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Abstract

This paper proposes and evaluates a new method for reconstructing a polygonal representation from arbitrary digital contours

that are possibly damaged or coming from the segmentation of noisy data. The method consists in two stages. In the first stage,

a multi-scale analysis of the contour is conducted so as to identify noisy or damaged parts of the contour as well as the intensity

of the perturbation. All the identified scales are then merged so that the input data is covered by a set of pixels whose size is

increased according to the local intensity of noise. The second stage consists in transforming this set of resized pixels into an

irregular isothetic object composed of an ordered set of rectangular and axis-aligned cells. Its topology is stored as a Reeb graph,

which allows an easy pruning of its unnecessary spurious edges. Every remaining connected part has the topology of a circle and

a polygonal representation is independently computed for each of them. Four different geometrical algorithms, including a new

one, are reviewed for the latter task. These vectorization algorithms are experimentally evaluated and the whole method is also

compared to previous works on both synthetic and true digital images. For fair comparisons, when possible, several error measures

between the reconstruction and the ground truth are given for the different techniques.
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1. Introduction1

The vectorization (i.e. reconstruction into line segments) of2

digital objects obtained from segmentation, digitization or scan-3

ning processes is a very common task in many image analysis4

systems such as optical character recognition (OCR), license5

plate recognition (LPR), sketch recognition, etc. [1, 8, 15, 38,6

33, 39, 40]. The development of raster-to-vector (R2V) algo-7

rithms is in constant progress, responding to both technical and8

theoretical challenges [32]. Indeed, in real-life applications,9

digital objects are not perfect digitizations of ideal shapes but10

present noise, disconnections, irregularities, etc.11

To process this kind of image data, additional information12

is provided such as a priori knowledge on studied shapes (for13

instance, shapes are letters in OCR) or user supervision. For14

low level image processing, classic approaches of contour (or15

edge) detection generally need an external parameter that has16

to be tediously tuned, and the output has to be filtered and post-17

processed [3, 10] (see Figure 1 for an example with the Canny18

edge detector and the Sobel operator with also a recent algo-19

rithm of edge noise removal [14]).20

The noisy digital contour (or a thick digital curve around21

it) can be partitioned into thick (or blurred) segments [11, 12].22

Such approaches require a global thickness parameter and thus23

cannot handle contours along which the amount of perturbation24

or noise is not uniform (e.g. see Figure 1(a), top and bottom).25

The document vectorization method of [15] also assumes rather26

(a) (b) (c) (d)

(e) (f) σ = 20 (g) σ = 30 (h) σ = 40

Figure 1: The Canny edge detector (b-c) with two parameters and the Sobel

operator (d) applied on two images. For the first image, even if we could ob-

tain an interesting result, a post-process is necessary to filter the output of the

detectors in order to compute a linear contour. The second very noisy image

cannot be efficiently handled by these techniques used alone, even with various

parameters. The third row shows a recent edge noise removal approach applied

with several parameters [14].

uniform noise so that filtering and skeletonization are enough27

to take care of it. Other methods like [19, 29], which are based28
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on different principles, also require a global scale parameter to29

