 is equivalent to solving a155

linear program with four variables and |S|+ |T | constraints (where |.| denotes156

the cardinality of a set).157

This kind of reformulation into a linear programming problem has been done,158

for instance, in computational geometry for the smallest enclosing circle [36]159
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or the smallest separating circle [14], in discrete geometry for digital circle160

recognition [19] and in engineering for the quality control of manufactured161

parts [23].162

The technique of Megiddo [37] is linear in time in the number of constraints.163

Unfortunately, Megiddo’s algorithm is not easy to implement and the constant164

is large and is exponential in the dimension, which is equal to 4 here. In a space165

of dimension 4, Megiddo’s algorithm cannot be used in practice. That’s why166

we propose in this section a simple geometric algorithm that works in a space167

of dimension 3 only.168

As an annulus is a pair of concentric circles that are characterized by three169

parameters each, we interpret equation 4 in a 3D space that we call abc-170

space. Indeed, c1 and c2, having the same meaning, are both represented in171

the c-axis. From now on, in addition to the original plane, called xy-plane,172

containing the points of Z2, we work in the abc-space as well as in its dual173

space, called xyz -space.174

3.2 abc-space vs xyz-space175

By definition 0 ≤ r1 ≤ r2, whereas a2 + b2 ≤ c, which implies that the abc-176

space is a copy of R3 from which the interior of the paraboloid of equation177

c = a2 + b2 has been excluded. A point on the paraboloid maps to a circle178

of null radius in the xy-plane. A point that is out of the paraboloid maps179

to a circle whose radius is equal to the vertical distance between the point180

and the paraboloid in the xy-plane (Fig. 4.a). It is clear that two points with181

the same projection in the ab-plane corresponds to two concentric circles in182

12



the xy-plane. Minimizing the area of an annulus bounded by such a pair of183

concentric circles is tantamount to minimize the vertical distance between the184

two corresponding points in the abc-space.185

In the xyz -space, all the points of Z2 are lifted along an extra axis (the z-186

axis) according to the bivariate function f . Let S ′ = {S ′(S ′x, S ′y, S ′z)} (resp.187

T ′ = {T ′(T ′x, T ′y, T ′z)}) be the set of points of S (resp. T ) that are vertically188

projected onto the paraboloid of equation z = f(x, y) = x2 + y2. Any plane189

in the xyz -space passing through some points of S ′ or T ′ cuts the paraboloid.190

The projection on the xy-plane of the intersection between the plane and the191

paraboloid is a circle that passes through the corresponding points of S and192

T (Fig. 4.b). The intersection between the paraboloid and a pair of parallel193

planes projects to a pair of concentric circles on the xy-plane. Minimizing the194

area of an annulus bounded by such a pair of concentric circles is tantamount195

to minimize the vertical distance between the two corresponding planes in196

the xyz -plane. This kind of transformation is well known in computational197

geometry since [38] and has already been used in [36] to solve the smallest198

enclosing circle or in [14] to solve the smallest separating circle problem.199

The understanding of the constraints is more straightforward in the xyz -plane200

and that is why we will preferably work in this space in the following subsec-201

tion.202

3.3 Pair of parallel planes203

We have to compute a pair of parallel planes such that the upper plane is204

above the points of S ′ and the lower plane is below the points of T ′ in order205
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a

bc

(a)

x

yz

(b)

Fig. 4. (a) A point outside the paraboloid of equation c = a2 + b2 in the abc-space

corresponds to a circle in the xy-plane and conversely. (b) A plane that cuts the

paraboloid of equation z = x2 + y2 in the xyz -space corresponds to a circle in the

xy-plane and conversely.

to solve equation 4 and derive a circularity measure.206

Obviously, S ′ and T ′ may be reduced to their convex hull denoted by CH(S ′)207

and CH(T ′). In addition, the property of convexity makes the next step that208

consists in minimizing the vertical distance between the two parallel planes of209

support more efficient.210

We do not detail the classical convex hull computation algorithm that may211

run in O(m logm), where m = |S ′|+ |T ′| [39,40].212

An elementary way to compute the pair of parallel planes of support minimiz-213

ing their vertical distance is to compute the intersection depth between the two214

polyhedra CH(S ′) and CH(T ′) denoted by h = min Height(CH(S ′), CH(T ′)).215

Height(CH(S ′), CH(T ′)) is a function that returns the distance between the216

14



(a) (b) (c)

