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Abstract

In this paper we provide an analytical description of various classes of digital circles, spheres and in some cases
hyperspheres, defined in a morphological framework. The topological properties of these objects, especially
the separation of the digital space, are discussed according to the shape of the structuring element. The
proposed framework is generic enough so that it encompasses most of the digital circle definitions that appear
in the literature and extends them to dimension 3 and sometimes dimension n.

Keywords: digital geometry, digital topology, mathematical morphology, digital circle and sphere,
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1. Introduction

Digital circle generation, characterization and recognition have been important topics for many years in
the digital geometry and pattern recognition communities. It is well known now that all digital straight lines
are some sort of Reveilles digital straight line [1]. This arithmetical framework provides a way of defining
digital hyperplanes too [1, 2]. What is less well known is that there is not only one but many different types
of digital circles in the literature. This is a problem when dealing with algorithms recognizing digital circles.
Most recognition algorithms provide parameters of a Fuclidean circle while the corresponding type of digital
circle is implicit [3, 4, 5, 6, 7, 8, 9]. This makes comparison between different circle recognition algorithms
dubious. Different sets may or may not be recognized as a digital circle by different algorithms. A second
problem arises from the way a digital circle is defined. Digital circles are defined as the result of an algorithm
or implicitly by a set of (topological) properties. A typical example is the Bresenham’s circle [10] which is
either defined by its generation algorithm or topologically characterized as a 0-connected (8-connected in
classical notation) digital approximation of a Euclidean circle of integer radius and integer coordinate center.
This does not lead to a global mathematical definition of the object. Extensions to higher dimensions are
thus complicated: a revealing fact is that there are almost no definition of digital spheres or hyperspheres
in the literature [11, 12].

In this paper, we propose a unified framework allowing to analytically characterize most of, if not all,
known digital circles appearing in the literature [10, 13, 14, 15, 16, 17, 18, 19]. Each of these digital circles
is defined as the set of integer solutions of a system of analytical inequalities. Such a global mathematical
definition provides natural extensions to the different types of digital circles, in particular, extension of the
parameter domains and extension in dimensions. For instance, the Bresenham’s circle [10] can be easily
extended to a digital circle that is not limited to integer radii or integer coordinate centers. It can also
be extended to digital spheres or hyperspheres. This is a step forward compared to the results previously
presented in [20].
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In an n-dimensional Euclidean space, a sequence of morphological operations (dilations by a structuring
element) and set-theoretic operations (intersection, union) is applied to a hypersurface S in order to define
an offset region. The digitization of § is then the Gauss digitization of this offset region, i.e, the set of the
integer coordinate points lying in it.

According to the type of structuring elements, two families of morphological digitization models are
proposed. For both of them, the offset regions of a circle, a sphere and, in some cases, a hypersphere, are
analytically described and the topological properties of their digitizations are studied.

For the first family of digitization models, the structuring elements correspond to norm-based balls.
The norms we are considering are the Euclidean norm and the adjacency norms that encompass the £°°-
and the ¢'-norms. The adjacency norms allow us to define k-separating digital hyperspheres. Analytical
characterizations are provided for circles and spheres for all these norms. We propose only an analytical
characterization of the hyperspheres for the Euclidean norm. Further work is needed for the general digital
hypersphere analytical characterization for all adjacency norms.

The second family of digitization models is based on structuring elements, called adjacency flakes, that
are subsets of the balls based on adjacency norms. The resulting digital hyperspheres are still k-separating,
and even strictly k-separating (without any k-simple point) for one model. Besides they have much simpler
analytical characterizations.

In Section 2, we introduce families (closed or semi-open and Gaussian or centered) of digitization models
that are morphological in nature. Each model is parametrized by a structuring element. This allows to
define different types of digital hyperspheres according to the shape of the structuring element.

In Section 3 and Section 4, we propose digital hyperspheres based on balls of different norms. We recall
some results for the digital hyperspheres based on the Euclidean norm [12] before introducing the adjacency
norms. The adjacency balls enable us to define thin digital hyperspheres that separate Z". We provide
analytical characterizations only for circles and spheres. According to the adjacency norm considered, we
define the Chebyshev and the Manhattan families. Supercover circles and spheres [21] are then closed
centered Chebyshev circles and spheres. Bresenham’s circles [10] are centered Manhattan circles.

Analytical characterizations for n-dimensional hyperspheres are proposed in Section 5, with a family of
even thinner digital hyperspheres based on another kind of structuring elements. These structuring elements,
called adjacency flakes, are specific subsets of the adjacency balls. The digital hyperspheres thus defined are
compared with existing definitions in the literature, their topological properties are discussed and we provide
their analytical characterization in any dimension.

Recalls and notations. Let {eq,...,en} be the canonical basis of the n-dimensional Euclidean vector space.
We denote by x; the coordinate of a point or a vector x associated to e;. A digital object is a set of
integer points. A digital inequality is an inequality with coefficients in R from which we retain only the
integer coordinate solutions. A digital analytical object is a digital object defined by a finite set of digital
inequalities.

For all k € {0,...,n — 1}, two integer points v and w are said to be k-adjacent or k-neighbors, if for
all i € {1,...,n}, |lv; —w;| < 1 and Z?Zl |v; —w;| < n— k. In the 2-dimensional plane, the 0- and
1-neighborhood notations correspond respectively to the classical 8 and 4-neighborhood notations. In the
3-dimensional space, the 0-, 1- and 2-neighborhood notations correspond respectively to the classical 26- ,18-
and 6-neighborhood notations.

A k-path is a sequence of integer points such that every two consecutive points in the sequence are k-
adjacent. A digital object E is k-connected if there exists a k-path in E between any two points of E. A
maximum k-connected subset of E is called a k-connected component. Let us suppose that the complement
of a digital object E, Z" \ E, admits exactly two k-connected components F; and Fs, or in other words that
there exists no k-path joining integer points of F; and F5, then E is said to be k-separating in Z™. If there
is no path from F; to Fy then E is said to be 0-separating or simply separating. A point v of a k-separating
object E is said to be a k-simple point if E\ {v} is still k-separating. A k-separating object that has no
k-simple points is said to be strictly k-separating.

The logical and and or operators are denoted A and V respectively.



Let @ be the Minkowski addition, known as dilation, such that A® B = Upep{a+b:ac A}.
In the present paper, the focus is only on the n-dimensional hypersphere S, of center ¢ = (c1,...,¢,) €
R™ and radius r € R* which is analytically defined as:

Ser ={x=(21,...,7n) ER" : 50r(x) =0}, with s¢r(x)= <Z(Iz — ci)2> —r2

i=1
We also introduce notations for the inside and the outside (strict or large) of such an hypersphere:

St ={XER" :50,(x) <0}, SIF={x€R":5c,(x) >0}, Sc,=8e,USc, and SI, =8I USc.,.

2. Digitization Models

Since the direct digitization of a hypersphere Sc, has obviously not enough integer points to ensure
good topological properties such as separation of the space, one first applies a sequence of morphological
operations (dilations) to Sc, in order to define a region O located around or incident to Sc, called offset
region. The digitization of S, is then the set of integer coordinate points lying in this offset region.