compute polygonal reconstructions. This parameter is again re-30

lated to the amount of noise in the image.31

We proposed in a previous work [37] a novel unsupervised32

technique, divided into two main stages. We first used the pixel33

resizing algorithm based on the multi-scale noise detector in-34

troduced in [17]. This set of resized pixels is transformed into35

an irregular isothetic object composed of rectangular and axis-36

aligned cells. The topology is stored into a Reeb graph [25].37

The object is then analyzed and vectorized using two geometri-38

cal algorithms, both based on the preimage of straight parts (i.e.39

sequence of cells that can be passed through by a straight line).40

These two polygonalization algorithms are an improvement of41

the visibility cone approach of [34].42

Our system is comparable with the work of [26], where is in-43

troduced a polygonalization technique based on a pixel resizing44

step, combined with a generalized preimage algorithm. How-45

ever, this approach mixes up noise, arithmetic artefacts and high46

curvature features when trying to detect noisy parts of contours.47

It also needs a very complex topological control process [27],48

represented as a skeleton, to handle objects not homotopic to a49

cycle.50

In this paper, we extend the approach introduced in [37],51

along three directions. First, the Reeb graph, which contains52

the topology of the irregular object, is better exploited in order53

to get a polygonal representation of the input digital contour54

that is homeomorphic to a circle (one connected component and55

one hole) and such that exactly two edges are incident to each56

vertex. This filtering step also informs us if the processed irreg-57

ular object can be interpreted as a single cycle, and may loop58

back to the multi-scale noise detector to have an analysis at a59

finer scale. Then, we propose another geometrical algorithm60

that minimizes, for each k-arc (i.e. parts of connected cells),61

the length of the polygonal representation. The output of this62

algorithm turns out to be a good trade-off between minimiz-63

ing the number of vertices and minimizing the reconstruction64

error. Finally, we conduct a larger amount of quantitative com-65

parisons with other vectorization techniques in order to validate66

our approach. We illustrate the global processing chain of our67

system in Figure 2.68

After recalling basic definitions about irregular isothetic ob-69

jects and their construction from a noisy digital contour (Sec-70

tion 2), we show in Section 3 how to filter the obtained irregular71

object using its Reeb graph in order to get a faithful represen-72

tation of the input digital contour. In Section 4, the vectoriza-73

tion techniques of [34, 37] is recalled and we introduce a novel74

approach based on the minimal-length polygon inscribed in a75

polygonal object. As an experimental validation, we compare76

the different reconstruction algorithms and compare the whole77

method to other vectorization techniques in Section 5. We also78

propose a hybrid polygonalization method that combines two79

formerly presented polygonalization techniques: it exploits the80

flat part or curved part tags that are a byproduct of the multi-81

scale analysis.82

Digital noisy 

contour
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curved parts
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Figure 2: Global processing chain of our system. Each part is also labelled with

the section number where it is described.

2. Preamble and previous work83

2.1. Definitions84

In this section, we first recall the concept of irregular isothetic85

grids (I-grids) in 2-D, with the following definitions [7, 36].86

Definition 1 (2-D I-grid). Let R be a closed rectangular subset87

of R2. A 2-D I-grid G is a tiling of R with closed rectangular88

cells whose edges are parallel to the X and Y axes, and whose89

interiors have a pairwise empty intersection. The position of90

each cell R is given by its center point (xR, yR) ∈ R
2 and its91

length along X and Y axes by (lx
R
, l

y

R
) ∈ R∗+

2.92

Definition 2 (ve−adjacency and e−adjacency). Let R1 and R2

be two cells. R1 and R2 are ve−adjacent (vertex and edge adja-

cent) if :

or
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R1 and R2 are e−adjacent (edge adjacent) if we consider an ex-93

clusive “or” and strict inequalities in the above ve−adjacency94

definition. k may be interpreted as e or ve in the following defi-95

nitions.96

A k-path from R to R′ is a sequence of cells (Ri)1≤i≤n with97

R = R1 and R′ = Rn such that for any i, 2 ≤ i < n, Ri is98

k-adjacent to Ri−1 and Ri+1.99
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Definition 3 (k-arc). Let A = (Ri)1≤i≤n be a k-path from R1 to100

Rn. Then A is a k-arc iff each cell Ri has exactly two k-adjacent101

cells in A except R1 and Rn which have only one k-adjacent cell102

in A. The cells R1 and Rn are called the extremities of A.103

Definition 4 (k-object). Let E be a set of cells, E is a k-object104

iff for each couple of cells (R,R′) ∈ E × E, there exists a k-path105

between R and R′ in E.106

We consider an order relation based on the cells borders. We107

denote the left, right, top and bottom borders of a cell R respec-108

tively RL, RR, RT and RB. The abscissa of RL, for example, is109

equal to xR − (lx
R
/2). In the following, we also denote by ≤x110

(resp. ≤y) the natural order relation along X (resp. Y) axis. It is111

legitimate to use the order ≤x on left and right borders of cells112

and the order ≤y on top and bottom borders of cells.113

Definition 5 (Order relation on an I-grid). Let R1 and R2 be114

two cells of an I-grid G. We define the total order relation �L,115

based on the cells borders:116

∀R1,R2 ∈ G,

R1 �
L R2 ⇔ RL

1 <x RL
2 ∨
(

RL
1 =x RL

2 ∧ RT
1 ≤y RT

2

)

.

This order relation is of great importance both for the Reeb117

graph computation and in the polygonalization stage, where it118

leads to linear-time geometrical algorithms.119

2.2. Representation of the topology of an irregular object120

(a)

�L

(b)

Figure 3: (a) An example of an irregular object E (left), the final recoded struc-

ture with arcs, the obtained polygonalization (right) and the Reeb graph asso-

ciated to the order defined on E (bottom) [35]. In (b), we show the recognized

k-arcs and the associated Reeb graph for some iterations of this algorithm, with

respect to the �L order.

