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Abstract. We propose in this paper a new curvature estimator based
on the set of maximal digital circular arcs. For strictly convex shapes
with continuous curvature fields digitized on a grid of step h, we show
that this estimator is mutligrid convergent if the discrete length of the

maximal digital circular arcs grows in Ω(h−

1

2 ). We indeed observed this
order of magnitude. Moreover, experiments showed that our estimator
is at least as fast to compute as existing estimators and more accurate
even at low resolution.

1 Introduction

The accurate estimation of geometric parameters such as perimeter, tangent
and curvature along digital objects is important for many image analysis appli-
cations, for instance the detection of dominant points and corners. We focus here
on curvature estimation along digital contours, assumed to be digitizations of
smooth Euclidean shapes of the plane. This subject has led to the development
of many estimators, which fall roughly in three categories according to [17, 16,
8]: (i) derivative of the tangent orientation, (ii) norm of the second derivative
of the curve considered as a path, (iii) inverse of the osculating circle radius. In
most approaches, a user-given window or smoothing parameter is used so as to
remove the jaggedness of digital contours and to make it continuous [17, 16, 4,
12, 13, 3, 5, 6].

In approaches of (i), the curvature estimation relies on the convolution of the
contour tangent by some derivative of Gaussian kernel, either in a continuous
setting [17, 16, 4], or in a discrete setting [13, 3, 5]. Furthermore a preprocessing
with digital straight segments is sometimes used to limit the arithmetic effects
[16, 4]. Methods of (ii) generally reconstruct locally the contour with some poly-
nomial of given degree [14, 8]. Again, an important parameter is the size of the
window. Methods of (iii) tries to estimate the osculating circle around the point
of interest [1, 2, 8, 6].

Among all these curvature estimators, few do not require an external pa-
rameter. They all rely on digital straight segment (DSS) recognition. Only the
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length of DSS is used in [1] to estimate the osculating circle, but this approach
does not give accurate estimations. In [2] (HK2005 in [8]), the two half-tangents
define a triangle whose circumscribed circle approximates the osculating circle.
This technique gives correct results on average, but oscillates a lot and leads to
very large errors as reported in [9]. The GMC estimator [9] computes, among all
Euclidean shapes that are digitized as the input digital shape, the shape that
minimizes its squared curvature. Digital straight segments are used here as a
preprocessing to make easier the optimization.

An important property that should have a discrete estimator is the multigrid

convergence [10]. Indeed, at a given resolution, infinitely many shapes have the
same digitization, which hampers the objective comparison of estimators. For
estimators of local geometric quantities like tangent or curvature, few results
exist. We may quote some convergence results for tangent estimators [11, 13, 3].
And there is no correct convergence results for curvature as far as we know.

In this paper, we present in Section 2 a new curvature estimator based on
Maximal Digital Circular Arcs detection (MDCA). It is thus a natural extension
of uniformly convergent tangent estimators based on maximal DSS [11]. It is
a parameter-free method, with linear computation time in practice. Section 3
discuss the multigrid convergence of this estimator and establishes the impor-
tance of the asymptotic length evolution of MDCAs as the resolution gets finer.
Section 4 verifies experimentally the asymptotic behavior of MDCAs and of the
curvature field estimation. These results backs up our claim that this estimator
is multigrid-convergent. Section 5 compares numerically this estimator with the
latest curvature estimators of the literature: the binomial convolution (BC) es-
timator of [13, 3], and the global min-curvature (GMC) estimator of [9]. They
show that this new estimator outperforms the previous ones on tested shapes.

2 Curvature Estimation Based on the Set of Maximal

Digital Circular Arcs

We propose in this section a curvature estimator based on a curvature map
computed from the set of maximal digital circular arcs.

Let X be a family of compact simply connected subsets of R2 with continuous
curvature fields. The reason that explains why we need continuous curvature
fields is postponed to section 3.1. We denote by Dh(X) the Gauss digitization
of X ∈ X with grid step h, seen as a union of pixels of side h in R

2. For sake of
clarity, we shorten in the sequel Dh(X) into D and denote its complementary
by D̄. Moreover, let us assume that D contains at least one pixel, i.e. |D| ≥ 1.