In what follows we consider various digitization models. They are morphological in nature. Whatever
the dimension, the shape of the hypersphere and the shape of the structuring element used for dilation, we
define first digitization models centered on the hypersphere, either closed or semi-open (the inner or the
outer boundary of the offset region is not taken into account). Then, we define digitization models non
centered on the hypersphere, such that the resulting digital set lies only on one side of the hypersphere.

We assume that the structuring element has a central symmetry (ie. x € A = —x € A).

2.1. The closed model
Let us assume that the structuring element A is closed (it is equal to its closure).

The digitization D 4(Sc ) according to the structuring element A and centered on the hypersphere Se .
is defined from the offset region O 4(Se )

Du(Ser) = Ou(Sen) NZ" = (Ser @A) N Z".

The offset region is closed since A is closed. Unit balls for a given norm are good candidates for such
structuring elements as we will see in Section 3 and Section 4. Among those models we can mention the
Pythagorean model, which is based on the Euclidean norm, the supercover model based on the ¢*°-norm and
the closed naive model based on the ¢!-norm [22].

2.2. Avoiding simple points : the semi-open models

Closed models are known to contain simple points for lines, planes or hyperplanes and, as a direct
consequence, for more general thin objects such as hyperspheres. The supercover model is a good example.

A supercover line contains many simple points. Removing one boundary of the offset region (for example
the upper one) allows to exclude these simple points while preserving the separation of the space by the
digital line. This defines the Standard digitization model [23], which has been defined, however, only for
linear objects (flats and simplices).

The idea here, with the semi-open models, is to proceed similarly for circular objects: removing one of
the boundaries of the offset region in order to remove (at least some) simple points in the digitization.

Such a model can be described with two structuring elements: a closed element A and a second element
A* which is defined as A deprivated of the boundary of its convex hull.

We consider the two semi-open digitizations D:Z(Sc,r) and D (Sc,) centered on S., defined from the
following offset region:

O04(Ser) = (S&,0A)N (S, 0A"),
O4(Se.r) (S&, @A )N (S, A).



The offset region used to define D% (Sc ) is open on the S, side, whereas the one used to define D (Se,r)
is open on the Sg,. side.

Note that we will not discuss models based only on open structuring elements in this paper. Such models
do not have particular properties that seem relevant. If need be, it is rather trivial to write the corresponding
equations to them.

2.83. The inner and outer Gaussian digitization models

As reported in [24], Gauss used a method to measure an approximation of the area of a planar set by
counting the number of integer points inside the set. This can also be seen as a digitization model of a
planar set. In the present paper, we are interested in the digitization of circles and hyperspheres and not
disks and balls. The 0-connected or 1-connected boundary of a Gaussian disk, or of its complement, can
however be a way to define a digital circle. We define such digitization schemes we call inner and outer
Gaussian digitization models.

More precisely, the inner semi-open D; 4 (Sc,-) and the outer semi-open Gaussian digitizations D 1(Se.r)
of a hypersphere S, are defined as the digitizations of the following offset regions:

O;4(Se,r) (&, @24") NS,
O:A(Sc,r) = (Sc_,r S 2./4*) N S:T.

Note that we dilate S, with a structuring element twice as big (2.4) in order to have an offset region as
thick as the ones of the previous digitization models.

It is of course also possible to define closed Gaussian models D;4(Sc,r), Doa(Se,r) by considering the
closed structuring element 2A4. The reader should have no problem in handling these cases if need be.

In this section, we have selected morphological models to digitize hyperspheres. They can be used in the
more general case of oriented hypersurfaces. In the sequel of the paper, we will consider various structuring
elements in order to obtain digital hyperspheres with good topological properties. In particular, in the two
following sections we consider digitization models based on structuring elements that are balls for given
norms. These balls are illustrated in Fig. 1 and the structuring elements of the general model, A and A*,
will be respectively a closed ball By.|(p) and an open ball B | (p) with same norm and radius.

SO0H ¢¢

Figure 1: Structuring elements in 2D for the norms [-]; = £, £2, []o = £>° and in 3D for the norms [-]2 = ¢! (octahedron), £2,
[]1 (cuboctahedron), [-]o = £°°.

3. Digital circles and spheres based on the Euclidean norm

We first study the Euclidean norm (classical £2 notation) which allows a very simple analytical charac-
terization.
The first norm we investigate is the Euclidean norm, ¢2, defined by:

n

Vx = (21,...,20) ER", [Ix]l, = | D ()%

=1

In the case of hypersphere digitizations under the introduced models, this norm presents an important
advantage: the two boundaries of the offset region are concentric hyperspheres. The offset region of an
Euclidean digital hypersphere is thus an annulus and analytical characterizations can be directly deduced.



Proposition 1. Let Ba(p) be the ball of radius p € R™ under the Euclidean norm. The analytical charac-
terizations of the Fuclidean digitizations (or £*-digitizations) of a hypersphere S, are:

Dg,(p)(Ser) = {v e Z": (r—min{r, p})* — 1% < s (v) < 20 + pQ} ’
DEQ(p)(SC,T) = {v e Z": (r—min{r, p})*> —1r? < s, (v) < 2pr + p2} 7

gz(p)(Sc,r) = {V €Z": (r—min{r,p})* —1? < Ser (V) < 2pr + p2} ,
Dip, () (Ser) = {V eZ": (r—min{r,2p})> — 1% < s (v) < 0} ,
D:BZ(,)) (Ser) = {VEZ":0< sc,(v) <dpr+4p°}.

The proof of this proposition is immediate.

Note that, if the radius of the hypersphere is too small compared to the radius of the ball used as
structuring element, then the offset region is a filled hypersphere, except for the outer Gaussian digitization.
Note also that the Gaussian models and the centered models have similar analytical characterizations with
different radii. Indeed, we have Dsz(p) (Se,r) = DJBrz(p) (Se,r+p) and D;BQ(p) (Se,r) = Dgz(p) (Se,r—p)-

The family of hyperspheres, DJBFQ( 0 (Sec,r), has already been proposed [12] and is known as the Andres
hypersphere. It comes with the important property of tiling space (see Fig. 2(b)). Let (a;);en be a strictly
increasing infinite sequence of positive real values with agp = 0. The set of intervals {[a;,a;41[: ¢ € N}
tiles RT. Let us now consider the sequences (p;)ien+ defined by p; = (a; — a;_1)/2 and (r;);en+ defined

by r; = (a;—1 + a;)/2. Then, the set of digital hyperspheres {Da(m(sc,”) s N*} tiles Z™. There is a

similar result for Dy, (p,.,)(Sc,n) except that if ¢ is an integer point, the set of digital hyperspheres only tiles
7™\ {c}.

An interesting result can be given about the separation of ¢2-digitized hyperspheres, already stated for
Andres hyperspheres [12]. Let us consider a ¢2-digitization of an hypersphere S, such that there exists at
least one integer point v of S; ' not in it. The distance from v to any point x of Sj: ~ not in the offset region
of the hypersphere is at least of 2p. We call this bound the Fuclidean thickness of the digital hypersphere.
For any k € {0,...,n — 1}, if the Euclidean thickness is greater than v/n — k, i.e., p > v/n — k/2, it is easy
to see that the ¢2-digitized hypersphere is k-separating in Z". The value v/n — k corresponds indeed to the
maximal distance between two k-adjacent integer points. Once the Euclidean thickness is greater or equal to
such a distance, two k-adjacent integer points cannot be on two different sides of such a digital hypersphere
anymore. It is however important to notice that the condition of k-separation is sufficient but not necessary.