Fig. 5. S (black disks) and T (white disks) are separable by a straight line in (a),

by a circle in (b) and are not separable by a circle in (c). Note that G∗, which is the

intersection between GS (in dashed lines) and GT (in dotted lines), has respectively

0, 4 and 3 nodes in (a), (b) and (c).

two polyhedra along the z-axis for each point of the domain of the function.217

Notice that Height(CH(S ′), CH(T ′)) is not defined everywhere. Indeed, the218

domain of this function is the intersection of the projection on the xy-plane219

of CH(S ′) and CH(T ′), that is CH(S) ∩ CH(T ).220

To compute h, the brute force algorithm consists in computing the planar221

graph G∗ that is the intersection between GS and GT (Fig. 5). If |G∗| = 0,222

then CH(S)∩CH(T ) = ∅. In this degenerate case, S ′ and T ′ are separable by223

a plane that is orthogonal to the xy-plane, S and T are separable by a circle224

of infinite radius, that is a straight line, so the part of digital boundary from225

which S and T have been computed is a digital straight segment (Fig. 5.a). If226

|G∗| > 0, it remains to compute the height function for each vertex of G∗ and227

take the minimum.228

The brute force algorithm runs in O(m2) since G∗ has at most m2 vertices.229

However, it is possible to take advantage of the convexity of the height function230

to get an algorithm in O(m logm) (see [39, pages 310-315] for this algorithm).231

Although our algorithm is more general than a simple digital circle test, its232

15



complexity in O(m logm) is better than the quadratic complexity of the meth-233

ods presented in [15,16,20]. These methods cannot be efficient because they234

only deal with 2D projections of 3D polyhedrons.235

Once the pair of parallel planes of support are known, we have circ(S, T ) =236

r12

r22
, where r1

2 and r2
2 are derived from the coefficients of the pair of parallel237

planes. From equation 4, it is obvious to get the following equations: r1
2 =238

a2 + b2 − c1 and r2
2 = a2 + b2 − c2.239

Since h is the signed area of the annulus A, if h < 0, S and T are separable240

by a circle and circ(S, T ) > 1 but if h ≥ 0, S and T are not separable by a241

circle and circ(S, T ) ≤ 1.242

Algorithm 1 sums up the current section.

Algorithm 1 CircularityComputation(S,T )

Input: S and T , two sets of points

Output: circ(S, T )

1: Compute S ′ (resp. T ′), the set of the vertical projections of the points of

S (resp. T ) onto the elliptic paraboloid of equation z = x2 + y2

2: Compute the 3D convex hull of S ′ and T ′ [40]

3: Compute the pair of parallel planes of support [39, pages 310-315]

4: Compute r1
2 and r2

2 from the coefficients of the parallel planes (a, b, c1, c2):

r1
2 = a2 + b2 − c1 and r2

2 = a2 + b2 − c2

5: return r1
2/r2

2

243
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4 Minimization of the size of S and T244

In the aim of decreasing the burden of the computation of circ(S, T ), which245

depends on the size of S and T , we search for Ŝ and T̂ such that Ŝ ⊆ S,246

T̂ ⊆ T , |Ŝ|+ |T̂ | < |S|+ |T | and circ(Ŝ, T̂ ) = circ(S, T ).247

4.1 Computation of Ŝ248

Let us consider a part Cij of the boundary C. Since all circles are convex, no249

circle can enclose the vertices of the convex hull of Cij without enclosing all250

its points. So Ŝ is the set of the vertices of the convex hull of Cij, denoted by251

CH(Cij). If Cij 6= C, the first and last points of Cij are put in Ŝ even if they252

are not in CH(Cij) to make the extraction of the points of T̂ easier.253

4.2 Computation of T̂254

The extraction of the points of T̂ is independently performed for each part255

Ckl ∈ Cij that is lying between two consecutive points that belongs to Ŝ, the256

indices of which being respectively denoted by k and l. Let us denote by sk257

and sl the two end points of the part Ckl.258

As the extraction algorithm depends on the convexity of Ckl, the following259

definition of convexity is required:260

Definition 1 As Cij is clockwise oriented, the right (resp. left) part of CH(Cij)261

is the polygonal line that links Ci and Cj and that lies on the right (resp. left)262

of Cij. Cij is convex (resp. concave) if and only if there is no digital point263
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between the polygonal line linking the digital points of Cij and the right (resp.264

left) part of CH(Cij).265

4.2.1 Case where Ckl is not convex266

If Ckl is not convex, all the points of C̄ that are located between the digital267

points of Ckl and the segment [sksl] are put in T̂ (Figure 6).268

s15

s10

s19

s21

Fig. 6. Since C15−19 is not convex (according to the clockwise orientation), the

background points that are added to T̂ are such that: (i) they are 4-neighbours of

a point of C15−19, (ii) they are located between C15−19 and the segment [s15s19].

