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Abstract. We present new results concerning the Delaunay triangula-
tion of the set of points of pieces of digital straight lines. More precisely,
we show how the triangulation topology follows the arithmetic decompo-
sition of the line slope as well as its combinatorial decomposition (split-
ting formula). A byproduct is a linear time algorithm for computing the
Delaunay triangulation and the Voronoi diagram of such sets.

1 Introduction

Let S be a set of n points in R2. Its convex hull is the intersection of every
half-planes containing S. A triangulation of S is a simplicial decomposition of
the convex hull of S where the vertices of the triangular facets are elements of S.
The Delaunay triangulation of S is a triangulation such that each facet satisfies
the Delaunay condition: the circumcircle of the facet contains no point from S
in its interior. Such a triangulation exists for every point set in R2 (and more
generally in arbitrary dimension), and it is the dual of the Voronoi diagram. It
plays a very important role in computational geometry and meshing. A lot of
algorithms exist to compute it, and have optimal time complexity O(n log n) [1].

The Delaunay triangulation of a set of Euclidean points has been deeply
studied in computational geometry. The special case of a set of digital points
(points in the digital plane Z2) is generally not addressed as is, but more as
a binary image. In this context, euclidean distance transforms provide a way
of computing digital Voronoi diagram i.e. each pixel is labeled according to
its closest site, but does not give the discrete Voronoi diagram, i.e. the set of
vertices, edges of the diagram and its topology, and thus do not give the Delaunay
triangulation either.

In this paper we study precisely the properties of the Delaunay triangulation
of specific subsets of the digital plane Z2, which are digital equivalents of straight
lines and segments. The standard line D(a, b, µ) of slope a

b and intercept µ is
the set of point (x, y) ∈ Z2 verifying µ ≤ ax − by < µ + |a| + |b| with a,
b, µ integer and gcd(a, b) = 1 [2]. The points verifying ax − by = µ (resp.
ax − by = µ + |a| + |b| − 1) are called the upper (resp. lower) leaning points.
The connected part of a standard line D(a, b, µ) between two consecutive upper



leaning points U and U ′ = U + (b, a) is called a pattern. It is a 4-connected path
joining U and U ′, conveniently denoted by UU ′. Its staircase representation is
the polygonal line joining the points of the pattern in the same order as the
4-connected path does. The chain code of a pattern is a Christoffel word. The

slope of a pattern is the slope of its vector
−−→
UU ′ = (b, a), i.e. a

b . These standard
definitions are illustrated on Fig. 1a. Note that any digital straight segment has
a unique decomposition into patterns, which makes patterns very important for
analyzing digital shapes.

We show in Section 2 that the Delaunay triangulation of a pattern has very
specific properties. They are related to the specific geometry of points within
a pattern. From an equivalent arithmetic point of view, they are related to
the continued fraction of the pattern slope or, from a combinatorial point of
view, to the splitting formula (e.g. see [3]). With these properties, we deduce in
Section 3 a linear time algorithm to compute the Delaunay triangulation and the
Voronoi diagram of such sets of points. The presented results may have several
interesting applications in computational geometry and digital shape analysis
which are discussed in Section 4.

2 Delaunay properties of patterns

Before stating precisely the main theorem, we introduce briefly some further
notions. From now on, we restrict our study to the first quadrant. Let UU ′ be
the pattern of the standard line D(a, b, 0) between U = (0, 0) and U ′ = (b, a)
with a > 0 and b > 0.

2.1 Triangulation of a pattern.

Let us denote by H(UU ′) the convex hull of UU ′. The staircase representation
of UU ′ is by definition below the straight segment [UU ′]. Therefore, H(UU ′) can
be divided into two parts lying on both sides of its staircase representation: the
upper part H+(UU ′), whose boundary contains [UU ′], in light gray fig 1.b, and
the lower one H−(UU ′), in dark gray fig 1.b.