© @

(a) (b)

Figure 2: (a) Offset region of a Euclidean digitization of a sphere, (b) an illustration of the space filling property for Andres
spheres of center (0.1,0.2,0.4), radii (r 4+ 0.3),¢cn and the ball of radius p = 1/2 as structuring element.

4. Digital circles and spheres based on the adjacency norms

As seen in the previous section, there is not a strong relationship between the thickness of a Euclidean
digital hypersphere and its topological properties. We will now introduce digital circles, spheres and hyper-



spheres that are k-separating with fewer k-simple points than for the Euclidean digital hyperspheres.

4.1. The adjacency norms

Every digital adjacency relationship can be associated to a norm. This fact is well-known for 0-adjacency
and (n — 1)-adjacency which are respectively linked to the ¢°°-norm:

v=(v1,...,0n),W = (w1,...,wn) €Z" are 0-adjacent iff ||w —v|| = . max }{\wi — |} =1,
n

.....

and to the ¢!-norm:
v=(v1,...,0n),W = (w1,...,wn) € Z" are (n — 1)-adjacent iff |w — v||, = Z |w; — v = 1.
i=1

We introduce the adjacency norms to extend these results to any digital adjacency.

Definition 1 (Adjacency norms). Let n be the dimension of the space. Let also k be a positive integer
lower than n. Then the k-adjacency norm [-], is defined as follows:

Vx e R", [x], = max{||x|| Tlllx_”l } .

They are norms since they are defined as the maximum of two norms.

Let By}, (p) be the ball of radius p under the norm [],. The associated distance is denoted by dj.

It is easy to see that the 0-adjacency norm correspond to the norm ¢*° and the (n — 1)-adjacency norm
to the norm ¢!. One must be careful here not to confuse the classical ¢!-distance with the 1-adjacency
distance di. The classical ¢'-distance corresponds to the adjacency distance d,,_; and the ¢>°-distance to
the adjacency distance dy.

The name adjacency norms is justified by the following lemma.

Lemma 1 (digital adjacency and adjacency norms). Let v and w € Z™. Then, v and w are k-
adjacent iff [v —w], < 1.

PROOF. if v and w are k-adjacent, it implies that they are 0-adjacent or, expressed with the £°°-norm,
that |[v —w| = 1. Moreover, to be k-adjacent the two integer points should share at least k identical
coordinates, or expressed with the ¢*-norm, ||v — w||; < n—k, which is equivalent to ||v — w||,/(n—k) < 1.
Thus, the two k-adjacent integer points satisfy the condition [v — w], = 1.

Now, consider v and w such that [v — w], = 1. v and w are 0-adjacent. Moreover, |[v —w||;/(n—k) <1,
and the two integer points share at least k equal coordinates. O

4.2. Topological properties

Since those norms characterize adjacency relationships between integer points, they are also strongly
related to the separation of the digital space.

For what follows, we are interested in the minimal (with respect to set inclusion) digital hyperspheres
that are k-separating. Intuitively, they should be the ones with a k-adjacency thickness (i.e. the minimal
k-adjacency distance between two points not in the offset region of the hypersphere and respectively in S *
and in S;’: ¥) equal to 1. As a consequence, we consider only structuring elements based on adjacency norms
with radius of 1/2.

For the sake of simplicity, the radius of the adjacency ball is omitted in the model notations so that
Dg, ), (Se,r) is the closed []-digitization based on the ball B, (1/2) of the hypersphere Sc . We denote the

other [-];-digitized hyperspheres with the same convention.



Proposition 2. The following semi-open [-]-digitized hyperspheres are k-separating in 2™ :

Vn+vn—k
2 7
vn+vn—k
2 )

- DE[»Jk (Se,r) with r >
- DEHk (Se,r) with r >

- Dy, (Se.r) with r > g +vVn -k,
Ik
N

+ : vn
- DoB[.]k (Se,r) with r > 5

PROOF. The sketch of the proof is the same for all types of [-];-digitized hyperspheres : we have to demon-
strate that the complement of its offset region, O, intersects Scf » and S and that two integer points, one
in each of these subsets of the complement, are not k-adjacent. For the sake of clarity, we focus here on only
one type of [];-digitized hyperspheres, DEH (Se,r)-

To consider DEH (Se,r) as a k-separating set, it is necessary that its complement admits two different
Ik

k-connected components. S; ¥ NZ" is a finite set and ensuring that at least one of its elements is not in
the digital hypersphere is possible only for sufficiently large radii : the part of Sc} not in the offset region
have to include a whole unit hypercube, the minimal subspace containing at least one integer point whatever

its position. A unit hypercube, B (1), is included in an Euclidean ball of radius /n/2. Moreover, by
definition, any point of S_} in O;Q[] (Se,r) is at a k-adjacency distance from Sc , not greater than 1/2. In

term of Euclidean distance, it corresponds to a distance not greater than v/n — k/2. As a result, a radius
r > (v/n —k++/n)/2 is sufficient to ensure that the complement of D;g[] (Se.r) admits integer points in SJF

and also in SFr.
Let us now consider two points x € (Sjr \ Og[] (Sc,r)> and y € (SC’T \ Og” (Scﬂa)). By definition of
) Tk ’ Tk
this offset region and the use of a ball of radius 1/2 as structuring element, we have di(x,Sc,) > 1/2 and

dir(y,Se,r) > 1/2. Since x and y are not on the same side of S, it is easy to see that [x — y], > 1. In the
case where x and y are integer points, they cannot be k-adjacent. (|

However a [-]i-digitized hypersphere is not necessarily a strong k-separating set because some k-simple
points may still remain. This is actually also the case for classical digital circles such as the Bresenham’s
circle [25]. The Bresenham’s circle of radius 4 is a good example for that.

To conclude on k-separation, notice that [-],-digitized hyperspheres are thinner (with fewer simple points)
than Andres hyperspheres when they are both k-separating. Indeed an Andres hypersphere is k-separating
in Z™ if 2p > +/n —k and a ball of radius greater than v/n — k/2 under the Euclidean norm contains the
ball of radius 1/2 under the k-adjacency norm.

Another interesting topological result concerns the inner semi-open Gaussian [-];-digitized hyperspheres.

Proposition 3. The digital hypersphere D;B[] (Se,r), is the set of integer points in S_, k-adjacent to at
Te :

least one integer point of Sj;

PROOF. In the case where S, NZ" = (0, the proposition is true. We now consider that S_ ., and therefore

c,r’
Dig,, (Se.r), contains at least one integer point.
Ik
We first show that sc, assumes a maximum in any k-adjacency ball at one of its vertices. Then, we
will show that such a maximum is positive and reached in Scf *MNZ" when considering a k-adjacency ball of

radius 1 located at an integer point of D;B” (Se,r)-
Ik
For all x € R™ and ¢ € R™ such that (x +¢) € (B[,]k (p) ® {x}), one have:

n

Ser(X+€) = Ser(x) = Y (& + 2ei(wi — ).

