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Abstract

A digital plane is the set of integer points located between to parallel planes. We solve the following
problem: how to compute the exact normal vector of a digital plane given only a predicate that answers
the question “is a point x in the digital plane or not”. Our approach is iterative and “as local as possible”.
We provide a worst-case complexity bound in O(ω logω) calls to the predicate, where ω is equal to the
arithmetic thickness parameter of the digital plane. Furthermore, our algorithm presents a much better
average behavior in practice.

1 Introduction

The study of linear structures onto digital objects is of central importance in digital geometry. The first step
was of course to examine 2D digital straightness (e.g. see the review of Klette and Rosenfeld [24]). These
studies showed that digital straight lines have lots of properties. Their arithmetic definition as diophantine
inequalities leads to optimal online recognition algorithm [11]. Their combinatorics present lots of self-
symmetries [7, 2] and palindromes [2, 5]. Their recursive nature is directly related to the simple continued
fraction approximation of the line slope [1, 35]. Geometrically, digital straight lines are both digitally
convex and concave [31]. The structure of their Delaunay triangulation is also related to their recursive
structure [30]. This fundamental studies on digital straightness were used for analysing 2D digital contours,
by considering the finite pieces of digital straight lines included in the contours [33, 18]. The ones that
were not included into any one else were called fundamental [13] or maximal segments [10]. They emerge
as an essential tool for analysing digitized curves, e.g. to decompose a curve into convex and concave parts
[17, 13, 31]. Their asymptotic properties [10] were the main ingredient for showing the multigrid convergence
of several discrete estimators (tangent and length estimation [27], even curvature estimation [21, 28]). They
prove also to be useful to analyse the meaningful scale at which a contour should be considered and therefore
to determine the importance of the noise level [22].
Hence, similar hopes are put into the study 3D linear structures, often called digital planes (e.g. see [6]), in
order to tackle the problem of 3D digital shape analysis. Their arithmetic definition has been less fruitful for
designing recognition algorithm, except for some ideas developed in [12]. Most algorithms recognising pieces
of digital planes [23, 34, 19] use computational geometry techniques based on convexity properties. Some
of them uses arithmetic but only to simplify the search of the plane parameters [8]. Their combinatorial
structure has appeared to be more complex as expected [26]. This fact became apparent when studying
their connectedness [20, 15, 4, 14]. The first link between a digital plane and the two-dimensional continued
fraction of its normal vector was exhibited in [16, 3], and lead to a desubstitution algorithm for recognizing
(specific) pieces of digital planes. It is clear that having the notion of maximal planes, natural 3D extension
of maximal segments, would be extremely interesting for analysing 3D digital surfaces. However, most
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Figure 1: Even though this paper focuses on the computation of the normal vector of an infinite digital
plane, the motivations come from 3D shape analysis (See Figure 2 and Figure 7 for detailed exemples on
a digital plane). In this image, algorithm FindNormal (Algorithm 2) is used to identify linear parts on the
surface of a digitally convex object. Left : the input object is a 3D digital image described as a set of
voxels. The predicate “Is x ∈ P“ is the characteristic function of the set of voxels’ vertices that belong to
the boundary of the digital shape. Right : algorithm FindNormal is run starting from each reentrant corner
of this set. The triangles shows the upper face of the output tetrahedrons.