Let us denote by T (UU ′) the Delaunay triangulation of UU ′. We will see that
it can similarly be divided into two parts T +(UU ′) and T −(UU ′), separated
by the staircase representation. Fig. 1.b shows the Delaunay triangulation of a
pattern of slope 4

7 .
We introduce here three equivalent definitions of the main facet of a pattern

(see Fig. 2).

Definition 1 (main facet) The main facet of a pattern UU ′ is the triangle
UBU ′, where B has the following equivalent definitions:

(geometric) the digital point B within UU ′ \ {U,U ′} that has the shortest or-
thogonal distance to the segment [UU ′];

(arithmetic) the lower Bezout point B to the vector
−−→
UU ′;
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Fig. 1. (a) The points of D(2, 5, 0) are depicted with black disks. The two dotted
straight lines pass through the upper and lower leaning points. A pattern is high-
lighted with bigger disks. The letters of its chain code are indicated near its staircase
representation, which is depicted with a solid line. (b) The Delaunay triangulation of
the pattern UU ′ is divided into the upper part T +(UU ′), which contains the facets
lying in H+(UU ′), in light gray, and the lower part T −(UU ′), which contains the facets
lying in H−(UU ′), in dark gray.

(combinatorial) the separation point B of the splitting formula (see [4], chap. 4).

These characterizations are shown equivalent later in the paper.

Definition 2 (facets of a pattern) The facets of the pattern UU ′, denoted
by F(UU ′), is defined recursively as the union of the main facet UBU ′ of UU ′

and the facets of the pattern UB if a > 1 and the facets of the pattern BU ′ if
b > 1.

Note that this recursive definition is consistent because (i) UB and BU ′ are
both patterns (see Proposition 1 later), (ii) a+ b strictly decreases so that both
a and b reach 1 and the recursion terminates.

2.2 Main result.

We can now state precisely our main result.

Theorem 1 The facets of the pattern UU ′ is a triangulation of H+(UU ′). Fur-
thermore, each facet satisfies the Delaunay property, i.e. the circumcircle of each
triangular facet of F(UU ′) contains none of the points of the pattern UU ′ in its
interior.

In other words, the facets of the pattern UU ′ is exactly T +(UU ′).

We prove this theorem in the following subsections. We prove first that the
facets form a triangulation (Theorem 2), then that each of them has the Delaunay
property (Theorem 3).
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Fig. 2. (a) The gray area, bounded by the triangle UBU ′, is the main facet of UU ′.
Note that B = b−(UU ′) belongs to UU ′ and that UB and BU ′ are both patterns. (b)
The facets of UU ′ are defined by induction over the patterns included in UU ′.

2.3 The facets of a pattern form a triangulation

We recall that the remainder with respect to the standard line of slope a
b is

a function ra,b : Z2 → Z such that ra,b(x, y) = ax − by. In the sequel, ra,b(·)
is simplified into r(·) when the remainder refers to the standard line D(a, b, 0)
containing UU ′.

Definition 3 (support of a pattern) The support of the pattern UU ′ is the
set of lattice points S(UU ′) lying in a strip bounded by two straight lines orthog-
onal to the straight line (UU ′) and passing through U and U ′, i.e. S(UU ′) =
{(x, y) ∈ Z2|0 ≤ bx+ ay ≤ a2 + b2 − 1}.

Given an integer k, let the straight line Lk goes through the lattice points
X of remainder r(X) = k. The lattice points of Lk are regularly spaced of a
distance equal to

√
a2 + b2. Since the points of S(UU ′) lie in a strip of width

strictly less than
√
a2 + b2, Lk contains only one point of S(UU ′) for each k.

Thus, we may define (see Fig. 2.a):

Definition 4 (Bezout point) The lower Bezout point of the pattern UU ′, de-
noted by b−(UU ′) is the unique point of S(UU ′) whose remainder equals to 1.