1=1



The sign of one component of € is not related to the sign of the other ones. We can choose these signs
independently. Since we are looking for the maximum value of s¢ ,(x + €) — sc (%), each component of €
would have the sign of the associated component in x —c. We can thus, without any loss of generality, rather
study the maximum of:

n

Z (EiQ + 2|81||($1 — Cl)l) .

i=1

Moreover, (x + &) € (B[.]k (p) ® {x}) induces that [¢], < p. In other words, the sum of the absolute values
of the components of € is no more than p(n — k) and each of these absolute values, taken separately, is no
more than p. Under such conditions, s¢ (X +€&) — Sc (%) is maximum for a vector & having null components
except for those associated to the n — k largest, in absolute value, components of x — ¢ which are equal to p
in absolute value. s, is then maximum in By, (p) @ {x} at one of its vertices.

By definition, for all v € D;B[']k (Se,r), there exists s € S, such that [v —s|, < 1. Thus there exists
a Buclidean point x € Sf} on the straight line (vs) such that [v —x], = 1. The maximum of s, in
By, (1) @ {v} is then a positive value, necessarily reached at a point in SF. The vertices of By, (1) ® {v}
being integer points, the maximum is more precisely reached in Sch, Nz

Finally, any integer point of D;B” (Sec.r) is k-adjacent to at least one integer point of SF* NZ™. ]

This result does not apply to the outer digitization DjBHk (Sec,r)- In general, some integer points of this
set are not k-adjacent to any integer point of S; .

In a 2-dimensional space, D;B[A]k (Se,r) is known as the circle digitized under Kim scheme [17, 19, 26] and
appears in many different recognition algorithms [4, 6, 9, 15, 16, 26].

4.8. Some clues about analytical description of the offset region

Before giving analytical characterizations of the digital circles and spheres based on adjacency norms, let
us explain in somewhat informal way how an offset region can be described by inequalities in the case of a
convex polytope as ball.

Offset region of semi-open and Gaussian models are defined by the intersection of two dilations. It is also
the case for the offset region of the closed model:

OBy, (Se.r) = (Ser @ Byy,) N (S, @ Byy,) -

Such a decomposition is interesting since each set in the intersection has only one boundary : the boundary
of the first set is the outer boundary of the offset region and the boundary of the second set is the inner
boundary of the offset region.Moreover, both parts can be related to already studied objects. For the first
dilation, we have:

Ser ® By, = Ba(r) @ ({c} ® By, )

Such objects are known as offset of a polygon (or polyhedron) by a radius [27, 28]. One can sum up their
properties in 2-dimensional and 3-dimensional spaces by the following two lemma:

Lemma 2 (Offsetting of a polygon). The offsetting by a radius r of a polygon P with set of edges E(P)
and vertices V(P) is the union of:

e the polygon P,

e for each edge e € E(P), the extrusion of P between o and rn(e), where n(e) is the outward-pointing
unit normal vector to e,

o for each vertex v € V(P), the Euclidean ball of radius r, Ba(r), centered at v.

Lemma 3 (Offsetting of a polyhedron). The offsetting by a radius r of a polyhedron P with set of faces
F(P), of edges E(P) and vertices V(P) is the union of:



e the polyhedron P,

e for each face f € F(P), the extrusion of P between o and rn(f), where n(f) is the outward-pointing
unit normal vector to f,

e for each edge e € E(P), the filled right circular cylinder of radius r based on the segment [v1va] where
vy and vg are the extremities of e,

e for each vertex v € V(P), the Euclidean ball of radius r, Ba(r), centered at v.

Note that in the case of adjacency balls, each extrusion of P associated to an edge e of the 2-dimensional
ball (respectively face f of the 3-dimensional ball), can be replaced only by a translated copy of the adjacency
ball by rn(e) (respectively rn(f)). Such a translated copy is indeed sufficient to cover the interior of the
offset not already covered by disks in the 2-dimensional case (respectively cylinders in the 3-dimensional
case).

For the second dilation, we have:

S;fr@B[‘]]c =q¢xeR": max  {[lx—yll,} =>r
yG(B[,]kGB{c})

The maximum distance from a point x to a convex polytope P (in any dimension) is the maximum
distance from x to the set of vertices of P [29]. Thus, Sf, @© By, can be seen as the union of the sets of
points at a Euclidean distance greater or equal to r of one of the vertices of the adjacency ball centered at c.

S;’:T D B[.]k = U (85(7“) ©® V) ®c.
VGV(B[.]k)

Fig. 3(a) shows the offset region construction in 2D on one quadrant and Fig. 3(b) shows the complete
offset region of a closed L.-digitized circle. The structuring element is an axis-oriented square. In Fig. 6
we can see the offset zones for the three closed digital spheres based on adjacency norms.

Figure 3: Construction of the offset region of a quadrant (a) and the whole closed Loo-circle (b).

4.4. Digital circles and spheres based on the 0-adjacency norm

The 0-adjacency norm corresponds to the usual L -norm. The 0-adjacency ball is an axis aligned
hypercube of side 1. Geometrically, in the 2-dimensional space, it is composed of 4 edges and 4 points, and
in the 3-dimensional space, of 6 faces, 12 edges and 8 vertices.

The closed digitization model based on this norm is known as the supercover digitization model. The
supercover model has been extensively studied [21]. Linear objects can be described analytically in this
model [30]. We will show that circles and spheres can also be analytically described in this model.

The analytical characterizations of digital circles based on the 0-adjacency norm are given by the following
proposition.



Proposition 4 (Analytical characterization of the [ -digitized circles). The analytical characteri-
zations of the [],-digitizations of a circle S, are given by:

562,7‘ (v) <[v-c]; - 1/2

Dgy, (Ser) = {VEL: v (\/ [(v—c)tre], <1/2 Nser(v) 2 =lv—c =1/2) 0,
s%r (v)<[v—c], —1/2

DY, (Ser) = {vez’:| (\/ (v o)y < 1/2) | A Ger === =1/2) ¢,
i=1

Dg,, (Ses) = {vez?: v<\2/[(v_c)irei]0§m> A(Ser (V) > —[v—c], —1/2) 7,

DOB[.]O (SC,T) - vV € Z2 : v (\2/ [(V . C) + ’I"ei]o S 1 A (Sc,r (V) > O) R
Disy, (Ser) = {VEZ2: (02 s0r (V) 2 —2[v — )y =)} .

Fig. 3(b) shows the offset region of a closed [-],-digitized circle (or supercover circle) and Fig. 6(a) shows
the offset region for a closed [],-digitized sphere (or supercover sphere).

Figure 4: The digitizations D Se.r), D Sec.r), D Se.r), DoB Se.r), Din Se,r) of a circle Sc - of center ¢ = (0,0
Llo ™™ By, V7 By, 7 [lo M™% [lo ™" ’
and radius r = v/10.

Let us just recall that, with the adjacency norm notations, we have [v — |, = |v1 — ¢1| + |v2 — 2| and,
for instance, [v — (c +rey)], = max (jvy —c1 — 7|, [v2 — ¢c2]).

The analytical description of a supercover circle is composed of 4 spheres of radius r (corresponding to,
and centered at, each of the 4 vertices of the 0-adjacency ball B centered at ¢) and 4 copies of By, centered
at each of the cardinal points of the circle S, (corresponding to the 4 edges of BHO)' To check if an integer
point belongs to such a digital circle requires for the worst case 6 tests.