4.2.2 Case where Ckl is convex269

Without loss of generality, let us consider the segment [sksl] in the first octant,270

so that the background points are located above [sksl]. Let us consider the271

arithmetic description of [sksl] with a vector ~u = (a, b)T with a, b ∈ Z and272

gcd(a, b) = 1, such that (sl − sk) = g.~u with g ∈ Z.273

In order to have circ(Ŝ, T̂ ) = circ(S, T ), we must keep the closest background274

points to the outer disk containing [sksl] but not containing any background275

point. If we assume first that the outer disk has a infinite radius, we show that276

we must keep the Bezout points of [sksl] whose definition is given below:277

Definition 2 A Bezout point bq of a segment [sksl] is defined as a point above278

[sksl] such that ~skbq = ~v + q~u with q ∈ [0, g], ~v = (c, d)T and det(~u,~v) = 1.279
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Lemma 1 A circle of infinite radius that encloses [sksl] but does not enclose280

any Bezout point bq, does not enclose any other point above [sksl].281

This lemma and its proof may be found in other papers such as [20]. They are282

the basement of the arithmetic digital straight line recognition algorithm [27]283

because any lower leaning point of an 8-connected digital straight segment in284

the first octant that is vertically translated up by 1 is a Bezout point associated285

to this segment.286

Lemma 1 shows that only Bezout points need to be taken into consideration287

as points of T̂ . Furthermore, it seems that only a small part of them, located288

near the bisector of [sksl], are sufficient. In [20] (Definition 1), the closest point289

to the middle of [sksl] is arbitrarily chosen. Fig. 7 illustrates that only taking290

into account the closest point to the middle of [sksl] is not sufficient. In the291

following, we prove that at most two Bezout points have to be taken into292

account.

~v
~u

sk

sl

pl

b0

b1

b2

b3

pk

Fig. 7. The closest Bezout point to the middle of [sksl], denoted by b1, is not

sufficient: there is a circle that separates b1 from sk and sl but encloses b2, which is

another Bezout point.
293

For each convex part Ckl, let us consider two extra points defined as the294

points pk and pl such that pk = sk − ~u and pl = sl + ~u (Fig. 7). pk and pl are295

background points, since [sksl] is an edge of a convex hull. The circles that296
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enclose [sksl] but do not enclose any background point cannot have an infinite297

radius because they must not enclose neither pk nor pl.298

Let us introduce the following new definition:299

Definition 3 The middle Bezout point(s) associated to the segment [sksl]300

is(are) defined as:301

(1) the unique Bezout point b0, if g = 1.302

(2) the two consecutive Bezout points bq−1 and bq the closest to the middle303

such that q is the smallest integer for which the quantity |2(~u.~v) + (2q −304

g − 1)||~u||2| is minimized.305

Vector ~u and integer g may be computed by applying Euclid’s algorithm to306

the slope of [sksl]. Vector ~v is given by the Bezout’s identity that is found307

thanks to the extended Euclid’s algorithm. These computations are obviously308

made in O(log (max(|a|, |b|))). Once g, ~u and ~v are known, finding the middle309

Bezout points is sequentially performed in O(g).310

Let us state the following proposition:311

Proposition 1 A circle that encloses [sksl] but does not enclose neither the312

middle Bezout points associated to [sksl] nor the extra points pk and pl, does313

not enclose any other Bezout point.314

Because of its length, the proof is given in appendix, section A.315

As a result, for each convex part Ckl, only two background points at most,316

which are the middle Bezout point(s), must be put in T̂ . Notice that deciding if317

the extra point pk (resp. pl) also must be added to T̂ is done when considering,318

if it exists, the previous (resp. next) part of Cij. As an exception, if Ckl is the319
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first (resp. last) convex part of Cij, then the extra point pk (resp. pl) is also320

added to T̂ .321

4.3 Algorithm and Complexity322

The algorithm that computes Ŝ and T̂ (Algorithm 2) is given below.323

Algorithm 2 SnTComputation(Cij,Ŝ and T̂ )

Input: Cij, a part of a digital boundary

Output: Ŝ and T̂

1: Ŝ = T̂ = ∅

2: Add si to Ŝ

3: Compute CH(Cij)

4: for each part Ckl of Cij do

5: Add sl to Ŝ

6: if Ckl is convex then

7: Add the middle Bezout point(s) of [sksl] to T̂

8: else

9: Add to T̂ all the points of C̄ that are located between the digital

points of Ckl and [sksl].