works propose only a greedy segmentation into pieces of planes [25, 29]. A notable exception is the empirical
approach of [9] which defines maximal planes as planar extension of maximal disks.
This work proposes a new algorithm to determine the normal vector N of a digital plane P , given only the
predicate “Is x ∈ P ?” where x is any point of Z3, and a starting point o in the plane. This algorithm
is local in the sense that a few points are progressively tested around the starting point o. This algorithm
is fast since it will not check all points surrounding o. This algorithm is simple to implement, since it
requires only a few elementary tests and additions of vectors. We prove that our algorithm extracts the
exact characteristics of P (i.e., integer normal vector and integer offset). Furthermore, its worst-case time
complexity is essentially some O(‖N‖1 log ‖N‖1). Even better, the algorithm returns also the smallest lattice
basis that generates the digital plane.
This algorithm sheds new light on the relation between the geometric and combinatoric properties of digital
planes and three-dimensional continued fractions. Contrary to most of multidimensional continued fraction
algorithms, our algorithm does not iteratively apply the same operation, but chooses at each step, among
a set of possible operations, the best one with respect to the geometry of the digital plane. It extracts
progressively independent Bezout vectors for the sought normal. Moreover, the specific Delaunay structure
of the digital plane is also exploited to force the algorithm to be as local as possible. This is why it can extract
the smallest lattice basis of the plane. In opposition with usual plane recognition algorithms [23, 34, 19, 8, 16]
whose input is a set of already identified points, this algorithm decides on the fly which next points should
be tested with “Is x ∈ P”. Hence we believe that this algorithm induces the notion of maximal pieces of
digital straight plane on a digital surface. This contribution is then the first step for analysing 3D digital
shapes with linear geometry (see Figure 1).
The paper is organised as follows. We start in Section 2.1 by recalling basic notions about digital planes, we
introduce the main definitions used in our algorithm and we state our main results. Since our algorithm has a
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local approach, Section 2.2 details what is the set of tested points at each step, and how they are classified into
a few configurations. Then Section 2.3 and Section 2.4 describe the operations that transform progressively
the initial guess. Each operation is triggered by some configuration. The whole algorithm is presented in
Section 2.5. Its correctness and its worst-case complexity are respectively established in Section 3 and 4.
Then Section 5 shows how the process is kept as local as possible, using Delaunay triangulation property.
Last, numerical experiments indicate that the average complexity of our algorithm is low with respect to
‖N‖1.

2 Algorithm for plane recognition

We present a new algorithm that computes the normal vector N of a digital plane

P = {x ∈ Z3 | 0 ≤ 〈x,N〉 < ω},

where vector N is strictly positive and irreducible, i.e. N ∈ N3
+ with gcd(N) = 1, and the plane is thick

enough, i.e. ω ≥ ‖N‖1. To make the exposition clearer, we are considering digital planes with shift to origin
equal to zero. It should be noted however that our algorithm remains valid for an arbitrary shift of the
origin, and its complexity bound remains the same.
The input of this algorithm is restricted to (1) an initial tetrahedron whose origin and vector extremities
belong to P , and to (2) queries “is some point x of Z3 in P ?”. Last, a constant Max, greater or equal to
ω, provides a stopping criterion. The algorithm principle is to move the initial tetrahedron with elementary
vector operations, such that each tetrahedron is closer and closer to the boundary of the digital plane.
Hence, the tetrahedron corresponds to the algorithm state, which is transformed by elementary operations
until stopping criterion is met. The next subsections present more formally all these notions, and give also
many useful properties that will be necessary to establish the validity and time complexity of this algorithm.

2.1 Main notions and principle of the algorithm

For any vector, say v, of Z3, we use the abbreviated notations v for 〈v,N〉.

Definition 1. A (oriented) tetrahedron is a tuple T = (o; u,v,w) ∈ (Z3)4. A tetrahedron is valid if

o,o + u,o + v,o + w ∈ P, (1)

det (u,v,w) = 1. (2)

u,v,w > 0, (3)

The normal of a tetrahedron T is the vector N̂(T) := (v − u)× (w − u).