The procedure that transforms any irregular object into a121

graph of k-arcs is fully described in [34], and we recall here122

the main principles of this transformation.123

The k-object E is scanned from left to right according to the124

order induced by �L, given in Definition 5 (see Figure 3 for an125

example). The Reeb graph [25] of E, which is a way of rep-126

resenting its topology, is built incrementally as follows. At the127

beginning, the intersection between E and the scanning vertical128

line has only one connected part and the Reeb graph is created129

with one arc between two nodes (b for begin and e for end). If130

a connected part splits into several parts, we add a node (s for131

split) from which start as many arcs as there are parts. Con-132

versely, if two connected parts merge, we link the correspond-133

ing arcs to a node (m for merge) (see Figure 3).134

Moreover, the initial set of cells is recoded into a new one135

(without changing the shape of the object however) so that each136

arc of the Reeb graph corresponds to a k-arc having cells of in-137

creasing left border. We merge with the cell having the smallest138

left border all its k-adjacent cells by using the following update139

procedure.140

Update procedure. Let A be a k-arc in E such that R1 is its141

rightmost extremity. Let R2 be a cell of E that is k-adjacent142

to A at R1 and such that RL
1
<x RL

2
(and thus should be added143

to A). If RL
2
=x RR

1
, one just add R2 to A after R1, else the144

procedure updates the k-arc A at R1, and may recode the end of145

A. For that, it first builds the greatest common rectangle (GCR)146

F2 of R1 and R2. This GCR is the greatest rectangle that can be147

contained in R1 ∪ R2 [34]:148

Definition 6 (Greatest common rectangle). Let R1 and R2 be149

two k-adjacent rectangles. The rectangle F2 is the greatest150

common rectangle (GCR) of R1 and R2 iff151

(i) F2 ⊆ R1 ∪ R2;152

(ii) R1 ∩ R2 ⊆ F2;153

(iii) there is no rectangle greater than F2 by inclusion respect-154

ing i), ii).155

Then the rectangles R1−F2 and R2−F2 are denoted by F1 and156

F3 respectively. The k-arc A is finally updated with respect to157

five main configurations, by replacing R1 in A by the sequence158

(F1, F2, F3) (see Figure 4, empty rectangles are not added).

(a) (b) (c) (d) (e)

Figure 4: Description of rectangles F1 , F2 and F3 in the update procedure.

When RR
1
<x RR

2
(a and b), R1 − F2 = F1 and R2 − F2 = F3 , else R1 − F2 =

{F1 , F3} (c, d and e). If RR
1
=x RL

2
, F2 = ∅, when RR

1
=x RR

2
, F3 = ∅ and finally

F1 = ∅ in the case RL
1
=x RL

2
.

159

We show in the next section how we prune some nodes and160

arcs of the Reeb graph (and thus remove some k-arcs from the161

recoding of E) so that the resulting irregular object is homotopic162
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to a circle: this is indeed what we expect from a digital contour163