10: return Ŝ,T̂

Computing CH(Cij) (l.3) is done in linear time (using Melkman’s algorithm324

[42] for instance). The points of C̄ that are 4-neighbours of a point of Ckl are325

computed in linear time by contour tracking. Checking whether each part Ckl326

is convex or not (l.6) and performing the appropriate processing (l.7 and l.9)327

is then straightforward and in O(l − k).328

Fig. 8 illustrates that |Ŝ| and |T̂ | are considerably smaller than |S| and |T |,329
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if Cij is convex.330

(a) (b)

Fig. 8. S in (a) and Ŝ (b) (resp. T in (a) and T̂ (b)) are depicted with black disks

(resp. white disks).

Actually, |Ŝ| is bounded by O(n2/3) according to known results [41]. If Cij is331

convex, |T̂ | is at most twice bigger than |Ŝ| according to Proposition 1 and |T̂ |332

is bounded by O(n) otherwise. Therefore m = |Ŝ|+ |T̂ | is bounded by O(n2/3)333

in the case of convex parts and O(n) otherwise. As circ(S, T ) = circ(Ŝ, T̂ )334

can be computed in O(m logm), we can conclude that the circularity measure335

of Cij can be computed in O(n) if Cij is convex and O(n log n) otherwise.336

5 Experiments337

It is clear that the proposed circularity measure fulfils the three properties of338

Section 2.2. In this section, the proposed circularity measure is probed with339

respect to its ability to deal with a part of a digital boundary.340
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5.1 Synthetic images341

Hundreds of noisy circles are generated. In order to study the impact of the342

amount of noise onto circularity, we implemented a degradation model very343

close to the one investigated in [43]. This model was proposed and validated344

in the context of document analysis and assume that: (i) the probability to345

flip a pixel (that is, label ‘foreground’ or ‘1’ a pixel previously labelled ‘back-346

ground’ or ‘0’, and conversely) depends of its distance to the nearest pixel of347

the complement set and (ii) blurring may be simulated with a morphological348

closing.349

Figure 9 gives two examples of results of the degradation algorithm applied350

to a digital disk.351

r = 30, α = 1 r = 30, α = 15

Fig. 9. Gauss digitization of two disks. The amount of noise that is added to the

disks according to the degradation model of [43] depends of parameter alpha. The

digital curves that we are called upon to measure are the 8-connected boundaries

of these digital objects.

Figure 10 shows that the circularity decreases with the amount of noise, but352

with sawtooth because the pixels are flipped at random. The noisier the dig-353

ital circle, the more it looks different from a digital circle. Furthermore, even354

with rather noisy digital circles (α = 15), the circularity is above 0.8, which355
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approximately corresponds to the circularity of a 7-gon. Hence, the measure356

is sufficiently robust to discriminate noisy circles given by the noise model of357

[43] at α = 15, from k-gons where k < 7, such as triangles or squares, hav-358

ing a circularity around 0.3 and 0.4 respectively. Note that the comparison359

makes sens in spite of the difference of perimeter because the measure is size360

invariant.361
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Circularity of noisy digital circles (r=30)

Fig. 10. One hundred digital circles of radius 30 are generated with more and more

noise. Parameter alpha ranging from 1 to 15 controls the amount of noise (Fig. 9).

Circularity is plotted against parameter alpha.