We choose to call the base of the tetrahedron o because, among with the three vectors u, v, w this defines
a frame and o is its origin. To start with, the algorithm requires a valid (oriented) tetrahedron as input.
Although it is not compulsory, the algorithm is generally initiated with a trivial affine Z3 frame, that is
included in P .
An operation is a linear transformation of the tetrahedron:

Definition 2. An operation is a function λ : (Z3)4 → (Z3)4 such that given (o′; u′,v′,w′) = λ ((o; u,v,w)),
there exists a matrix Mλ with integer coefficients that satisfies : u′

v′

w′

 = Mλ

 u
v
w


Moreover, an operation is called valid if (o′; u′,v′,w′) = λ(T) is a valid tetrahedron, and o′ > o. Note that
the first condition implies that det(Mλ) = 1.
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The principle of our function FindNormal for on-the-fly plane recognition follows:

Input: A predicate “is x in P ?”, a valid tetrahedron T = (o; u,v,w).
1 while true do
2 if There exist a valid operation λ then
3 T← λ(T)

4 else break;

5 return T

BId−−→ F(w,u,v)−−−−−→ F(w,u,v)−−−−−→

Figure 2: Illustration of the execution of FindNormal on a digital plane with normal vector N = (3, 3, 4).
The computation is initialised with the valid tetrahedron T = (o, e1, e2, e3). From left to right, operations
BId, F(w,u,v) and F(w,u,v) are used to modify the tetrahedron which, on the rightmost image, is T′ =

(o′, (−1, 0, 2), (3, 0,−2), (−1, 0, 1)) and we have N̂(T′) = (3, 3, 4).

The hard part is to choose the correct operation such that it is valid. This is done mainly by testing well-
chosen points with “Is x in P ?” around the current tetrahedron. This is called a configuration and this is
detailed in the next sections. We shall prove afterwards that if the algorithm perform only valid operations,
then, at completion, the normal of the tetrahedron is exactly the normal N of P . This algorithm is fully
detailed in Algorithm 2, page 12, note that it requires an extra parameter Max which limits the solution
space explored. The role of Max is detailed in Section 2.4.3. More precisely, our main result is:

Theorem 1. Let P be a digital plane of normal N. Assume ω ≤Max and a valid input tetrahedron. Then
function FindNormal (Algorithm 2, page 12) produces a tetrahedron T = (o; u,v,w) with a normal vector
equal to the normal of P . Furthermore, point o is just below the upper plane (i.e. o = ω − 2), vectors
u,v,w are Bezout vectors for N (i.e. u = v = w = 1), and (v − u,w − u) form a basis of the lattice
X0 = {x ∈ Z3 | x = 0}.

Furthermore, assuming a computing model where addition, subtraction, multiplication by two and division
by two takes constant time, then this algorithm has the following complexity.

Theorem 2. Function FindNormal (Algorithm 2, page 12) has a time complexity O(ωT log2 Max), where
T is an upper bound on the time complexity of one call to predicate “is x ∈ P ?”.

For instance, if Max is chosen to be close to ‖N‖1, P is a standard plane (i.e. ω = ‖N‖1), and the oracle “is
x ∈ P ?” is a constant time operation, then FindNormal finds the correct normal N in O(‖N‖1 log ‖N‖1)
operations.

2.2 Local configurations around tetrahedron

At each step, we have to ensure that the tetrahedron is valid, hence we have to make sure that each
chosen operation is valid. The main difficulty is to show that the transformed tetrahedron is still valid. In
Definition 1, property (1) is easy to ensure, since it consists in making several queries “Is x ∈ P ?”. Property
(2) is also easy, since it suffices to choose linear transformation with determinant 1 (unimodular matrices).
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Figure 3: Left : a tetrahedron is given by a point o and three vectors u, v, w. Right : neighbor points that
belong to NT. Note that in order to simplify the figure, labels are given relatively to o, so that the point
labeled u is in fact o + u.

Property (3) is more delicate, since we wish to ensure that each u,v,w remains positive while true normal
N is unknown. We solve this issue by looking if several points around the current tetrahedron T belong or
not to P . This is called the configuration of T. We deduce then inequalities on u, v and w, which are used
to choose the correct operation. The following result will be particularly helpful:

Lemma 1. Let a point p ∈ P and two vectors x and y such that x > 0, y > 0.

p + x ∈ P and p + y /∈ P ⇒ x < y.