which is the boundary of a connected digital shape.164

Guided by the Reeb graph, the computation of the polygonal165

representation of E is then performed by vectorizing indepen-166

dently each remaining k-arc.167

3. Topological reconstruction of a noisy contour168

We now propose to analyze noisy digital contour by using169

Kerautret and Lachaud’s local noise detector [17]. This is a170

method for estimating locally if the digital contour is damaged,171

what is the amount of degradation and what is the finest res-172

olution at which this part of the contour could be considered173

as noise-free. This part of the contour is then covered by a174

pixel whose size is the resolution determined by the above-175

mentionned noise detector. The higher the amount of noise is,176

the biggest the pixels are. In Figure 5-(b,g), we show an exam-177

ple of the output of this parameter-free algorithm applied to the178

two noisy digital objects depicted in Figure 5-(a,f).179

As shown in Figure 5-(b,g), the resized pixels overlap and180

thus cannot be viewed as an irregular isothetic object (Defini-181

tion 1). However each resized pixel contains a given number of182

pixels (at the initial resolution) so that the set of resized pixels183

covers a subset of the input image. This subset, which is an184

irregular isothetic object, is transformed into a new one, whose185

cells are of increasing left border (see Section 2.2). It is in turn186

filtered before the polygonal reconstruction.187

The input digital contour is the interpixel contour of a 4-188

connected set of pixels. Since it is the boundary of a simply189

connected shape, it is expected to be homeomorphic to a circle.190

However, as in [26], the set of resized pixels and the resulting191

irregular object may not be homotopic to the input digital con-192

tour nor to a circle. It may contain either no hole or more than193

one hole. Thanks to the Reeb graph, which encodes the topol-194

ogy of the irregular object, we can decide whether we are in a195

general case (one hole) or not (none or more than one hole). If196

there is no hole, the filtering procedure is stopped and the set197

of resized pixels is computed again, but with a lower maximal198

resolution in the noise detector (parameter n in [17]). This filter-199

ing procedure is repeated until one hole is detected or until the200

resolution reaches the one of the input image. The latter case201

can happen only for one pixel-wide digital contours, which is202

not a reasonable input for a shape boundary and which can be203

independently processed.204

In the general case, we choose not to process the k-arcs as-205

sociated to the Reeb graph arcs that do not belong to the cycle.206

Thus the polygonal reconstruction is expected to be a simple207

closed polygon, for which exactly two edges are incident to208

each vertex. For instance, only reconstructing the k-arcs associ-209

ated to the Reeb graph arcs of the (unique) cycle in Figure 5-(d)210

is a way of avoiding extra polygonal lines in the k-arcs pointed211

by arrows in Figure 5-(c).212

The filtering procedure consists in two steps. First, we re-213

move all degree-one nodes and their incident edges. This re-214

moves all sub-trees in the graph. Either the remaining subgraph215

is empty (no hole) or there is only one connected set of nodes216

whose degrees are each greater than two (at least one hole).217

(See the first part of Algorithm 1). If the procedure leads to218

a graph with no hole, then it means that the processed irreg-219

ular object does not contain any hole. In this case, we loop220

back to the multi-scale noise detector and re-run it with a lower221

maximal resolution. This iterative process that progressively222

decreases the maximal resolution is illustrated in Figure 6.223

Next, in order to get an irregular object that is homotopic to224

the initial digital contour, we remove internal connections, i.e.225

arcs whose terminating nodes have a degree strictly greater than226

two (see second row of Figure 5 and end of Algorithm 1). If the227

procedure leads to a graph with several connected components,228

then it means that the processed irregular object contains very229

thin parts. In this case, we loop back to the multi-scale noise230

detector and re-run it with a lower maximal resolution. This231

iterative process is illustrated in Figure 7.232

The whole filtering process is illustrated in Figure 5-(h-i) and233

the proof of the correctness of Algorithm 1 is given in Appendix234

A. In the next section, we describe and compare several meth-235

ods to vectorize the resulting irregular object, so as to get a236

simple closed polygon Figure 5-(j).237

Algorithm 1: Filtering process.

input :A, the sequence of n k-arcs recoding E, ordered according to the left and

top border of their first cell. G, its associated Reeb graph.

output: A,G are modified in order to obtain a single cycle in G. The procedure

returns true if G contains one and only one cycle, false otherwise

var : Q is a queue of nodes.

for each node x ∈ G do {Push nodes in queue}1

push x in Q ;2

while Q is not empty do {Removing possible external nodes}3

x ← top of Q ;4

pop Q ;5

if Deg x = 1 then6

e← x − y : the arc in G connected to x ;7

if Deg y ≥ 2 then8

a← the k-arc inA associated with e ;9

remove a from A ;10

remove x from G ;11

remove e from G ;12

push y in Q ;13

if G has only one node then14

return false ;15

for i from 0 to n − 1 do {Removing internal connections}16

e = u − v : the arc in G associated to the k-arc ai ∈ A ;17

if Deg u > 2 ∧ Deg v > 2 then18

remove a from A ;19

remove e from G ;20

Make a breadth-first search in G ;21

if the number of visited nodes is equal to the number of nodes in G then22

return true ;23

else24

return false ;25

4. Unsupervised polygonalization of noisy digital contours238

Guided by the pruned Reeb graph, the computation of the239

polygonal representation of E is performed by reconstructing240
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(a) (b) (c) (d) (e)

(f) (g) (h)

s

(i) (j)

Figure 5: From a noisy contour (a), we build a set of resized pixels (b). Then, we filter the result of our vectorization algorithm by removing k-arcs that do not

belong to the polygonal minimal contour (the ones pointed by arrows). To do so, we remove their associated edges in the Reeb graph (d), which lead to the desired

polygonal contour (e). More complex topologies may also be considered, thanks to two more passes in our filtering procedure (h,i), which create a valid polygonal

contour (j).

(a) (b) (c) (d) (e)

b e

(f)

s m

(g)

Figure 6: The multi-scale detector applied to the digital object (a) leads to an

irregular object that does not contain any hole (b). Since the Reeb graph has

only a single edge (f), our filtering procedure is able to detect this anomaly. We

loop back with the detector, which is run with a lower maximal resolution (c).

For instance, we have to loop again twice (d,e) to obtain a valid object with a

(tiny) hole inside it (g).

s

Figure 7: In this example, the Reeb graph is first pruned by removing external

nodes (b). Then, the second phase removes the pointed edge in the graph, which

leads to a disconnection (c). In this case, we loop back to the noise detector like

in the case where no hole is detected (see Figure 6).