The accuracy of the measurements on digital arcs of various length is now362

investigated. Fifty noisy circles are generated (r = 30, α = 15) (Fig. 9).363

For each circle and for each length from 20 to approximately 180 pixels, one364

digital arc is randomly extracted. The circularity measure is computed from365

these approximately 7500 digital arcs. Fig. 11 shows that from 20 to 45 pixels366

of length (90 degrees), measurements are not accurate, because the confidence367

range at 95% is wide (until more than 0.1). Though, the confidence range368

shrinks while the arc length increases and the measurements done on digital369
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arcs of more than 45 pixels of length (90 degrees) may be consider accurate.370

Obviously, the smallest angle for which measurements are accurate depends371

on the noise and the size of the digital circles. The smaller α is, the smaller372

the angle is. In the special case where α = 0, measurements are perfect for373

all digital arcs. Moreover, the higher the radius is, the less the noise added by374

the model at a given α affects the shape, the smaller the angle is.375
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Circularity of noisy digital arcs (r=30, alpha=15)

Fig. 11. Fifty noisy circles were generated (r = 30, α = 15) (Fig. 9). For each circle,

for each length from 20 to approximately 180 pixels, one digital arc is randomly

extracted. The average of the circularity measure of the digital arcs (solid line) is

plotted against the length with error bars at 95%.

5.2 Real-world images376

We are currently working in collaboration with geographers. They want to377

perform a set of measurements that describes the shape of pebbles sedimented378

in river beds. The underlying assumption is that pebbles size and shape are379

determined by lithology, distance of transport, abrasion, etc. The objective is380
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to reduce the subjectivity and the time spent in the field thanks to digital381

image analysis.382

The circularity measure proposed in this paper is used in order to study the383

shape of pebbles from digital images, collected in the bed of the Progo, an384

Indonesian river located on Java Island near Yogyakarta. Approximately 1300385

pebbles were randomly sampled in the bed, with 2 photos being taken on 12386

stations located at various distances from the source. Fig. 12 shows two photos387

taken near the source.

Fig. 12. Zoom in photos taken on the first (left) and second (right) stations.

388

First, we detected pebbles with clustering methods in the HSV color-space389

and we extracted their digital boundary. Next, the circularity measure was390

computed for all the digital boundaries.391

In Fig. 13, the average of the circularity measure of the pebbles is plotted392

against the distance from the source of the stations where the pebbles have393

been collected. Circularity is valuable for geographers because experiments394

show that it increases in the first 20 kilometres, while the pebbles get rounder,395

but has a complex pattern after, with no clear trend, which raises the possibil-396

ity of a substitution of macro-scale to micro-scale shape changes downstream.397
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Notice that Fig. 12 shows photos taken on two stations that have statisti-398

cally significant difference of circularity: the first station (Fig. 12, left) and399

the second one (Fig. 12, right). Obviously, other size, form and shape param-400

eters, like diameter, elongation, convexity and roundness [1], are computed in401

addition to circularity to provide multidimensional data of great interest for402

geographers.
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Fig. 13. The average of the circularity measure of the pebbles is plotted against

the distance from the source of the 12 stations where the 1300 pebbles have been

collected.
403

In the left photo of Fig. 12, two pebbles are badly detected because they touch404

each other. Another example is presented on the left of Fig. 14.405

In such cases, it is possible to cut the digital boundary in two and indepen-406

dently deal with the two parts of the digital boundary. We used an algorithm407

that robustly decomposes a digital curve into convex and concave parts [45].408

Each part may be viewed as a part of a pebble outline that has not been wholly409

retrieved. As the missing part of each outline is small enough, the circularity410
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Fig. 14. Corrupted outlines of pebbles.

measure of the retrieved part is assumed to be very close to the one that could411

have been computed on the whole digital boundary. In the example presented412

in the left photo of Fig. 14, the circularity measure of the whole digital bound-413

ary is 0.005, whereas the circularity measure of the two parts corresponding414

to the two pebbles is 0.488 and 0.598 respectively, from left to right.415

In the right photo of Fig. 14, is presented a pebble outline that is corrupted416

with a spike. Using [45], the digital boundary is coarsely cut before and after417

the spike. The digital boundary with and without the spike has the same418

circularity measure that is equal to 0.511 because the spike does not affect the419

fitting of the minimum area annulus.420

Generally speaking, the proposed method is able to infer the circularity mea-421

sure of a digital boundary from a part of it, provided that bumps are uniformly422

spread around the boundary and that the part is long enough with respect423

to the amplitude of the bumps. For instance, in Section 5.1, it was shown424

that for circles of radius 30 that are corrupted by the noise model of [43] at425

α = 15, the measurements done on parts of more than 90 degrees may be426

consider accurate. We took profit of this property in our application to cope427

with occlusions and spikes.428
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6 Conclusion and perspectives429