Let the digital contour C of D be the topological border ∂D of D. Any side
of any pixel is a grid edge. The contour C is a circular list of grid edges in
the clockwise orientation. Any part C′ of C is a sequence of consecutive grid
edges. The discrete length of C′ is defined as its number of grid edges. The
distance between two grid edges is defined as the discrete length of the shortest
part joining these two grid edges. Each grid edge lies between two pixels, one
belonging to D, the other belonging to D̄. The centers of the pixels incident to
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C′ and belonging to D are the interior points of C′, whereas those of the pixels
incident to C′ and belonging to D̄ are the exterior points of C′.

Any part C′ of C is a digital circular arc (DCA for short) if and only if
the interior and exterior points of C′ are circularly separable, i.e. there exists a
(Euclidean) circle that either encloses the interior points without enclosing any
exterior points or that encloses the exterior points without enclosing any interior
points. Given a grid step h, the map associating to any DCA A the value 0 if
the interior and exterior points of A are linearly separable and the curvature of
an arbitrary separating circle otherwise is denoted by kh, such that kh(A) is the
curvature of the part A (and h is the unit).

Any DCA A is maximal if and only if all the parts C′ containing A, i.e. such
that A ⊂ C′, are not a DCA. The set of all maximal DCAs (MDCAs for short)
that lie on a given contour is unique. The first grid edge of any two distinct
MDCAs cannot be identical because if it is, the shortest MDCA is necessarily
contained in the longest one and is thus not maximal. Consequently, the MDCAs
can be ordered according to the position of their first grid edge in the contour.
Let us then denote by (Ai)i∈1,...,n the sequence of the n MDCAs lying on C.

Given any DCA A of discrete length L, the map associating A to its middle
grid edge is denoted by m such that m(A) is the ⌈L

2 ⌉-th grid edge of A. Note
that the middle grid edges of any two consecutive MDCA are never the same
grid edge.

As a result, a contour C can be partitioned without ambiguity into a sequence
(Vi)i∈1,...,n such that Vi is the set of grid edges closer to m(Ai) than to any
other grid edge m(Aj), j ∈ 1, . . . , n and j 6= i (the first one with respect to the
clockwise orientation of the contour is assumed to be closer in case of tie). For
all i ∈ 1, . . . , n, we associate to any grid edge of Vi, the curvature value of the
separating circle associated to the MDCA Ai.

Definition 1. Let (Ai)i∈1,n be the sequence of MDCAs lying on C. Let (Vi)i∈1,n

be a partition of C such that Vi is the set of grid edges closer to m(Ai) than to

any other grid edge m(Aj), j ∈ 1, . . . , n and j 6= i Given a grid step h, the

curvature estimator κ̂h
MDCA is the piecewise constant function that associates to

any digital contour C and to any point p of C a curvature value in R such that:

∀i ∈ 1, . . . , n, ∀e ∈ Vi, ∀p ∈ e, κ̂h
MDCA(C, p) = kh(Ai).

A minimal example is provided in Fig. 1.

3 On the Multigrid Convergence of the MDCA Estimator

In this section, we first propose a discrete curvature estimator definition and
next discuss of the multigrid convergence properties of κ̂MDCA.

3.1 Multigrid Convergence Definition for a Curvature Estimator

The curvature is some function of the shape boundary. However, the contour
of the shape digitization does not define the same domain. Therefore we can-
not directly compare the true curvature function with the estimated curvature
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Fig. 1. The set of MDCAs (12 arcs) is depicted in a) with pieces of rings along the
contour of the digitization of an ellipse having a great axis of 9 pixels long and a small
axis of 6 pixels long. The angle between the main orientation and the x-axis is equal
to 1.9 radians. The curvature plot defined from the set of MDCAs is shown in b). The
blue grid edges are those whose curvature depends on the radius of the blue MDCA.

function. We provide below a definition of multigrid convergence for discrete
curvature estimators. It is neither a parametric definition as in [3] nor a point-
wise definition as the standard multigrid convergence reported in [10]. It is a
geometric definition, stating that any digital point sufficiently close to the point
of interest has its estimated curvature which tends toward the expected curva-
ture. This definition of multigrid convergence imposes shapes with continuous
curvature fields.