Proof. According to the arithmetical definition of a digital plane p + x ∈ P means that p + x < ω, whereas
p + y /∈ P means that either p + y < 0 or p + y ≥ ω. In this case it must be the latter one since 0 ≤ p < ω
and y > 0. As a consequence, since x,y > 0, we conclude that x < y.

Let us consider, around a valid tetrahedron T = (o; u,v,w), the set of six neighbor points NT = {o + u +
v,o + v + w,o + u + w,o + 2u,o + 2v,o + 2w}. See figure 3 for an illustration of T and NT.
Local configurations involve only three points around either o+u, o+v or o+w. In the sequel, we describe
local configurations relatively to vector u, i.e. we consider the three neighbors o + 2u, o + u + v, o + u + w
of point o + u. Other configurations are given by the six permutations of (u,v,w). We denote by σ any
permutation of (u,v,w), while the identity permutation is written Id. For example, if σ = (v,w,u), then
we have σ(u) = v, σ(v) = w and σ(w) = u.
Since we consider only three points and each of them may belong or not to P , there are exactly eight different
local configurations relatively to vector u. There are depicted in table 1.
The top row gather configurations such that o + 2u ∈ P , while the bottom row gather configurations
such that o + 2u /∈ P . Excepted the so-called Empty configuration, the configurations of the bottom row
corresponds to configurations of the top row up to permutations. Indeed, if o + 2u /∈ P but o + u + w ∈ P
(resp. o + u + v ∈ P ), then o + 2w ∈ P (resp. o + 2v ∈ P ), because if we assume that o + 2w /∈ P
(resp. o + 2v /∈ P ), lemma 1 implies both that u < w and w < u (resp. u < v and v < u), which raises a
contradiction.
Therefore, we have only four main configurations, up to permutations, which are called Translation, Brun-
Selmer, FullySubstractive and Empty. The implications about the relative order of u, v, w straightforwardly
come from lemma 1. If the Empty configuration is observed for all permutation σ, we do not have enough
information to perform a valid local operation and we must investigate a larger neighborhood (section 2.4).
The name of the first three configurations stems from the name of the corresponding operations (section 2.3).
More precisely, Fully Subtractive, Brun and Selmer are the names of three common generalized continued
fraction algorithms [32]. Given (a, b, c) ∈ R3 with 0 ≤ a ≤ b ≤ c, these continued fractions algorithms are
defined as :

Fully Subtractive : (a, b, c) 7→ (a, b− a, c− a)
Brun : (a, b, c) 7→ (a, b, c− b)

Selmer : (a, b, c) 7→ (a, b, c− a)
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u+ v
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u
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v
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Translation TId Brun-Selmer BId see Bσ, Fully Substractive FId

with σ = (u,w,v)
no implication u < w u < v u < v, u < w

o

u

v

w

2u
u+ v

u+w o

u

v

w

2u
u+ v

u+w o

u

v

w

2u
u+ v

u+w o

u

v

w

2u
u+ v

u+w

Empty EId see Tσ or Bσ, see Tσ or Bσ see Tσ or Bσ
with σ = (w,u,v) with σ = (v,u,w) σ ∈ {(w,u,v), (v,u,w)}

Table 1: Local configurations relatively to Id. Points that belong (resp. do not belong) to P are depicted
with black (resp. white) disks. There are only four main configurations up to permutations (in bold).

Note that the Brun-Selmer configuration does not allows to determine if u < v and thus the Brun-Selmer
operation (Section 2.3), mimics either Brun or Selmer algorithm.

2.3 Local operations

In this section, we present the three types of local operations. Each of these operations are described in
table 2 relatively to Id, while they may be considered relatively to any permutation. Each of these operations
is valid because it is triggered by a specific configuration.

Lemma 2. A local operation λ is valid on a valid tetrahedron T.