independently each remaining k-arc. In order to easily glue241

together each polygonal line into one global structure, each242

polygonal line is set to begin at the center of the first cell and to243

end at the center of the last cell of the vectorized k-arc. Between244

these two points, any polygonal line is valid. But among them,245

we are looking for the one that represents the most faithfully246

the k-arc (and the underlying unknown shape). It is reasonable247

to think that this polygonal line must belong to the set of polyg-248

onal lines that entirely lie within the k-arc. That is why most of249

the techniques we present below check if the computed polyg-250

onal line passes through the intersections between two succes-251

sive k-adjacent cells. Due to the construction of the k-arcs (see252

Section 2.2), these intersections are vertical straight segments253

(possibly degenerated as a point) of increasing x-coordinate:254

they are called input ranges. Their extremity of greatest (resp.255

smallest) y-coordinate is called upper (resp. lower) input point.256

In the subsections below, we recall the vectorization tech-257

niques of [34] and [37] before introducing a new method that258

minimizes the length of the resulting polygonal line.259

4.1. Greedy decomposition into visibility cones260

This method, introduced in [34] and inspired from [28], is261

driven by an iterative construction of a visibility cone (VC for262

visibility cone). For instance, in Figure 8-(a), a simple k-arc is263

decomposed into two visibility cones, which leads to a polygo-264

nal line composed of two segments.265

The method can be roughly described as follows. We first ini-266

tialize the cone apex with the center of the first cell and its base267

with the lower and upper points of the first input range. Then,268

the cone is updated for each new input range so that there is at269
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least one ray coming from the cone apex and passing through270

all the input ranges. When a new input range cannot be visi-271

ble from the cone apex, a new cone is set up, and its apex is272

added to the polygonal line. This point is the middle of the in-273

tersection between the bisector of the previous cone and the last274

scanned cell.275

Even if this algorithm is linear-time, it is a greedy approach276

that could lead to some very short segments and acute angles277

(Fig. 8-(a)) This is why two other solutions have been proposed278

in [37]. We recall them in the next subsection.279

4.2. Greedy decomposition into straight parts280

The two methods we present here consist in decomposing a281

given k-arc A into straight parts, i.e. sets of k-adjacent cells282

that can cover a straight line (see for instance Fig. 8-(b)). In the283

general case, there are infinitely many straight lines that pass284

through a straight part and the union of all the transversal lines285

is called preimage. Note that all the transversal lines are consid-286

ered here and not only those passing through a given point as in287

the visibility cone approach of the previous subsection. We use288

O’Rourke’s algorithm [23] to incrementally decide whether A289

is straight or not and compute its preimage. Once a straight part290

has been detected, if the last cell of this part is not the last cell291

of A, we start the recognition of a new straight part and so on.292

The whole process is linear-time. In Figure 8, a simple k-arc is293

decomposed into two straight parts whose preimage is drawn in294

light blue.295

A first and simple approach to transform this decomposi-296

tion into a polygonal line is to link, for each straight part, the297

straight lines passing through the middle of the first and last in-298

put ranges. We call this method S2 (Simple and Straight). Even299

if the resulting polygonal line may be partly out of the k-arc300

(Figure 8-(b)), this is an interesting way of decomposing a k-301

arc because the resulting polygonal line contains few segments302

and preserves the straight parts.303

However, in order to get a polygonal line that entirely lies304

within the k-arc, we propose another solution that takes into305

account the shape of the preimage of each straight part (C2,306

meaning Complex and Curved).307

The preimage is implicitly described by some consecutive308

vertices of the lower (resp. upper) part of the convex hull of the309

upper (resp. lower) input points. The idea is to incrementally310

compute the polygonal line that is lying in the middle of the311

preimage. More precisely, for each input range whose upper or312

lower input point belongs to the preimage, a new vertex is set313

to the middle of the intersection between the preimage and a314

vertical line passing through the input points (see [37] for more315

details).316

This method leads to smooth polygonal lines (small angle317

variations between two consecutive edges) that are well cen-318

tered within the k-arc (Figure 8-(c)). However they usually have319

a lot of segments, and their geometry does not necessarily re-320

flect the local convexity or concavity of the underlying shape321

(see for instance the last part of the polygonal line depicted in322

Figure 8-(c)).323

4.3. Minimal length polygonal line324

In this subsection, we propose to compute, among the set325

of polygonal lines that entirely lie within a given k-arc A, the326

one of minimal length that joins the centers of the first and last327

cells of A. This polygonal line, which always exists and which328

is unique (when there are no collinear vertices), has been in-329

troduced in [21, 30] as the minimal length polygon (MLP). Its330

n-dimensional version is known as relative convex hull [31]. In331

the case of input ranges of increasing x-coordinate, the MLP332

is nothing else than a sequence of upper or lower parts of con-333

vex hulls. Since the input points are sorted according to the334

x-coordinate, their computation can be incremental and linear-335

time due to the simple Andrew’s monotone chain algorithm [2].336

Figure 8-(d) illustrates the MLP reconstruction of a k-arc.337

(a) VC (b) S2

(c) C2 (d) MLP

Figure 8: The four versions of polygonalization on a single k-arc. Output of

the VC (visibility cone) method in (a). Output of the S2 (simple and straight)

method in (b), C2 (complex and convex) method in (c), both based on the preim-

age of each straight part. MLP (minimum length polygon) in (d).