Note that b−(UU ′), whose remainder equals to 1, belongs to the pattern
UU ′ contained in D(a, b, 0) if and only if |a| + |b| ≥ 2, i.e. a 6= 0 and b 6= 0.
Considering that the orthogonal distance of a lattice point P with respect to
the line UU ′ is |r(P )/

√
a2 + b2|, it is clear that the Bezout point to UU ′ is the

point of UU ′\{U,U ′} closest to the segment [UU ′], which proves the equivalence
between the geometric and arithmetic definition of the main facet (Definition 1).

Note that the main facet of a pattern never contains any lattice points:

Proposition 1 Let X be a lattice point defined with a positive integer k such
that r(X) = k. The triangle UXU ′ contains in its interior one or more lattice
points if and only if k > 1.



Proposition 1, which is directly proved with Pick formula, explains why, if
b−(UU ′) belongs to UU ′, the 4-path joining U to b−(UU ′) as well as the one
joining b−(UU ′) to U ′, are both patterns. Therefore the inductive definition of
the facets of a pattern (Definition 2) makes sens. The number of facets of a
pattern is finite because F(UU ′) coincides with H+(UU ′) (compare Fig. 2.b and
Fig. 1.b), as shown below:

Theorem 2 The facets of a pattern UU ′ is a triangulation of H+(UU ′).

Proof. We shall prove this assertion by structural induction on the recursive
definition of the facets of a pattern.

(i) Base case: Let us take a pattern with a = 1 and b = 1. The facets of UU ′

are then reduced to the main facet UBU ′ which is the triangle (0, 0), (0, 1), (1, 1).
It is equal to its convex hull H+(UU ′) and is thus its triangulation.

(ii) Inductive step: Given a pattern UU ′ with a > 1 or b > 1, let us assume
that the facets of UB is a triangulation of H+(UB) and the facets of UB′ is a tri-
angulation of H+(BU ′). We shall prove that the facets of UU ′ is a triangulation
of H+(UU ′).

First of all, since H+(UB) is below [UB] and H+(BU ′) is below [BU ′], both
have thus an empty intersection with the interior of the triangle UBU ′ (the main
facet of UU ′). Furthermore, H+(UU ′) forms a simple polygon (Euler character-
istics is 2) since it is the union of three simple polygons, with one more edge
([UU ′]) and one more face (UBU ′) than the union of H+(UB) and H+(BU ′).
Lastly, the boundary edges of the facets of UU ′ are exactly the boundary edges of
H+(UU ′): the main facet has its edge [UU ′] that is the upper edge of H+(UU ′),
while the lower edges of H+(UB) and H+(BU ′) define the staircase representa-
tion of UU ′, which is by definition the lower edges of H+(UU ′).

The facets of UU ′ thus define a triangulation of a simple polygon whose (only)
boundary is the same as the boundary of H+(UU ′). It is thus a triangulation of
H+(UU ′). ut

2.4 Delaunay condition for each facet

It remains to prove that each facet of F(UU ′) satisfies the Delaunay condition.
In the whole subsection, we denote by B the lower Bezout point of the pattern
UU ′ (a > 0 and b > 0). Let us begin by a lemma that completes Proposition 1:

Lemma 1 For all P ∈ S(UU ′) with r(P ) > 1, the triangle UPU ′ contains B.

Lemma 1 and its proof are illustrated in Fig. 3.a.

Proof. For all P ∈ S(UU ′) such that r(P ) > 1, we prove below that the slope of
−−→
UP is smaller than the one of

−−→
UB and similarly that the slope of

−−→
PU ′ is greater

than the one of
−−→
BU ′, which prove that the triangle UPU ′ contains the triangle

UBU ′ and thus B.
Given a positive integer k, let Bk = k

−−→
UB. We have B = B1 ∈ S(UU ′) and

r(Bk) = k. Let k0 be the greatest k > 1 such that Bk−1 ∈ S(UU ′) (k0 = 3



in Fig. 3.a). The lattice point Bk0
is not in S(UU ′) and k0 ≥ 2. Hereafter, we

independently deal with the points of S(UU ′) of remainder ranging from 2 to
k0 − 1 (i) and greater than or equal to k0 (ii).