Let us recall that X is a family of compact simply connected subsets of R2

with continuous curvature field. We denote by Dh(X) the Gauss digitization of
X ∈ X with grid step h. For any x in the topological boundary ∂X of X , let
κ(X, x) be the curvature of ∂X at x. A discrete curvature estimator κ̂ = (κ̂h)h>0

is a family of mappings which associates to any digital contour C and a point
p ∈ C some value of R. Note that the estimator proposed in Definition 1, is
a discrete curvature estimator as defined above. The following section aims at
studying the multigrid-convergence of this estimator:

Definition 2. The estimator κ̂ is multigrid-convergent for the family X if and

only if, for any X ∈ X, h > 0, for any x ∈ ∂X,

∀y ∈ ∂Dh(X) with ‖y − x‖1 ≤ h, |κ̂h(Dh(X), y)− κ(X, x)| ≤ τx(h),

where τX,x : R+∗ → R
+ has null limit at 0. This function defines the speed of

convergence of κ̂ toward κ at point x of X. The convergence is uniform for X
when every τX,x is bounded from above by a function τX independent of x ∈ X
with null limit at 0.
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3.2 Relation with growth of MDCAs

In this section, we establish a link between the multigrid convergence of our
estimator and the asymptotic length of the MDCAs along the digital shape. We
restrict our study to convex shapes having strictly positive and finite curvature.

We recall first that any convex shape X is uniquely determined by its support
function f of center B, with f : [0, 2π[→ R. In our case, f(φ) is the algebraic
distance between B and the point of ∂X with normal n(φ) = (cosφ, sinφ). A
(θ1, θ2)-piece of (B,R, e)-ring is the subset of R2 defined in polar coordinates as
{(r, θ) : R − e ≤ r ≤ R + e, θ1 ≤ θ ≤ θ2}. It is said to be simply covering ∂X if
its intersection with ∂X is a simple curve whose extremities have a polar angle
of respectively θ1 and θ2.

Lemma 1. Let R be a (θ1, θ2)-piece of (B,R, h)-ring that simply covers ∂X,

whose Euclidean length R(θ2−θ1) is lower bounded by Ω(ha) and upper bounded

by O(hb), 0 < b ≤ a < 1/2. Then, the radius R tends towards the inverse of the

curvature of ∂X at any points of R∩ ∂X as h → 0.

Proof. Let R be such a ring. Its length is L = R(θ2 − θ1). The points of ∂X at
θ1 and θ2 are respectively denoted by M1 and M2. The points Mi, i = 1, 2, have
normals n(φi). We represent X with its support function f centered on B. We
proceed in four steps.

1. We relate θ2 − θ1 and φ2 − φ1.
Let L12 be the length ∂X between M1 and M2. By convexity of X , L12 is
longer than the shortest arc of R and shorter than the longest arc of R plus
twice its thickness. We get:

(R− h)(θ2 − θ1) ≤ L12 ≤ (R + h)(θ2 − θ1) + 4h

But L12 =
∫ φ2

φ1

1
κdφ. Introducing κmin and κmax as a lower and upper bound

on the curvature in ∂X ∩R, we easily get by integration:

κmin(R− h)(θ2 − θ1) ≤ φ2 − φ1 ≤ κmax((R+ h)(θ2 − θ1) + 4h),

and since L/R = θ2 − θ1:

κmin(1− h/R)L ≤ φ2 − φ1 ≤ κmax((1 + h/R)L+ 4h), (1)

2. We major f ′′ at point M ∈ ∂X whose normal has angle φ = (φ1 + φ2)/2.
Finite differences applied on f ′′(φ) gives:

f ′′(φ) =
f(φ1)− 2f(φ) + f(φ2)

((φ2 − φ1)/2)2
+O(φ2 − φ1). (2)

Since M1,M,M2 are all in R and since the support function f has center
B, the values f(φ1), f(φ), f(φ2) are bounded by R − h and R + h. We also
insert (1) in (2) to get:

|f ′′(φ)| ≤ 16h

κ2
minL

2

(

1

1 +O(h/R)

)

+O(L(1 + h/R)) +O(h). (3)
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3. The quantity f ′′(φ) tends toward 0 as h → 0.
The radius R of the ring is lower bounded by some constant for sufficiently
small h since ∂X has finite curvature everywhere. As a result h/R → 0 as
h → 0. We insert the hypothesis Ω(ha) ≤ L ≤ O(hb) into (3):

|f ′′(φ)| ≤ O(h1−2a) +O(hb) +O(h). (4)

From 1/2 > a and 0 < b, it is clear that |f ′′(φ)| tends toward 0 as h → 0.
4. We relate the behavior of f ′′ to the curvature.