The method uses a visibility cone whose apex is always a338

MLP vertex. We first initialize the cone apex with the center339

of the first cell and its base with the lower and upper points of340

the first input range. Then, the lower (resp. upper) part of the341

convex hull of the upper (resp. lower) input points are incre-342

mentally computed and the cone is updated while there is at343

least one ray coming from the cone apex and separating the two344

convex hulls. When a new input range is located strictly above345

(resp. below) the visibility cone, the apex of a new cone is set to346

the vertex of maximal x-coordinate of the lower (resp. upper)347

convex hull that is visible from the upper (resp. lower) point of348

the new input range. All the vertices of the lower (resp. upper)349

convex hull scanned during this update process are stored in the350

MLP vertices list.351

The resulting polygonal line reflects well the local convexity352

or concavity of the underlying shape. It not only minimizes its353

length but also the number of its inflection points, hence it is354

rather smooth.355

4.4. Comparison and discussion356

We show in Figure 9 an example of the previous vectoriza-357

tion techniques on two irregular objects: one is the result of358

a quadtree decomposition, the other one uses the multi-scale359

noise detection.360
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: Illustration of our contribution on an object digitized with a quadtree

(a). (b) is the complete preimage computed on each k-arc encoding the object.

One could note that the k-arc at the bottom is decomposed into two straight k-

arcs. In (c), we present the reconstruction of a single k-arc, and the associated

preimage and upper/lower convex hull points. We also depict the complete

polygonal reconstruction of the object, constructed inside the preimage (d), and

the final contour obtained with our filtering procedure explained in the previous

section. We also show the computation of the complete preimage (g) for the

noisy contour (f), and the final reconstructions S2 (h), C2 (i), MLP (j).

All four presented methods have a linear-time complexity.361

However they yield different polygonal reconstructions. The362

differences are summed up in Table 1. Unlike the other meth-363

ods, S2 does not lead to a polygonal line that stays within the364

k-arc, but it respects the straight parts. MLP and C2 lead to365

smoother polygonal lines than VC (MLP leads to the smoothest366

polygonal line since it minimizes its length). The polygonal line367

computed from C2 is the most centered within the k-arc, but368

the MLP is unique and respects the convex and concave parts.369

Note that none of the methods minimizes the number of seg-370

ments, even if the S2 method usually yields smaller polygonal371

line (see next section).372

Criteria VC S2 C2 MLP

Is unique no no no yes

Stays inside the k-arc yes no yes yes

Is centered within the k-arc no no yes no

Respects the straight parts no yes no no

Respects the convex & concave parts no no no yes

Minimizes the length/angle variation no no no yes

Minimizes the number of segments no no no no

Table 1: Theoretical comparison of the four proposed polygonalization meth-

ods.

5. Experimental results373

5.1. Comparative study374

To experiment the quality of the proposed algorithms, we375

first consider a polygonal shape that was perturbed by a Gaus-376

sian noise, with different standard deviations (σ0 = 0, σ1 =377

75, σ2 = 125, σ3 = 175). These images were generated with378

two different grid sizes h = 1 and 0.5 (Figure 10 (a,g)). The379

VC C2 S2 MLP

h
=

1 n 33 60 9 31

Ed 0.80 0.83 2.73 1.25

θ2err 0.12 0.06 0.07 0.05

h
=

0
.5 n 69 91 12 41

Ed 0.74 0.65 2.99 0.78

θ2err 0.12 0.04 0.05 0.02

Table 2: Error measures from contour reconstructions of Figure 10. The mean

minimal euclidean distance (Ed) and error on tangent orientations (θ2err) were

computed for each algorithms version on different scales h.