PRroOOF. We just consider the case of DB[-]o (Se,r)- The offset region of DB[-]o (Se,r) can be regarded as the
intersection between the offsetting of the convex polygonal ball By,) by the radius r (which define the outer
boundary of the offset region) and the set of points at a minimum distance of r from B, (which define the
inner boudary).

The offsetting of a polygon by a radius can be decomposed in the contribution of its vertices (disks) and the
contribution of its edge (translated copy of itself). The contribution of one vertex v € V is the disk of center
c+v and radius r. We can describe it as the set {x cR?: Setv,r(x) < O}, or, expressed with the map s ., as

the set {X eR?: s (x) < 2521(2(351- —C)v; — vf)} The maximum of (2z;v; — v?) is reached when z; and
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v; have the same sign. Moreover, for all i € {1,2}, we have v; € {—1/2,1/2}. Thus, applying appropriate
symmetries, the contribution of V to the offset region is the set {X eR?:s.,.(x) < Zf=1(|acl — ¢l — 1/4)}.

The contribution of one edge to the offset region is {x € R? : [x — (c +rn(e))], < 1/2}. The edges are
axis-aligned, each admits as outward-pointing unit normal vector n(e), one of the vectors te; or +e,.

Consequently the contribution of E to the offset region is {X €eR?: \/f=1 [(x —c) £re, < 1/2}.
The same reasonning as the one for the contribution of vertices to the offsetting of By, by the radius r
can be applied to obtained the analytical characterization of the set of points at a minimum distance of r

from B[']o' O

Note that Lincke proposed another interpretation of this result based on mathematical morphology opera-
tions [31]. Note in addition that Nakamura and Aizawa, based on a cellular scheme, defined a digital disk [17]
that is actually a supercover disk. The outer border of their digital disk is thus also the outer border of a
supercover circle.

Let us now consider the dimension three. The analytical characterizations of a digital sphere based on
the 0-adjacency norm is given by the following proposition:

Proposition 5 (Analytical characterization of a supercover sphere). The analytical description of
a closed centered [-],-digitization of a sphere S, Dg,,, (Se,r), is:

3
3 1
ser <lal,—2 v [V ([airej]o < 2)
j=1
3
vV E Z3 : 3 3 3 ) . N (Sc,r (V) > _[a]2 - 4> y
V| Zet-r e Sl g | (m125)
=1\ i=1, i=1,
i#] i#j

with o« = v — c.

The analytical description of a supercover sphere is composed of 8 spheres of radius r (corresponding to,
and centered at, each of the 8 vertices of the 0-adjacency ball B[,]O centered at ¢), 12 cylinders of radius r
and width 1 (corresponding to, and having as axis, each of the 12 edges of B[.]O centered at ¢) and 6 copies
of By, centered at each of the cardinal points of the sphere Sc (corresponding to the 6 faces of BHO). To
check if an integer point belongs to the digital sphere requires at worst 14 tests.

PrOOF. The inner boundary (s, (v) > —[a], —3/4) and the contribution of vertices (sc . (v) < [a], —3/4)
and faces (\/jf:1 ([ = rej], < 1/2)) to the outer boundary can be easily deduced from the 2-dimensional
case introduced above.

The edges of the 0-adjacency ball, B[.]O, are directed either by e; or ez or eg. Without any loss of
generality, let us focus only on the four edges directed by es. All have one of their extremities in the
plane {x € R : z3 = —1/2} and the other in the plane {x € R?® : z3 = 1/2}. Moreover, each of these
edges contain a point of P = {-1/2,1/2} x {—1/2,1/2} x {0}. Their contribution is thus the union of
the cylinders of radius r, directed by es, restricted to the thick plane {x € R?® : |z3] < 1/2} and trans-
lated to a point of P. The equation of an infinite filled right circular cylinder of radius r and directed
by es at o is {x eR3:z?+a23 12 < 0}. With the same argument as the one used for the contribu-
tion of vertices in the 2-dimensional case, we obtained the following contribution for edges directed by
es: {x€R®: (w1 —c1)? + (w2 — c2)? —r? < |z — 1] + |w2 — 2| = 1/2) A (Jwz — c3] < 1/2)} and then the
general analytical characterization of the contribution of all edges of B, . O

In order to save space, we do not present here all the formulas for the semi-open and Gaussian [-]-
digitized spheres. With the help of the proof of proposition 4, the reader should not have any difficulties to
get the corresponding analytical characterizations.
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4.5. Digital circles and spheres based on the (n — 1)-adjacency norm

The (n — 1)-adjacency norm [],, ;) corresponds to the usual norm £, . The (n — 1)-adjacency ball is
the dual polytope of the unit hypercube : the cross-polytope. The closed digitization model based on this
norm is known as the closed naive digitization model [22].

The analytical characterizations of digital circles based on the 1-adjacency norm are given by the following
proposition:

Proposition 6 (Analytical characterization of the closed centered [],-digitized circle). The an-
alytical characterization of the closed centered [-],-digitization of the circle S, is defined by:

Seqr (V) < [v—c],—

Dg,, (Ser)={VETZ: 5
t ¢ V \/ (V-C)-‘— 77"1';
te{—1,1}2

The analytical description of a closed naive circle is composed of 4 spheres of radius r (corresponding
to, and centered at, each of the 4 vertices of the l-adjacency ball B centered at ¢) and 4 copies of By,
centered at the intersection of the circle S¢ . and the lines passing throw ¢ and whose directing vector is in
{=1,1} x {1} (corresponding to the 4 edges of By} ). To check if an integer point belongs to such a digital
circle requires at worst 6 tests.

PrROOF. The set of vertices of the 1-adjacency ball, B[.]Bk, is the set V =
{(0,1/2);(1/2,0); (-1/2,0), (0, —1/2)}. Their contribution to inner and outer boundaries of Dg | (S,) is
deduced with the same argument as in the case of Dg | (Sc,r). For all edge e, n(e) € {—v2/2,v/2/2}2.
Thus each edge induces a copy of B[,]Bk, translated by a vector rn(e) from the center c of the circle Sc ,,

{x€eR?: [(x—c)+rn(e)], <1/2. O
And let us now examine the analytical characterization of the closed centered [-],-digitized sphere:

Proposition 7 (Analytical characterization of the closed centered [-|,-digitized sphere). The
analytical characterization of the closed centered [-],-digitization of the sphere Sc, is defined by:

1 1
Ser (V) < [v—c}o—z Y \/ [v— (c—&-\frt)] §§
te{—1,1}3 2

1 1\?
Dp,,, (Ses) = v EZ?: (vi — i) + 2 (|(vj —¢j) +t(op —cr)| — 2) <

V(i,5,k)EIL el — _ <
t(e{j—l),l} A |(UJ CJ) t (v —cx)| <

A (sw. (v)>—[v—c], - i)

where 11 is the set of circular shifts of (1,2, 3).