Proof. Let T′ = (o′; u′,v′,w′) = λ(T) and, without loss of generality, assume that σ = Id. For all local
operations, we have o′ = o + u and thus o′ > o since u > 0. It remains to check that T′ is a valid
tetrahedron. In all three cases, the fact that {o′,o′ + u′,o′ + v′,o′ + w′} ⊂ P (Definition 1, property (1))
is straightforward from the configurations (see table 1). We also have that det (u,v,w) = 1 (Definition 1,
property (2)), since the reader may easily check that the transformation matrix Mλ is unimodular in all
three cases. It remains to check that u′,v′,w′ > 0 for the three local operations (Definition 1, property (3)):

• The case λ = TId is trivial.

• For the case λ = BId, w′ > 0 because w > u from lemma 1 (see table 1).

• For the case λ = FId, v′,w′ > 0 because v > u and w > u from lemma 1 (see table 1).

2.4 Non-local operations

Local operations from Section 2.3 alone may not always find the normal vector of a digital plane since two
digital planes with different normal vectors may be identical for arbitrary large regions. In order to compute
the normal vector in all cases, we introduce non-local operations that are based on the exploration of a
lattice above the current tetrahedron. Such non-local operations are triggered if there does not exist any
valid local operation, i.e. we are in the case of the Empty configuration for all permutations σ.
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Translation TId

o′ = o + u

u′ = u

v′ = v

w′ = w

o′

u′
v′

w′

Brun-Selmer BId

o′ = o + u

u′ = u

v′ = v

w′ = w − u
o′

u′
v′

w′

Fully Substractive FId

o′ = o + u

u′ = u

v′ = v − u

w′ = w − u
o′

u′

v′

w′

Table 2: The three local operations are described relatively to Id as functions λ : (Z3)4 → (Z3)4 such that
(o′; u′,v′,w′) = λ ((o; u,v,w)) (Definition 2).

Let T = (o; u,v,w) be the current tetrahedron. Since we are in the case of the Empty configuration for all
permutations, the six points above T are not in P . Let L = {o + 2u + α(u − v) + β(u − w) | α, β ∈ Z}.
This lattice is illustrated on Figure 4. Note that u does not play a particular role in this definition since any
permutation of (u,v,w) defines the same lattice. On the other hand, in order to lighten the presentation of
the upcoming section, given a permutation σ of (u,v,w), we define :

Lσ : Z2 → Z3

(α, β) 7→ o + 2σ(u) + α(σ(u)− σ(v)) + β(σ(u)− σ(w))

Also, by abuse of notation, let Lσ(α, β) stand for Lσ(α, β). Clearly (α, β) forms a coordinate system for
points of L.

2.4.1 Non-local operation Fα,βσ

This operation generalizes the local Fully Subtractive operation (since F 0,0
σ = Fσ).

Definition 3. The generalized FullySubstractive operation Fα,βσ is a non-local operation on a tetrahedron
T = (o; u,v,w), defined for any pair of integers α, β. For the specific case of the permutation Id, it is the
linear transformation:

Fα,βId : (o; u,v,w) 7→ (o + u; u + α(u− v) + β(u−w),v − u,w − u).

The effect of this operation is illustrated on Figure 4. Of course, this operation is valid only for specific
preconditions, which are given by the following lemma. Note that even though both Definition 3 and
Lemma 3 does not require it, our algorithm is designed in such way that α and β are always non-negative
and one of them is strictly bigger than zero. By reference to Figure 4, this means that if we consider the
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α

β

o

u
v

w

2u+ (u− v) + 2(u−w)

α

β

o′

u′

v′

w′

Figure 4: Illustration of the generalized FullySubstractive operation F 1,2
Id .

four quadrants defined by the α, β coordinate system, point o + u is always sent to a point located in the
lower left quadrant.