(i) For the k0 − 2 points P of S(UU ′) such that 1 < r(P ) < k0,
−−→
UP has the

same slope as
−−→
UB.

(ii) For any point X, the tangent of the angle ∠XUU ′ is equal to the ratio

between the determinant of
−−→
UX,

−−→
UU ′ and the scalar product of

−−→
UX,

−−→
UU ′.

The scalar product with
−−→
UU ′ defines the length of the orthogonal projection

on the line (UU ′). It is obvious that the length of the projection of a point
outside the orthogonal strip S(UU ′) is greater than the length of the projection

of any point P within this strip, thus
−−−→
UBk0

· −−→UU ′ > −−→UP · −−→UU ′.
On the other hand, the determinant between

−−−→
UBk0 and

−−→
UU ′, which is equal

to r(Bk0
) = k0, is smaller than or equal to the determinant between

−−→
UP and−−→

UU ′ for all P ∈ S(UU ′) such that r(P ) ≥ k0.

tan(∠BUU ′) = tan(∠Bk0UU
′) =

det(
−−−→
UBk0 ,

−−→
UU ′)

−−−→
UBk0 ·

−−→
UU ′

<
det(
−−→
UP,

−−→
UU ′)

−−→
UP ·

−−→
UU ′

= tan(∠PUU ′).

As a consequence, the slope of
−−→
UP is smaller than the one of

−−→
UB for all

P ∈ S(UU ′) such that r(P ) > 1. We can similarly show that the slope of
−−→
PU ′

is greater than the one of
−−→
BU ′, which concludes the proof. ut

Lemma 1 is used in Lemma 2 and Lemma 4.

Lemma 2 Let D be a disk whose boundary passes through U and U ′ and whose
center is located above (UU ′). Let ∂D be its boundary. D \ ∂D contains a lattice
point below or on (UU ′) if and only if it contains (at least) B (Fig. 3.b).

Proof. Given a positive integer k, let Lk be the straight line passing through
the points of remainder k. Let SD be the set of lattice points of strictly positive
remainder contained in D. Since the center of D is located above (UU ′), the
length of the segment Lk ∩ D is smaller than

√
a2 + b2 for all k > 0. Thus

SD ⊂ S(UU ′) (Fig. 3.b).
Due to Lemma 1 (Fig. 3.a), ∠UPU ′ ≤ ∠UBU ′ for all P ∈ S(UU ′) such that

r(P ) ≥ 1, which concludes for all lattice points strictly below (UU ′).
Since [UU ′] does not contain any lattice points, except U and U ′, D \ ∂D

does not contain any lattice point on (UU ′), which concludes. ut

Let us now introduce the following key definition:

Definition 5 (background of a pattern) The background of the pattern UU ′

is the set of lattice points located below or on the straight line (UB), or below or
on the straight line (BU ′).
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Fig. 3. (a) Illustration of Lemma 1. The triangle UP ?U ′ contains B because P ? belongs

to S(UU ′) (depicted by the set of black disks) and r(P ?) > 1. The points Bk = k
−−→
UB

(indicated for k = 1, 2, 3) are used in the proof of Lemma 1 to show that the slope

of
−−→
UP is smaller than the one of

−−→
UB for all P ∈ S(UU ′) such that r(P ) > 1. (b)

Illustration of Lemma 2. D is a disk whose boundary ∂D pass through U , U ′ and B.
The interior D\∂D does not contain any lattice points located below or on the straight
line (UU ′) due to Lemma 1.

Definition 5, illustrated in Fig. 4, is used in Lemma 3 and Lemma 4.

Lemma 3 Let D be a disk whose boundary ∂D is the circumcircle of UBU ′. The
disk D contains none of the background points of UU ′, except U,U ′, B, which
are all located on ∂D (Fig. 4.a).

Proof. Let Bl (resp. Br) be the lower Bezout point of UB (resp. BU ′).
The proof is based on the two following arguments:

1. D contains neither Bl nor Br.
2. D contains neither the set of lattice points located below or on (UB), nor

the set of lattice points located below or on (BU ′).