The analytical description of a closed naive sphere is composed of 6 spheres of radius r (corresponding
to, and centered at, each of the 6 vertices of the 2-adjacency ball By, centered at c), 12 cylinders of radius
r and width v/2/2 (corresponding to, and having as axis, each of the 12 edges of By, centered at c) and 8
copies of B}, centered at the intersections between the sphere S, and the lines passing throw ¢ and whose

directing vector is in {—1, 1} (corresponding to the 8 faces of Byj,). To check if an integer point belongs to
the digital sphere requires at worst 22 tests.

12



PRrROOF. The structuring element for the adjacency norm [.], is an octahedron whose vertices correspond to
the center of the faces of a unit cube. The analytical description of a closed centered [-],-sphere is composed
of 6 spheres or radius r (corresponding to, and centered at, each of the 6 vertices of an octahedron centered
at ¢), 12 cylinders of radius r and width 1 (corresponding to, and having as axis, each of the 12 edges of
an octahedron) and 8 structuring elements positioned at a distance r from ¢ orthogonally to the faces of an
octahedron (corresponding to the 8 faces of an octahedron). The last line of the analytical characterization
of the closed centered [-],-sphere corresponds to the inner boundary of the offset region while the other lines
correspond to the outer boundary. The first and last equation lines are obtained in the same way as for the
supercover sphere and [-];-circle. The last line of the outer boundary description corresponds to the faces

of the structuring element, which is an octahedron, translated by a vector (7‘ + ?, r+ ?, r+ @) This

corresponds to the faces of the structuring element translated orthogonally at a Euclidean distance of r.
In order to obtain this face at the good spot, we simply describe the equations of a complete structuring
element at these spots.

The cylinders are obtained by developing the formulas describing a cylinder of radius r for each edge of
the structuring element centered at c. For instance, the cylinder defined by % ((vs — ¢2) + (v3 — ¢3) — %)2 +
(1 —1)” < 12 A (g — ¢2) — (v — ¢3)| < 1 corresponds to a cylinder of radius r and of axis the edge

c1,co + %, 03) - (cl, ca,C3 + %) The planes perpendicular to the edge correspond to |(ve — ¢2) — (v3 — ¢3)] <
5. The equation of the cylinder is simply obtained as the points that are at a maximal Euclidean distance
of r from the edge. By doing this for all the edges we obtain the given equations. |

Based on what has been presented in the proof of proposition 4, the reader should not have any difficulties
to get the analytical characterizations of the other types of [-];-circles and [-],-spheres.

Note that the Bresenham’s circle is by construction a 0-connected and 1-separating circle with integer
radii and integer coordinate centers. It is actually a particular case of the circles introduced in this section:

Proposition 8 (Bresenham’s circle). Let S. . be a circle (2-dimensional hypersphere) with center ¢ € Z>
and radius v € N*. Then, the Bresenham’s circle of center ¢ and radius v is the same set as DB[-h (Se,r),

DE[-M (Se,r) or Dy, (Se,r)-

PRrROOF. A Bresenham’s circle is, as we mentioned, due to its algorithmic construction, a 0-connected and
1-separating digital circle. Its points are the closest ones to Se, [32]. As such it corresponds to one of the
closed or semi-open ['],-digitizations. Moreover, no point (z + 3,y) or (z,y & 1), with (z,y) € Z? belong to
a Euclidean circle that has an integer coordinate center and an integer radius. This means that no integer
coordinate point lies on the inner or outer boundary of the offset region Se,, ® B, (%), which is removed by
choosing either the inner or outer semi-open digitization model. O

Nevertheless, the extension of Bresenham’s circles to non-integer parameters, namely Pham’s circle [19]
does not fit into the digital circles based on adjacency norms. In fact, Pham’s circle corresponds to a flake
based circle as we will see in section 4.

4.6. Digital spheres based on the 1-adjacency norm

In a 3-dimensional space, we have not examined the 1-adjacency norm yet. There is no corresponding
digital circle. This leads to 1-separating digital spheres.

Proposition 9 (Analytical characterization of the closed centered [-|,-digitized sphere). The
analytical characterization of the closed centered digitization based on the 1-adjacency norm of the sphere

13



Se,r 15 defined by:

Scr <Z|U1_Cz|— mm {lq}l Cz'}—*
1 1\ 2
(Ivz ) +*(|(Uj—6j)+t(vk—ck)|_,> <2
o v (O :
Vg RE \ A (v —¢;) —t(vk — k)| < 5
Ds), (Ser) = Ve : te{-1,1} i 2 3
: 1
Vv ({V ( )} 5) (\/(V— C:trel)]1<2)>
e 11}3 ! i=1
; 1
A <sc,r (v) > *Z |v; — ci| + 1@}23“”1' - 2)
=1 St

where 11 is the set of circular shifts of (1,2,3).

The analytical description of a closed centered [-];-digitized sphere is composed of 12 spheres of radius
r (corresponding to, and centered at, each of the 12 vertices of the 1-adjacency ball B, centered at c), 24
cylinders of radius  and width v/2/2 (corresponding to, and having as axis, each of the 24 edges of By,
centered at ¢) and 10 copies of B['h centered at the intersections between the sphere Sc - and the lines passing
throw ¢ and whose directing vector is e; (for all i € {1,2,3}) or is in {—1,1}? x {1} (corresponding to the 14
faces of B[.]l). To check if an integer point belongs to the digital sphere requires 28 tests for the worst case.

ProoF. The proof for the l-adjacency norm sphere is similar to the proofs for the closed centered [-],-
digitized spheres and [-],-digitized spheres. The last line in the equations corresponds to the inner boundary
while the other lines describe the outer boundary. The first line of the outer boundary corresponds to the
spheres of radius r centered at each of the vertices of the structuring element translated to c.

The  spherical parts in  the first line come from  developing equations
(v1 —c + %)2 + (UQ — o+ %)2 + (v3 — 03)2 <72 for all the 14 vertices of the structuring ele-
ment centered at c¢ and applying appropriate symmetries. The final formula, complicated as
it seems, is actually very similar to the one corresponding to the 1-separating hyperplanes [2].
It is a consequence of lemma 1. The cylinders are obtained by developing the formulas de-
scribing a cylinder of radius r for each edge of the structuring element centered at c. For
example, the edge (c1+1/2,¢2,¢5+1/2) — (c1,¢2+1/2,¢3+1/2) corresponds to the cylinder
{x ER3: (23— 1/2)2 +1/2(x1 —c1+ a9 — g — 1/2)2 < T2} N {X ER3: |z —c1 —a2+ca—1/2| < 1/2}.
Appropriate symmetries allows to simplify the final expression to the one in the proposition. Finally, there
are 14 faces. From those faces, 6 have as normal vector n(f) = +e; (for all ¢ € {1,2,3}) and the 8 other
have normal vector n(f) € {—+/2/2,v/2/2}® which explains the analytical expression in the last line of the
outer boundary description. O

like

We have provided an analytical characterization of 0-separating spheres in section 4.4 (Fig. 5(a)), an
analytical characterization of 2-separating spheres in section 4.5 (Fig. 5(c)) and an analytical characterization
of a 1-separating sphere in this section (Fig. 5(b)).

5. Digital hyperspheres based on adjacency flakes

In the previous section, the offset region was based on structuring elements that correspond to balls based
on norms. We showed that we could define k-separating digital hyperspheres this way. Those hyperspheres
have, however, simple points. In the present section, we propose a new type of structuring elements that
preserves the k-separation property with fewer simple points. In some cases, strict k-separation can even be
achieved for digital hyperspheres.
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Figure 5: B[']o" B['h_ and B[,]z—digitized spheres of radius » = 10 and center ¢ = (0,0,0). They are respectively 0-, 1- and
2-separating in Z™.