Lemma 3. Let T = (o; u,v,w) be a valid tetrahedron, if the three following hypothesis hold then Fα,βσ is
valid on T.

(1) σ(u) < σ(v) and σ(u) < σ(w),

(2) Lσ(α, β) ∈ P ,

(3) Lσ(α− 1, β) 6∈ P or Lσ(α, β − 1) 6∈ P .

Proof. Without loss of generality, we set σ = Id so that u < v and u < w. Let T′ = (u′,v′,w′,o′) =

Fα,βId (T), the fact that o′ > o is obvious since u > 0. It remains to check that T′ is a valid tetrahedron :

• o′,o′ + u′,o′ + v′,o′ + w′ ∈ P is implied by the the fact that T is a valid tetrahedron and hypothesis
(2).

• u′,v′,w′ > 0. For v′ > 0 and w′ > 0, this is a direct consequence of hypothesis (1). For u′ > 0, we
consider the case where Lσ(α−1, β) 6∈ P , the case Lσ(α, β−1) 6∈ P being similar (see hypothesis (3)).
By construction, we have Lσ(α− 1, β) = Lσ(α, β)− (u− v). Moreover, Lσ(α− 1, β) 6∈ P implies that
Lσ(α − 1, β) is either smaller than 0 or greater or equal to ω. In this case it must be the latter one
since 0 ≤ Lσ(α, β) < ω and u− v < 0. We have :

Lσ(α− 1, β) ≥ ω,
Lσ(α, β) ≥ ω + u− v,

o + 2u + α(u− v) + β(u−w) ≥ ω + u− v,
u + α(u− v) + β(u−w) ≥ ω + u− v − (o + u),

u′ ≥ ω − (o + v) > 0

The last inequality comes from the fact that o + v ∈ P and thus o + v < ω.

• det(u′,v′,w′) = 1. It suffices to check that det(MFα,βId
) = det

 1 + α+ β −α −β
−1 1 0
−1 0 1

 = 1.
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2.4.2 Non-local operation Bβσ

This operation generalizes the local Brun-Selmer operation (since B0
σ = Bσ).

Definition 4. The generalized Brun-Selmer operation Bβσ is a non-local operation on a tetrahedron T =
(o; u,v,w), defined for any integer β. For the specific case of the permutation Id, it is the linear transfor-
mation:

Bα,βId : (o; u,v,w) 7→ (o + u; u + β(u−w),v + β(u−w),w − u).

α

β

o

u
v

w

2(u−w)

α

β

u′ v′

w′

Figure 5: The generalized Brun operation B2
Id.

The effect of this operation is illustrated on Figure 5. This operation is valid only for specific preconditions,
which are detailed by the following lemma. Similarly to the previous operation, the Definition 4 and Lemma 4
does not require β to be strictly positive but our algorithm is designed in such way that it is always the
case.

Lemma 4. Let T = (o; u,v,w) be a valid tetrahedron, if the three following hypothesis hold then Bβσ is valid
on T.

(1) σ(u) = σ(v) < σ(w),

(2) Lσ(0, β) ∈ P ,

(3) Lσ(0, β − 1) 6∈ P .

Proof. This proof is similar to the proof of Lemma 3. Again, without loss of generality, we set σ = Id so
that u = v < w. Let T′ = (u′,v′,w′,o′) = BβId(T), the fact that o′ > o is obvious since u > 0. It remains
to check that T′ is a valid tetrahedron :

• o′,o′ + u′,o′ + v′,o′ + w′ ∈ P is implied by the fact that T is a valid tetrahedron, hypothesis (2) and
the fact that u = v.

• u′,v′,w′ > 0. The fact that w′ > 0 is a direct consequence of hypothesis (1). For u′ > 0 and v′ > 0,
by construction we have Lσ(0, β − 1) = Lσ(0, β)− (u−w). This point is not in P by hypothesis (3)
and, as in the proof of Lemma 3, Lσ(0, β − 1) ≥ ω while u−w < 0 so that :

Lσ(0, β − 1) ≥ ω,
Lσ(0, β) ≥ ω + u−w,

o + 2u + β(u−w) ≥ ω + u−w,
u′ ≥ ω + u−w − (o + u),
u′ ≥ ω − (o + w) > 0.