It is well known that the curvature has a close relation with the support
function: ∀φ, 1/κ(φ) = f(φ)+ f ′′(φ). Now ∀φ, φ1 ≤ φ ≤ φ2, we have R−h ≤
f(φ) ≤ R + h. This holds also for φ which lies between φ1 and φ2. We
immediately obtain

1/κ(φ) = R+ O(h) +O(f ′′(φ)). (5)

From (4) and (5), it is now obvious that the radius of the covering ring tends
toward the inverse of the curvature of some point in R∩ ∂X . The curvature
of ∂X being continuous and R being included in some ball of radius O(hb),
b > 0, the same holds for all points of R∩ ∂X . ⊓⊔

It remains to show that there always exists a piece of ring simply covering
∂X for any MDCA.

Theorem 1. Let X be the family of compact convex subsets of R2, whose cur-

vature field is continuous, strictly positive and upper bounded. If the length of

MDCAs along any Dh(X), X ∈ X, is lower bounded by Ω(ha) and upper bounded

by O(hb), 0 < b ≤ a < 1/2, then the curvature estimator κ̂MDCA is uniformly

multigrid convergent for X, with τ = O(hmin(1−2a,b)).

Proof. Let h > 0, x ∈ ∂X , and y ∈ ∂Dh(X), ‖y− x‖1 ≤ h. The point y is closer
to some MDCA Ai than to any other one. Let C be any circle separating the
interior and exterior points of Ai. Let us denote by B its center and R its radius.
Let θ1 and θ2 be the polar angle (with respect to B) of the extremities of Ai. Let
R be the (θ1, θ2)-piece of (B,R,

√
2h)-ring. See Fig. 2 for an illustration. The

circle C separates all the interior points from the exterior points of Ai. Since we
have chosen the width

√
2h, we also know that all these points are included in R.

Since ∂X is contained in the one-pixel wide strip between interior and exterior
points of the grid edges, ∂X can only exit R on its sides. It is well known that for
a sufficiently small h, the digital contour ∂Dh(X) has the same topology as ∂X
(e.g. par-regularity [7]). Therefore ∂X∩R has the same topology as ∂Dh(X)∩R,
i.e. it is curve without intersection. We conclude that R is simply covering ∂X .
By definition R covers y, but also x: indeed, it is the most centered MDCA,
and an MDCA is at least longer than three pixels. Applying Lemma 1, gives
that the inverse of R tends toward the curvature at x, and more precisely in
O(hmin(1−2a,b)) according to (4). We conclude since κ̂MDCA gives by definition
1/R at y. ⊓⊔
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Fig. 2. Illustration of the proof of Theorem 1: piece of ring defined from the separating
circle of a given MDCA.

If N = 1/h is the resolution, The discrete length of MDCAs (length divided

by h) must thus grow at speed faster than Ω(h−
1

2 ), i.e. Ω(
√
N), and smaller

than O(h−1), i.e. O(N), so that the curvature estimator κ̂MDCA is multigrid
convergent.

4 Experimental evaluation

We experimentally observed on digitizations of ellipses that the average discrete
length of the MDCAs grows in Θ(h−

1

2 ) as h tends towards 0 (Fig. 3.a). According
to the results of the previous section, this suggests that the proposed estimator
is multigrid convergent for strictly convex shapes having continuous curvature
fields such as ellipses.