Assuming 1) is true, argument 2) follows from Lemma 2 applied once for
pattern UB and once for pattern BU ′, which in turn concludes the proof due to
the definition of background (Definition 5).

Let us now prove argument 1). Moreover let us focus on Bl because the proof
about Br is similar. According again to Lemma 2, it is enough to show that the
remainder of Bl is strictly positive so as to show it is below (UU ′).

If a = 1, B = (1, 0), Bl = (0,−1) and r(Bl) = b. Thus, r(Bl) ≥ 1.
If a > 1, Bl belongs to the pattern UB, which belongs to the pattern UU ′. By

definition, all the points X ∈ UU ′ \ U ′ belong to S(UU ′) and have a remainder
r(X) ranging from 0 to |a| + |b| − 1 > 1. Moreover, given an integer k, there is
only one point X ∈ S(UU ′) such that r(X) = k. Since Bl 6= B, we conclude
that r(Bl) > 1. ut



Lemma 4 The background of UU ′ is contained in the background of UB if a > 1
and in the one of BU ′ if b > 1 (Fig. 4.b).

Proof. Let us assume that a > 1, the case where b > 1 being symmetric.

Let Bl be the lower Bezout point of UB. As in the proof of Lemma 3, it can
be shown that r(Bl) > 1. Due to Lemma 1, the triangle UBlU

′ contains the
triangle UBU ′.

As a consequence, the slope of
−−→
BlB is greater than the one of

−−→
BU ′. Since

the triangle UBlB does not contain any lattice points due to Proposition 1, the
set of lattice points whose x-coordinate is greater than Bl and lying below or on
the straight line (BlB) contains the set of lattice points whose x-coordinate is
greater than Bl and lying below or on the straight line (BU ′).

Similarly the slope of
−−→
UBl is smaller than the one of

−−→
UB. Since the triangle

UBlB does not contain any lattice points due to Proposition 1, the set of lattice
points whose x-coordinate is smaller than Bl and lying below or on the straight
line (UBl) contains the set of lattice points whose x-coordinate is smaller than
Bl and lying below or on the straight line (UB).

Due to the definition of background (Definition 5), we can conclude that
the background of UB contains the background of UU ′ (like in Fig. 4.b), which
concludes the proof. ut
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Fig. 4. (a) Illustration of Lemma 3. The set of lattice points located below UB or BU ′,
depicted with black disks, is the background of UU ′. The disk D passing through U ,
B, U ′ contains none of the points of the background UU ′. (b) Illustration of Lemma 4.
The background of UU ′ is contained in the background of UB, which has extra points,
the two visible ones are depicted with white disks.

We can now prove the Delaunay condition for each facet of F(UU ′):



Theorem 3 The circumcircle of each triangular facet of F(UU ′) contains none
of the background points of UU ′ in its interior.

Proof. We shall prove this assertion by structural induction on the recursive
definition of the facets of a pattern.

(i) Base case: Let us take a pattern with a = 1 and b = 1. The facets of UU ′

are then reduced to the main facet UBU ′, which is the triangle (0, 0), (0, 1), (1, 1).
The property is trivial by definition of the circumcircle.

(ii) Inductive step: Let UB and BU ′ be two patterns such that B is the
lower Bezout point of the pattern UU ′ with a > 1 or b > 1. Let us assume that
Theorem 3 is true for UB and BU ′. We shall prove that Theorem 3 is true for
UU ′.

Lemma 3 concludes for the main facet UBU ′. We observe now the facets of
UU ′ that are also facets of UB or BU ′. Since a > 1 or b > 1, the background of
UB or BU ′ contains the one of UU ′ due to Lemma 4. Since the circumcircle of
each triangular facet of F(UB) (resp. F(BU ′)) contains none of the background
points of UB (resp. BU ′) in its interior due to the induction hypothesis, it does
not contain any background point of UU ′ either. We can thus conclude. ut

Since UU ′ is contained in its background (UBU ′ does not contain any lat-
tice point due to Proposition 1), Theorems 2 and 3 clearly imply Theorem 1.
The facets of the pattern UU ′ coincides with the upper part of the Delaunay
triangulation of UU ′, i.e. F(UU ′) = T +(UU ′). It remains only to show that the
combinatorial characterization of the main facet (Definition 1) is the same as
either the arithmetic one or geometric one. This is done in the next section.