Figure 6: Offset regions for By,
z.

B['h' and 6[4]2—digitized spheres of radius 3. They are respectively 0-, 1- and 2-separating in

0’

The new structuring elements we introduce are derived from the k-adjacency balls and we call them
k-adjacency flakes or simply adjacency flakes. Such a set is the intersection of a ball based on an adjacency
norm and a finite number of straight lines through the origin.

Definition 2. The closed k-adjacency flake, Fi.(p), based on the k-adjacency norm, [-],, and with radius
p € RT is defined by:

Fr(p) = By, (p) N {X e{-a,0,a}":a € R+,Z |z;] < (n— k;)a} .

i=1

The open k-adjacency flake, Fj(p), follows the same definition with an open ball Bﬁ]k(p) instead of the
closed one By, (p).

Fig. 7 shows the different adjacency flakes in 2- and 3-dimensional spaces. In what follows, the structuring
elements of the general model A and A* will be respectively a closed flake Fy(p) and an open flake F}(p)
with same associated k-adjacency norm and radius. Note that, since for all x € Fi(p), —x is also a point of
Fr(p), we have the property that for a given x € R™, for ally € ({x} ® Fi(p)), x € {y} ® Fi(p)).

For the rest of this section, we assume that p = 1/2. For the sake of simplicity, the radius is omitted
in model notations so that Df (Se,r), Di, (Se,r), Dip, (Se,r) and D (Se,r), all refer to digitizations of a
hypersphere S, based on a k-adjacency flake of radius 1/2. A Fy-digitized hypersphere under a given model
is by definition included in the By -digitized hypersphere under the same model. Nevertheless, a structuring
element Fy, is enough to ensure the k-separation property for the four semi-open Fy-digitized hyperspheres.
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Proposition 10. The following digital hyperspheres are k-separating in Z'™:
- Df (Ser) withr > (vn+vVn —k)/2,

- D (Se.r) with r > (v/n+vVn —k)/2,

- Dig, (Se.r) with 7> \/n/2 4+ vVn — k,

- Dfp (Ser) with > /n/2.

PROOF. Since Fi(p) C By, (p), the conditions to ensure that the (digital) complement of a [-];-digitized
hypersphere admits two distinct k-connected components remain valid for a Fy-digitized hypersphere as
depicted in Fig. 8(a) and 8(b).

Let us consider two k-adjacent integer coordinate points v € Séf ;and w € S, (or equiv-
alently v. € Sf, and w € S;F), ie. [v—w], = 1. By definition, we have (v — w) €
{x:x€{-1,0,1}" A" | |z;| <n —k}.The first condition is induced by |[v — W[l = 1 and the sec-
ond one by ||v — wl|j1/(n — k) < 1. Let us now consider s = Sc, N [vw] where [vw] is the straight
segment linking v and w (s exists since v and w are on each side of the hypersphere S;,). Since
the direction of [vw] is very constrained according to the previous statement, we have {v,w} C
{ste{x:xe{-a,0,a}", 0 e RFAY " | |z;| < n— k}) .Let us now show that {v,w} N ({s} @ B[.]k(p)) #
() and thus that v or w belongs to the Fy-digitized hypersphere. Remember that s is necessarily between v
and w since it is on [vw].

In the case of a centered type model, p = 1/2 and three cases can occur: either [v —s], = 1/2 and
[w—s], =1/2,0r [v—s], <1/2, or [w—s], <1/2. In all three cases, v or w belongs to ({s} ® B[,]k(l/Q)).

In the case of a Gaussian type model, the structuring element is 2Fj(1/2), which is equivalent to Fy(1).
Three cases have then to be considered: either [v —s|, < 1and [w—s|, <1,orv=s,orw=s. Inall
three cases, v or w belongs to ({s} ® By (1)).

As a consequence, for each couple of k-adjacent integer points (v, w) € Sj: » X Sgry at least one of them
is in the digital hypersphere. |

The F-digitizations of S¢, come with simple analytical characterizations as soon as the closest and the
farthest points to c, in an adjacency flake translated to any point of S ., are vertices of this adjacency flake.
Such a condition is fulfilled for reasonably large radii as depicted in Fig. 8(c) and 8(d).

Proposition 11. For a given x € R™, let o(x) be a permutation of the components of x such that the
terms of the sequence (0;(x))1<i<n are decreasing in absolute value. Then, we have the following analytic
characterizations:

n—k n—=k
D;fk(Sc,T-) = {v ez — Z <|0’i(V —o)|+ %) < Ser(v) < Zmax{hn(v —c)|— i,O}} (if r > /n/2),

Df, (Ser) = {v ez — i (|0i(v —c)|+ i) < Ser(v) < i max{|ai(v —c)|— i,O}} (if r > /n/2),

D;LFk (Se,r) = {v EZ":0< scr(v) < i max {2|c;(v —¢)| — 1,0}} (if r > /n),
n—k =t

D, (Ser) = {v ez — Z (2o (v — )| + 1) < 8¢, (V) < 0} .

- oK

Figure 7: Adjacency flakes Fi(p), Fo(p) in the 2-dimensional space and Fa(p), F1(p), Fo(p) in the 3-dimensional space.
Adjacency flakes are depicted in black and balls of k-adjacency norms in light blue.
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) x

(a) (b) (c) (d)

Figure 8: (a),(b)- Sufficient condition to ensure that a hypersphere separates the space: the bounded component of the
complement of the offset region contains a unit hypercube. (c),(d)- In light grey, offset regions obtained by considering that
the maximum and the minimum distance to the center of the circle are reached in vertices of the flake. In dark grey, the real
offset region. For reasonable radii, both are equivalent (c), This is no more the case for small radii (d).

PROOF. Let us prove the analytic expression for DﬁFk (Se,r). Remember that for Gauss type models, we use
a structuring element twice bigger as usual (ball of radius 1 instead of 1/2).

An integer point v € SF, belongs to D (Sc.r) if ({v} @ Fj(1)) NS, # 0. In other words, the map se
should vanish in a neigborhood of each integer point of the digital hypersphere:

Dij (Se,r) = {v €Z": min {sc,r(v+e)} <0< sc,r(v)}
e€F (1)
= vez": vifoizf min vi70¢+6¢2 > ser(V) >0
{ > (=)’ = min {;_5 (0= 00 +)° b > ser(¥) 2

For all x = (z1,...,2y,) € Fi(1), and for all j € {1,...,n}, we have (x — 2z;e;) € Fi(1) with (e1,...,en)
the vectors of the canonical basis of R™. In other words, even if one changes the sign of some components of x,
x remains in the adjacency flake. Thus for all v € Z™, there exists €’ € Fi(1) such that for all s € {1,...,n},
gi'|vi — 0;| = €;(v; — 0;). Without loss of generality, we consider:

Dl (Ser) = {v SYAE ; lvi — oi]” — EGHFliI(ll) {; (Jvi — 05| + 52-)2} > ser(V) > 0} )

Since & € Fi(1), we have, with 0 < o <1, e € {—a,0,a}" and } ;| |&;| < (n — k)a. € admits at least k
zero components. According to the condition r > 24/n, € should belong to {—1,0}" to minimize the lower

bound in the analytic expression. More precisely, for all i € {1,...,n}, if |v; — 05] < 1/2, (Jv; — 0] +&;) is
minimal for &; = 0 else, (Jv; — 0;| + 81‘)2 is minimal for €; = —1. Then the global minimum is reached for a
vector €:

- with zero at each index of the k small components of v — ¢ in absolute value,
- with zero at each index of other components of v — ¢ with absolute value lower than 1/2,
- with the value —1 for each component associated with the remaining indexes.