In order to observe the multigrid convergence of our estimator for an ellipse
E of center c, we compared the value of κ̂h

MDCA to the ground-truth κ̂. For each
grid edge, we associated to the midpoint p, its projection p′ on ∂E along the ray
coming from c so that the absolute error at p is defined as:

ǫabs(p) = |κ̂(∂E, p′)− κ̂h
MDCA(∂Dh(E), p)| (6)

The relative error at p is consequently defined as:

ǫrel(p) =
ǫabs(p)

κ̂(∂E, p′)
(7)

The average absolute and relative error have been plotted against the grid step
h in Fig. 3.b. We experimentally observed that the convergence speed is Θ(h

1

2 ).

Note however that the discrete length of the smallest MDCA grows more
likely in Θ(h−0.43) (Fig. 3.a), which means that the proposed estimator may not
be uniformly convergent.

The position and the orientation of the ellipses have no significant impact
on the discrete length of the MDCAs (and as expected, the finer the resolution
is, the smaller the variation is). The elongation of the ellipses has however an
impact on the magnitude of the discrete length of the MDCAs. We set the great
axis of an ellipse to 24 pixels and set the small one to 6, 8, 12, 16 and 18 pixels,
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Fig. 3. The set of MDCAs has been computed from the contour of the digitization of
an ellipse of elongation 1

3
. The minimal, average and maximal discrete length of the

MDCAs have been plotted against the grid step h in (a). The average absolute and
relative error have been plotted against the grid step h in (b).
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in order to test ellipses of elongation 1
4 ,

1
3 ,

1
2 ,

2
3 and 3

4 respectively. In either case,

the average discrete length of the MDCAs grows in Θ(h−
1

2 ) as h tends towards
0. Though, for a given great axis, the larger the small axis is, the higher the
average discrete length of the MDCAs is.

5 Comparisons

We report below the comparison of our estimator to the latest curvature esti-
mators of the literature for three shapes: a disk of radius 15, an ellipse of great
(resp. small) axis 30 (resp. 20) and a flower of five petals, of great (resp. small)
radius 15 (resp. 10).

These shapes have been digitized (according to Gauss scheme) at three dif-
ferent grid steps: h = 1, h = 0.1 and h = 0.01. The digital objects obtained for
h = 1 and h = 0.1 are depicted Fig. 4. Their digital contour is the input of the
curvature estimation methods.

(a) 1 (b) 0.1 (c) 1 (d) 0.1 (e) 1 (f) 0.1

Fig. 4. Digitization at two different grid steps of the circle (a-b), the ellipse (c-d) and
the flower (e-f) for which the curvature has been estimated.

5.1 Implementation issues

The GMC estimator [9] computes the shape whose digitization coincides with the
input digital object and that minimizes its squared curvature. The minimization
is performed by an iterative numerical technique that stops when the difference
between the squared curvature of the last two solution shapes is less than a small
quantity set to 1.10−8 in what follows.

The BC estimator [13, 3] is computed from derivative estimations, get by
finite differences after the convolution of the contour points by a binomial kernel
of a given size. The mask size is an input parameter that is not easy to determine,
but following [13], it has been set to d.h

4

3 where d is the diameter of the shape,
equal here to 30 for the circle, the ellipse and the flower.

As explained in Section 2, the proposed estimator is computed from the set
of MDCAs.
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For the recognition of the DCAs, we use the on-line algorithm proposed
in [15]. The algorithm incrementally computes one (Euclidean) circle that sepa-
rates the interior and exterior points of a DCA and that is called below current

circle. Deciding whether a DCA can be extended to a new grid edge requires to
check the location of the interior and exterior points of the grid edge with respect
to the current circle. If the interior (resp. exterior) point is located inside (resp.
outside) the current circle, nothing has to be done because the current circle
is still separating. However, if the interior (resp. exterior) point is located out-
side (resp. inside) the current circle, then either the point is located on another
separating circle, or the sets of interior and exterior points are not circularly
separable at all. A linear-time procedure, which computes the set of separating
circles passing through a given point, is used in the aim of deciding between
these two alternatives. A naive upper bound for the extension of a DCA to a
new grid edge is thus O(n), but we experimentally observe a constant time in
average because the linear-time procedure is called only a few times.