3 Applications

In this section, we explain how to efficiently compute the Delaunay triangulation
or the Voronoi diagram of the pattern UU ′ from the continued fraction expansion
of its slope.

3.1 Continued fraction

Let [q0; . . . , qi, . . . , qn] (with qn > 1) be the quotients and (b0, a0), . . . , (bi, ai),
. . . , (bn, an) be the convergent vectors of the continued fraction expansion of a

b .
Note that (bn, an) is the closest approximation of (b, a) (without being equal to
(b, a)), because qn is assumed to be greater than 1. Let (bn+1, an+1) be equal by
convention to (b, a). The sequence of convergents verifies:

∀i ∈ 1, . . . , n, (bi+1, ai+1) = (bi−1, ai−1) + qi(bi, ai) (1)

Moreover, for all i ∈ 1, . . . , n, the determinant of (bi, ai) and (bi+1, ai+1) is
equal to 1 if i is odd and −1 if i is even.

For instance, the continued fraction representation of 3
5 is [0; 1, 1, 2] and the

sequence of its convergent vectors is (0, 1), (1, 0), (1, 1), (2, 1). Note that (5, 3) =



(1, 1) + 2(2, 1) (and (2, 1) = (1, 0) + 1(1, 1), etc.) as expected from eq. 1. In
addition, 5.1− 3.2 = −1 (and 2.1− 1.1 = 1, etc.). This suggests that the lower
Bezout point B is available from the quotients and the convergent vectors of the
continued fraction expansion of the slope a

b of UU ′ and indeed:

−−→
UU ′ =

−−→
UB +

−−→
BU ′ = (bn, an) +

(
(bn−1, an−1) + (qn − 1)(bn, an)

)
(2)

Eq. 2 is a formulation in terms of convergent vectors of the splitting formula,
originally expressed in terms of quotients [4, Theorem 4.1]. The combinatorial
characterization of the main facet of Definition 1 is therefore the same as the
arithmetic one.

Note that (bn, an) =
−−→
UB if n is odd, but (bn, an) =

−−→
BU ′ if n is even. For

instance, if
−−→
UU ′ = (5, 3), the last convergent vector is

−−→
UB = (2, 1) and

−−→
BU ′ =

(1, 1) + (2− 1).(2, 1) = (3, 2).
Furthermore, the description of the slopes of UB and BU ′ can be easily

deduced from the one of UU ′: the quotients and convergent vectors associ-
ated to the slope of UB is [q0; . . . , qn−1] and (b0, a0), . . . , (bn−1, an−1) if n is
odd, [q0; . . . , qn − 1] and (b0, a0), . . . , (bn, an) if n is even, whereas the quotients
and convergent vectors associated to the slope of BU ′ is [q0; . . . , qn − 1] and
(b0, a0), . . . , (bn, an) if n is odd, [q0; . . . , qn−1] and (b0, a0), . . . , (bn−1, an−1) if n
is even.

3.2 Computation of the Delaunay triangulation

The computation of the Delaunay triangulation of T −(UU ′) = F(UU ′) is made
by a simple recursive algorithm, which may be coarsely describe as follows: find
B = b−(UU ′), the lower Bezout point of UU ′, using the extended Euclidean
algorithm, add the triangular facet UBU ′ to F(UU ′) and split UU ′ into UB and
BU ′ in order to recursively apply the procedure on sub-patterns. The algorithm
stops when the sub-patterns are as small as two consecutive points of UU ′.

Though, it is enough to run only once the extended Euclidean algorithm
because the sequence of convergent vectors of any sub-patterns is computed in
constant time from its parent pattern as said in the previous subsection.