resized pixels (illustrated on images of Figure 10 (b,h)) were380

obtained from the digital contours extracted by using a simple381

threshold (set to 128) (images (b,h)) and boundary tracking al-382

gorithm. In order to measure the resulting quality of the four383

reconstructions illustrated on images (c-f) and (i-l) we applied384

various measures given on Table 2. These measures are the to-385

tal number of points (n), the mean minimal euclidean distance386

(Ed) between the source contour points Pi to the resulting poly-387

gon, and the error on tangent orientations (θ2err). The measure388

Ed was obtained after associating each contour points Pi of the389

initial shape (non noisy) to the nearest consecutive vertex pair390

Vk,Vk+1. These associations were also used to determine the391

tangent error θ2err where θerr is the angle between the tangent392

vector defined from Vk,Vk+1 and the tangent provided by the393

λ − MS T estimator [18] applied on the source (undamaged)394

discrete contour.395

The experiments confirm the awaited improvements pro-396

vided by the Algorithm C2 in comparison with the use of the397

algorithm based on visibility cone [34] (denoted as Alg-VC).398

It is visible especially for the tangent error measure θ2err but399

also for the distance error Ed. The second variant Algorithm400

S2 produces a more compact representation while preserving a401

moderate tangent error θ2err. However this last algorithm is less402

convenient on the point of view of the Ed error. On the point403

of view of the tangent error measure θ2err, the algorithm MLP404

appears to give the best results on each image size.405

Finally, we compare our methods with algorithms developed406

by Nguyen and Rennesson [22] which are based on a global op-407

timization scheme in association with the Marji’s criteria (MC)408

or another one proposed by the authors (NC). In Figure 11, we409

present the polygonal contour obtained from our methods, and410

from the NC and MC algorithms which are both parameter free411

approaches. For each experiment, we measure the Hausdorff er-412

ror (δH) and the previously described errors (see Table 3). The413

comparisons show that the proposed approaches are less com-414

pact than both the NC or MC but provide better precision for415

the δH and Ed errors. On the point of view of the tangent orien-416

tation error θ2err our approaches with C2 or S2 are comparable417

with the one of the NC algorithm, while MLP outperforms all.418

Other complementary comparisons were also performed with419

two recent parametric methods. The first one is the polygo-420

nal reconstruction from the visual curvature [19] which uses a421

parameter associated to the scale of the contour analysis. The422

second one exploits another way to take into accounts the noise423
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Figure 10: Illustration of the reconstruction algorithms applied on different image scale. The images (b,h) show the multi-scale levels obtained from the source

contours (a,g). The reconstructed polygons associated to Alg-VC (that uses previous work), C2, S2, MLP are given respectively on (c-f) and (i-l). Geometric

measures are give on Table 2.

VC C2 S2 MLP Ngu09 [22] Marji [22]

n 211 457 100 212 52 24

δH 6 6.07 8.92 6.34 10.81 10.63

Ed 0.757 0.713 1.236 0.842 1.221 2.878

θ2err 0.130 0.076 0.071 0.040 0.062 0.131

Siv11 [29] Liu08 [19]

d = 3 d = 5 s = 0.01 s = 0.03

n 157 85 176 75

δH 9.98 8.544 11.401 11.401

Ed 1.068 1.808 0.859 1.917

θ2err 0.103 0.104 0.128 0.0619

Table 3: Geometric measures of the reconstructed shapes of Figure 11. The dif-

ferent proposed algorithms (four first columns of first tabular) can be compared

with other parameter free approaches [22] (two last columns of first tabular).

The second tabular gives measures obtained from recent parametric approaches

for comparisons [29, 19].

by using the the Fréchet distance defined between the initial dis-424

crete contour and the resulting polygon [29]. We apply the re-425

constructions with several parameter settings illustrated on Fig-426

ure 11 (i-l). The parameters were first manually tuned to favour427

the closeness to initial data with some noisy areas on the last428

quadrant (d = 3 s = 0.01) and the second one gives the priority429

to the noise removal (d = 5, s = 0.03). The measure of Table 2430

confirms the performance of the proposed methods since the431

MLP based algorithm outperforms all the geometric measures432

for all set of parameters.433

5.2. Complex image analysis434

The Algorithm C2 was also experimented on real images of435

characters, acquired from a photographed document. A given436

threshold was used to extract the digital contours on which the437

resized pixels were computed (as illustrated on the second row438

Figure 12). We thus show that our vectorization algorithm could439

be applied in document analysis systems.440

Our algorithms may also be used in the polygonal modeling441

of region of interest in many image analysis applications. Here,442

we depict the extraction of a part of an heart in a MRI (Magnetic443

Resonance Imaging) in Figure 13. Despite of the presence of444

noise in the image, we are able to propose a clean reconstruction445

of the selected region.446

We also present a last application of our work in a project447

of leaf recognition for smartphones.1 In this context, leaves448

may be detected in very complex environments by computing a449

distance map with Gaussian mixture models [4, 5]. Thanks to450

this map, we are able to compute a polygonal model of the leaf,451

even if the background color model is very close to the one of452

the treated object (see Figure 14).453

5.3. Adaptive polygonalization by combined curved/flat recon-454

structions455

Here, we propose to combine the two versions S2 and C2

we have introduced before in order to adaptively reconstruct

noisy shapes. The meaningful scale detection we use [17] is

able to distinguish curved and flat parts of the input noisy con-

tour. In Figure 15-(a,g), we show extracted resized pixels of

a digital contour. In our system, for each k-arc, we count the

number of flat and curved included inside it, respectively n f

and nc. We then determine that this k-arc is curved if we have:

nc

nc + n f

≥ η, (1)

where η ∈ [0, 1] is a given threshold. In this case, we apply the456

C2 version, and S2 one otherwise. We give in Figure 15 some457

examples of reconstructions with various values for η, for two458

images.459

1http://liris.cnrs.fr/reves/content/en/index.php
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(a) Source (b) MS (c) VC (d) C2

(e) S2 (f) MLP (g) Ngu09 [22], Nguyen Criteria (h) Ngu09 [22], Marji Criteria

(i) Siv11 [29] d = 3 (j) Siv11 [29] d = 5 (k) Liu08 [19] s = 0.01 (l) Liu08 [19] s = 0.03

Figure 11: Comparisons of the proposed approaches (b-f) with others recent parameter free approaches [22] (g,h) and with parametric approaches (j-l) [29, 19].