The set of MDCAs is then computed DCA by DCA using the above recog-
nition algorithm and following the scheme given in [4] for the maximal digital
straight segments. The mechanism can be coarsely described as follows: given a
MDCA Ai and the first grid edge e following Ai, the next MDCA Aj is computed
in two steps. First, we compute the longest DCA starting from e and scanning
the contour backward. Then, we extend this DCA forward as far as possible until
it is maximal. The number of times we try to extend a DCA is bounded by the
sum of the discrete length of the MDCAs. We experimentally observe that this
sum is proportional to the length of the contour and that the global complexity
the MDCAs computation is linear in practice.

5.2 Accuracy and Running Time

In Fig. 5, we compare the curvature plots derived from the MDCA, GMC and
BC estimators to the ground-truth. The visual deviation between the estimated
graphs and the ground-truth graph reflects the average absolute error available
in Tab. 1. For either estimator, the curvature estimations are more accurate
for the circle than for the ellipse and more accurate for the ellipse than for the
flower. For either shape, the GMC and MDCA estimations gets closer to the
ground-truth (Fig. 5) and their absolute error decreases (Tab. 1) as h decreases.
However, the BC estimations are not improved by increasing the resolution,
except for the flower. Lastly, MDCA estimations are always better than GMC
and BC estimations except in one case (maximal error for the flower at grid
step 0.01), even by several orders of magnitude for the circle. For the ellipse and
the flower, at grid step 0.01, MDCA estimations are 4 times better than GMC
estimations in average and much more better than BC estimations (Tab. 1). In
Fig. 5, the MDCA graph is hardly confounded with the ground-truth graph.

Tab. 2 reports the running times. The algorithms have been implemented in
C++ and have been run on an Intel Core Duo processor work-station with a 2.4
GHz Clock and 2GB of main memory.
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Fig. 5. Curvature plots for two shapes digitized at three different resolutions, com-
puted from the proposed estimator (MDCA) and the latest curvature estimators of the
literature (BC [13, 3] and GMC [9]).
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Table 1. Average and maximal absolute error of the curvature estimation for three
shapes digitized at three different grid steps and comparisons with the BC and GMC
estimators.

circle ellipse flower

h 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01
♯ grid edges 120 1200 12000 100 1008 10078 122 1220 12184

BC
avg 0.0143 0.0143 0.0143 0.0168 0.0170 0.0170 0.1044 0.0623 0.0440
max 0.0262 0.0205 0.0203 0.0577 0.3634 0.0389 0.4648 0.3236 0.2143

GMC
avg 8.10−4 3.10−5 3.10−5 0.0168 0.0086 0.0044 0.1103 0.0519 0.0222
max 5.10−3 4.10−5 9.10−5 0.0562 0.0336 0.0281 0.5250 0.2869 0.1529

MDCA
avg 4.10−5 5.10−7 8.10−8 0.0094 0.0034 0.0009 0.0845 0.0281 0.0084
max 4.10−5 5.10−7 8.10−8 0.0413 0.0149 0.0068 0.4356 0.1918 0.1552

The running times of the BC estimator grow quickly as h decreases and
is high at grid step 0.01 (18s) because the mask size must be set to d.h4/3.
The GMC estimator and leads to rather low running times, minimal for the
flower (823ms at 0.01) and maximal for the circle (2360ms at 0.01). The MDCA
estimator is linear-time in practice and also leads to low running times, minimal
for the circle (455ms at 0.01) and maximal for the flower (2195ms at 0.01). It is
the best method when averaging over the three shapes.

Table 2. Running time of the curvature estimation for three shapes digitized at three
different grid steps and comparisons with the BC and GMC estimators.

circle ellipse flower

h 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01
♯ grid edges 120 1200 12000 100 1008 10078 122 1220 12184

timing (ms)
BC < 1 63 18596 < 1 55 30197 < 1 83 18704

GMC < 1 820 2360 < 1 27 1843 < 1 15 843
MDCA < 1 23 455 7 139 1783 3 127 2195

6 Conclusion and perspectives

The proposed estimator does not require any parameter, is fast to compute
(linear-time in practice) and more accurate than the latest estimators of the lit-
erature at low as well as high resolution. We provide a necessary condition about
the length of the maximal digital circular arcs under which the proposed esti-
mator is multigrid convergent. We experimentally observed that this condition
is fulfilled and proving this fact is our main perspective. We are also interested
in dealing with shapes corrupted by noise in a multi-resolution framework.
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