In this paper, a circularity measure has been defined for parts of digital bound-430

aries. An existing circularity measure of a set of discrete points, which is431

sometimes used in computational metrology, is extended to the case of parts432

of digital boundaries (Section 2.2). Once the minimum area annulus, such that433

the outer disk contains all the points of the part of a digital boundary and the434

inner disk does not contain any background point is computed, the circular-435

ity measure is defined as the squared ratio between the inner and outer radii436

(Section 2.2).437

Because we consider two sets of points, the problem we deal with is more438

general than the usual problem of finding a minimum area annulus enclosing439

one set of points [5,22,6,7,9,10,12]. The circularity measure of these two sets440

of points is computed thanks to an algorithm in O(n log n) that only uses441

classical tools of computational geometry (Section 3). Moreover, the two sets442

of points may be computed so that the algorithm is linear in time in the case443

of convex digital boundaries (Section 4). The method is exact contrary to444

many methods that use ad hoc heuristics [7] or meta-heuristics like simulated445

annealing [10,12]. Even if it is shown that a sophisticated machinery coming446

from linear programming can provide a linear time algorithm (Section 3.1),447

its time complexity is better than many quadratic methods based on Voronoi448

diagrams [15,16,5,22] (Section 3.3).449

Contrary to the famous measure introduced in [21], the measure proposed in450

this paper fulfils the following properties:451

• it may be applied on any part of digital boundaries.452
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• it is robust to rigid transformations.453

• it ranges from 0 to 1 and is equal to 1 for any digital circle or arc, which454

means that the measurements are accurate even at low resolution.455

• it provides the parameters of a circle whose digitization is the measured456

part of digital boundary if the circularity measure is 1 and the parameters457

of an approximating circle otherwise.458

The kind of measure and algorithm proposed in this paper is general enough to459

be applied in order to recognize or measure the deviation with other quadratic460

shapes like parabolas. In the case of parabolas, the extension is straightfor-461

ward: it is enough to modify function f , so that f(x, y) equals x2 (or y2),462

instead of x2 + y2. The points of the xy-plane are merely vertically projected463

onto a parabolic cylinder instead of an elliptic paraboloid and algorithm 1464

does not change.465

To end, it would be quite valuable to make the algorithm on-line (without466

increasing its complexity as far as possible). The on-line property would be467

of great interest to efficiently and robustly decompose a digital boundary into468

primitives like noisy digital arcs or pieces of noisy digital parabolas.469

Acknowledgements. The authors thank the reviewers for their comments470

that significantly improved the paper.471

A Proof of Proposition 1472

In the sequel, we only consider the case of a circle that encloses [sksl] but nei-473

ther pl nor the closest middle Bezout point to pl. The other case is symmetric474

and the two cases will be put together to conclude the proof.475
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Let us consider a circle passing through sk and pl. If such a circle encloses sl476

but does not enclose any Bezout point, then any circle passing through sk and477

intersecting [slpl] (of whatever radius) separates sl from any Bezout point too.478

The first point b that is touched by a circle passing through sk and pl of479

decreasing radius is such that the angle between ~bsk and ~bpl is maximized. To480

maximize such an angle in the range [π/2, π] is equivalent to maximize the481

tangent of the angle that equals:482

det( ~bsk, ~bpl)

~bsk. ~bpl

However, det( ~bsk, ~bpl) is constant and equal to g + 1 = h. Then, only taking483

into account the denominator, we look for the integer q that minimizes:484

f : Z 7→ Z

f(q) = (−~v − q~u).(−~v + (h− q)~u)

Developing, we finally get:485

f(q) = q2(||~u||2) + q
(
2(~u.~v)− h(||~u||2)

)
+
(
||~v||2 − h(~u.~v)

)

The derivative is:486

f ′(q) = (2||~u||2)q + 2(~u.~v)− h(||~u||2)

Since 2||~u||2 ≥ 0, f is convex and has a global minimum at the value of q487

31



for which f ′(q) is closer to 0 than for the other values of q. The minimum is488

reached around q = h/2 because f ′(h/2) = 2(~u.~v) ≥ 0 and that’s why we call489

the Bezout point bq such that q is the smallest integer for which the quantity490

|2(~u.~v) + (2q − h)||~u||2| is minimized (Def. 3) the middle Bezout point.491

To end, the first point b that is touched by the circle of decreasing radius and492

passing through sk and pl is the closest middle Bezout point to pl according493

to Def. 3. Similarly, we can show that the first point b that is touched by the494

circle of decreasing radius and passing through sl and pk is the closest middle495

Bezout point to pk according to Def. 3, which concludes the proof. 2496
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