Detailed comparisons on geometric measures are given on Table 3.

Figure 12: The meaningful boxes extracted from scanned characters (center), and the final reconstruction we propose with C2 (bottom).
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Figure 13: Extraction of a region of interest in MRI of heart with C2.

Figure 14: Extraction of the aspen leaf from the background and construction

of a precise polygonal model of it.

6. Conclusion and Future Works460

In this paper, we address the problem of vectorization of461

noisy digital contours. We transform the resized pixels obtained462

by Kerautret and Lachaud’s algorithm [17] into an irregular iso-463

thetic object recoded in a set of k-arcs whose topology is stored464

into a Reeb graph. We first show how to use the Reeb graph465

in order to prune the set of k-arcs so that it is homotopic to the466

initial digital contour. Then we review different geometrical al-467

gorithms (VC, S2, C2), and propose a new one (MLP), in order468

to build a polygonal representation of each k-arc. The resulting469

polygonal structure is obtained by gluing together the indepen-470

dent polygonal lines. The whole polygonalization process takes471

a linear-time in the number of cells. We have shown in the ex-472

periments that our proposals are very efficient w.r.t. to several473

other techniques of the literature. We have also presented appli-474

cations in image analysis that reveal the interest of our system,475

and an original way to combine two complementary methods476

of polygonalization (S2 and C2).477

We plan to work on noisy 3-D surfaces, and develop a com-478

plete framework in a similar way as the one presented in this479

article. We thus have to adapt the noise detector in order to480

compute a multi-scale representation of the input object. Then,481

we would like to compute the Reeb graph, and use this topo-482

logical tool to guide an original polyhedrization algorithm that483

process overlapping irregular 3-D cells.484

Appendix A. Proof of the correctness of the Reeb graph fil-485

tering procedure486

Lemma 1 (Validity of Algorithm 1). Algorithm 1 returns true487

if the filtering process yields a subgraph that contains one and488

only one cycle, but false otherwise.489

Proof. Algorithm 1 consists in two steps. The first one iter-490

atively removes nodes of degree one and their unique indicent491

arcs (i). The second one iteratively removes arcs incident to two492

nodes of degree strictly greater than two (ii). Let us see what is493

the impact of these two steps on the graph structure.494

(i) A the end of the first step, since the input graph is con-495

nected, only two cases may occur: either there is only one node496

(of degree zero), or there is a connected set of nodes (of de-497

gree greater than or equal to two). The first case occurs only if498

the input graph is a tree (a connected graph without any cycle).499

This can be shown by structural induction. The base case is any500

tree of only one node. Then, connecting with a new arc, a new501

node to any node of a tree yields a tree bigger of one node and502

one arc, because no cycle has been created. Due to the previous503

result, it is clear by contradiction that the second and last case504

occurs only if the input graph has one cycle or more.505

In the first case the algorithm stops and returns false, oth-506

erwise it performs the second step in order to keep only one507

cycle.508

(ii) If the resulting graph is not connected after the second509

step, the algorithm retuns false. Otherwise, we prove below510

that it returns true because it contains one and only one cycle.511
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(a) (b) η = 0.0, (c) η = 0.3, (d) η = 0.6, (e) η = 1.0,

f = 100%, n = 35 f = 36%, n = 68 f = 21%, n = 104 f = 0%, n = 170

(f) (g) η = 0.0, (h) η = 0.1, (i) η = 0.6, (j) η = 1.0,

f = 100%, n = 53 f = 70%, n = 55 f = 25%, n = 173 f = 0%, n = 257

Figure 15: From the curved/flat feature extracted (red:curved, blue:flat) with the multi-scale detector (a,g), we propose an adaptive reconstruction with several values

for η. For each case, we also give the final percentage of flat k-arcs f , and the number of points in the reconstruction n.

Due to the construction of the Reeb graph according to the512

order �L, after the removal of all degree one nodes, there is at513

least one minimal node s⋆ and one maximal node m⋆ in the re-514

sulting graph. In the initial Reeb graph, there is a tree rooted515

at s⋆ (resp. m⋆), which contains all the nodes smaller (resp.516

greater) than s⋆ (resp. m⋆), and which is removed during the517

first step. Otherwise s⋆ (resp. m⋆) is not the minimal (resp.518

maximal) node of the resulting graph, which raises a contradic-519

tion. This means that s⋆ and m⋆ are both of degree two after520

the first step.521

As a consequence, at the end of the second step, the set of522

connected nodes contains at least two nodes of degree two (s⋆523

and m⋆), but no node of degree strictly greater than two (re-524

moved). Since there is no node of degree strictly less than two525

(due to the first step), there is extactly one cycle, which con-526

cludes the proof.527
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