With o, it leads to:

n—k n—k
Dij (Se,r) = {v c7": Z los(v — c)|2 — Z min {(\Ui(v —c)| — 1)2 (|oi(v — c)|)2} > Se,r(V) > 0} ,

and finally to the expression of Dij (Se,r) given in the proposition.
The proof is similar for other models. (]
Those analytic characterizations allow to easily prove topological properties, in particular for Gaussian

type digital hyperspheres.
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Proposition 12. The inner (respectively outer) Gaussian digitization of a hypersphere Sc., D, (Se.r)
(respectively Dij (Sc,r)), is the set of integer points in S;, (respectively Sf,) k-adjacent to at least one
integer point of S;f » (respectively Sc°).

PROOF. The offset region used in Djp (Se,r) lies entirely in Sc.- Proposition 10 induces that the set of
integer points in S¢, that are k-adjacent to at least one integer point of Sj;," is included in D, (Se,r)-

Let us consider an integer point v € D (Sc,r). Vv satisfied Z?;lk 2loi(v—c)| = 1) < ser(v) <0. It
exists w € Z" k-adjacent to v such that for all i € {1,...,n — k}, o;(w —¢) = 0;(v —c¢) + 1 and for all
i€{n—k+1,...,n}, 0i(w—c)=o0;(v—c). Then, we have sc(w) > 0 and D;p, (Sc,) is the set of integer
points in S¢, k-adjacent to at least one integer point of Sj, ..

The proposition can be proved for Dij (Se,r) with the same argument. |

A direct consequence of this last proposition and proposition 3 is that the digital hyperspheres DZB[] (Se,r)
Ik

and D;p. (Sc,r) define the same set of integer points.

D:Fk (Se,r) comes with a stronger topological property.
Proposition 13. The outer Gaussian digitization of a hypersphere Sc ., Dij (Se,r) is a strict k-separating
set in Z".
PROOF. Let us consider v € Dij(Sw). It exists w € Z™ k-adjacent to v such that for all ¢ € {1,...,m},
oi(w—c)=o0;(v—c)—1land foraliec{m+1,...,n}, o5(w—c)=o0;(v—c), with:

m =argmax{i € {1,...,n—k}:0i(v—c)>1}.

Since v satisfies 0 < s¢ (V) < Z?:_lk max {2|o;(v — ¢)| — 1,0}, we have sc,(w) < 0 and w € S_ . Thus,
Dij (Se.r) \ {Vv} is not k-separating in Z". It implies that Dij_ (Se,r) is a strict k-separating set. O

In addition to come with the highlighted topological properties, adjacency flake based models also char-
acterize the Pham’s circles [19], that is, the main extension of Bresenham’s circles to non integer parameters.

Proposition 14 (Pham’s circle). In a 2-dimensional space, we have, with ¢ = (xq,yo):

1 1
Df (Se,r) = {(m,y) € 7% : —max {|z — x|, [y — yol} — 1S Ser(®,y) <max {|r — x|, [y — Yo} — 4} :

This digital circle describes the same set of integer points as the Pham’s circle of center ¢ and radius .

ProOF. Without loss of generality, we restrict the study to the first octant thanks to symmetries. At each
step, the Pham’s algorithm consists in computing A = 72 — (z — % —20)? = ((y+1) — yo)? from the current
pixel (z,y), which belongs to the digital circle. If A > 0, then the pixel (z,y + 1) is selected because it
belongs to the digital circle. Otherwise, if A > 0, the pixel (x — 1,y + 1) is selected because it belongs to
the digital circle. Then, the algorithm proceeds to the next step with the new current integer point.

Let us now consider a pixel (z,y) in the first octant of D;fl (Se,r). In order to belong to D;fl (Se,r) , the
pixels (z,y + 1) and (x — 1,y + 1) should respectively satisfy:

—(z— o) — 1 < Ser(z,y+ 1) < (x— o) — 3.

—(:c—l—aco)—i < Ser(z—ly+1) < (w—l—mo)—i,
<
If we express those conditions according to sc (z — %, Y+ 1), we obtain:

0 < ser(z—3,y+1),
sc7r(xf%,y+l) < 0

Only one of the two pixels belongs to D;l (Se,r) according to the sign of sc (J; — %, y+ 1). The fact that
A =Scp (m — %7 y+ 1) proves the equivalence between Pham’s circle and D;l (Se,r)- O
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Note that the initialization of the Pham’s algorithm is questionable. The execution of the algorithm
suggests that the first pixel has to be selected according to the 1-adjacency flake. This is not the case in the
original algorithm. In Proposition 14, we consider this problem fixed. As a consequence, Bresenham’s circle
isalsoa D;fl (Se.r). The analytic characterization introduced in [33] is equivalent to the one in Proposition 14
for integer parameters (under such conditions, one can remove the term —1/4 in both bounds).

6. Conclusion

In this paper, we introduced a family of morphological digitization models. The digitization of an object
is the set of integer coordinate points lying in a so-called offset region. The offset regions are analytically
characterized in order to mathematically describe the digital object independently of a generation algorithm
or of the set of integer points composing it. We focused on orientable hypersurfaces and proposed several
digitization models, either closed or semi-open and either on only one side of the hypersurface (inner and
outer Gaussian models) or centered on it.

According to the shape of the structuring element, we have introduced digital circles, spheres and in
some cases hyperspheres having different topological properties.

First, we focused on balls based on the Euclidean norm or the adjacency norms. From these balls, we
analytically characterized several digital circles, spheres and hyperspheres. When they are based on the
k-adjacency norm, these digital sets are k-separating.

We then introduced a new type of structuring elements that is still based on the k-adjacency norms but
smaller than the balls of the norms. These structuring elements have been called adjacency flakes. They lead
to thinner k-separating digital hyperspheres, which have been analytically characterized in any dimension.
Moreover, we show that the semi-open outer Gaussian model leads to strict (i.e. without simple points)
k-separating digital hyperspheres.

The proposed definitions are generic and extend previous definitions (like Bresenham’s circle, Kim’s circle
or Pham’s circle) to arbitrary centers and radii, thickness or dimension. The Kovalevsky’s circle [18] is the
only digital circle not covered in the present paper. Nevertheless, it can be analytically characterized with
our models and with a different flake we do not introduce here.

One of the main perspectives of this paper is of course the extensions that analytical descriptions allow:
extension to thick digital circles, spheres and hyperspheres, recognition and generation algorithms for these
different objects. For the adjacency norms, the analytical description of hyperspheres is a difficult problem
that remains largely open. Another perspective is the extension to more complex algebraic curves [34, 35, 36].
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