To sum up, the extended Euclidean algorithm is only run once at the begin-
ning in O(log2(max (|a|, |b|))). Then, each step requires O(1) time to draw a new
triangular facet. Since there are exactly |a|+ |b|+1 points and |a|+ |b|−1 facets,
the whole algorithm is in O(|a|+ |b|), whereas any classic algorithm coming from
computational geometry is in O((|a|+ |b|) log (|a|+ |b|)) in the RAM model.

To end, note that T −(UU ′), the lower part of the Delaunay triangulation of
UU ′, is the union of the facets of all the reversed patterns LL′ such that the
straight segment [LL′] is an edge of the lower convex hull of UU ′. The slopes
of such edges are also given by the continued fraction expansion of the slope
of UU ′. The connection between continued fractions and the convex hull of the
lattice points located above or below a straight segment was already noticed by
Klein in 1895 [5].



We do not provide further details due to lack of space, but the algorithm has
been implemented in Lua and is available on the web3. It may be run as an ipelet
in Ipe in order to draw the delaunay triangulation of any pattern described by
a straight segment.

3.3 Computation of the Voronoi diagram

The partial Voronoi diagram (Fig. 5.a), which is dual of T +(UU ′) = F(UU ′),
is also computed by a simple recursive algorithm, because each vertex of the
diagram is the center of the circumcircle of a triangular facet of F(UU ′) and
each edge of the diagram belongs to the bissector of an edge of a triangular facet
of F(UU ′).

The algorithm may be coarsely described as follows: start with the point at
infinity along the bissector of [UU ′], then find B = b−(UU ′), the lower Bezout
point of UU ′, using the extended Euclidean algorithm, link Ω, the center of the
circumcircle of UBU ′, to the previous vertex and split UU ′ into UB and BU ′

in order to recursively apply this procedure on sub-patterns.
Let B = (β, α). Simple calculations lead to:

Ω =
(a.(α2 + β2)− (a2 + b2).α

2
,

(a2 + b2).β − b.(α2 + β2)

2

)
For instance, if U ′ = (5, 3) and B = (2, 1), Ω = (−192 , 432 ) (Ω is the leftmost

vertex in Fig. 5.a).
To sum up, the partial Voronoi diagram dual of T +(UU ′) is a planar binary

tree whose vertices have integer or half-integer coordinates and whose edges
have a slope − bk

ak
such that ak

bk
is a fraction lying on the path going from the

Stern-Brocot tree root to the fraction a
b ( 3

5 in Fig. 5.b).

4 Discussion

The presented results may have several interesting applications in digital shape
analysis. First of all, it may lead to new algorithms for computing the Delaunay
triangulation of a digital shape, starting from a decomposition of its boundary
into digital straight segments, for instance the one given by the minimum length
polygon (see [6] for a recent algorithm). The input data would then be some

Θ(n
2
3 ) instead of n for digitization of smooth shapes. The Delaunay triangula-

tion contains all the α-shapes of its vertices [7], which is of great interest for
shape reconstruction. The present work is also an essential step for enumerating
the maximal digital circular arcs along digitizations of Euclidean shapes, since
the center of these arcs are related to the Voronoi vertices. This enumeration
would help for determining the multigrid convergence of several discrete cur-
vature estimators, similarly to the number of maximal segments that was the
key ingredients to determine the multigrid convergence of tangent estimators.

3 http://liris.cnrs.fr/tristan.roussillon/code/delaunay.lua
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Fig. 5. The partial Voronoi diagram of a pattern of slope 3
5

is depicted in (a). The
figure is turned 90◦ to the left so that the slopes of the edges are those lying on the
path highlighted in (b), which goes from the Stern-Brocot tree root to the fraction 3

5
.

Our results may also help in determining properties of the λ-medial axis [8]
and its digital counterpart [9]. Finally, a new class of geometric estimators from
a set of points relies uniquely on the local shape of the Voronoi diagram [10].
Our results clearly avoid global Voronoi computation and may even give partial
analytic quantities for that kind of applications.
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