The hypothesis u = v, implies v′ = u′ > 0.
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• det(u′,v′,w′) = 1. It suffices to check that det(MBβId
) = det

 1 + β 0 −β
β 1 −β
−1 0 1

 = 1.

2.4.3 Exploring lattice above tetrahedron for finding valid non-local operations

According to Lemmas 3 and 4, determining a valid non-local operations is related to finding pairs of nearby
points such that one belongs to P and the other not. In other words, we have to find the intersection between
the lattice and the sought digital plane. Function FindIntersection (Algorithm 1) performs this task,
by first an exponential march to find some point in P , followed by a dichotomy to determine the precise
location of the intersection.

Algorithm 1: Function FindIntersection: finds the intersection between the lattice above tetra-
hedron T and the sought digital plane P , in the direction u − v. A prerequisite is that o + 2u 6∈ P .

Input: A valid tetrahedron T = (o; u,v,w), a predicate “is x in P ?” and a constant Max.
Output: An integer k such that o + 2u + k(u− v) ∈ P and o + 2u + (k − 1)(u− v) 6∈ P .

1 s← o + 2u ;
2 k ← 1 ;
3 while s + k(u− v) 6∈ P do
4 k ← 2k ;
5 if k ≥Max then return ∞ ;

6 j ← 0 ;
7 while j 6= k − 1 do

8 m← b j+k2 c ;
9 if s +m(u− v) 6∈ P then j ← m ;

10 else k ← m ;

11 return k ;

The integer returned by FindIntersection allows to find pairs of adjacent points in L such that one is
in P and the other not. When no such pair exist in the given direction, this function stops after log2 Max
iterations and returns ∞.
The following two lemmas prove that the starting point o + 2u is not too far above the digital plane, and
guarantee that the first exponential march does not go through the plane.

Lemma 5. Let T = (o; u,v,w) be a valid tetrahedron. If o + 2u /∈ P , then ω ≤ o + 2u < 2ω.

Proof. Left inequality: If o + 2u /∈ P , then either o + 2u < 0 or o + 2u ≥ ω. It must be the latter one since
T is valid (Definition 1) and thus 0 ≤ o < ω and u > 0.
Right inequality: Since T is valid (Definition 1), we have 0 ≤ o < ω, u > 0 and 0 ≤ o + u < ω. These
inequalities imply that u < ω and we conclude that o + 2u < 2ω.

Lemma 6. Assuming ω ≤Max. For a valid tetrahedron T = (o; u,v,w) with o+2u 6∈ P , FindIntersection
returns an integer 0 < k < ∞ if, and only if, u < v. Furthermore, if u ≤ v and FindIntersection
returns ∞, then u = v.

Proof. If 0 < k < ∞ then o + 2u + k(u − v) ∈ P . Hence 0 ≤ o + 2u + k(u − v) < ω. But ω ≤ o + 2u by
lemma 5. We get immediately k(u− v) < 0, which implies u < v since k > 0.
Reciprocally, suppose u < v. We have u0 ≥ ω and the integer series (uk)k≥0 = (o + 2u + k(u − v))k≥0 is
strictly decreasing so there exists k such that uk < ω. If FindIntersection never quits the loop at line 3,
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then there is no k such that 0 ≤ uk < ω. This means that the search goes through the plane P without
seeing it, and there is some 0 < k′ <∞ such that

ω ≤ o + 2u + k′(u− v) and o + 2u + 2k′(u− v) < 0.

Summing up this two inequalities implies that k′(u − v) < −ω. This is impossible since o + 2u < 2ω by
lemma 5 and ω ≤ o + 2u + k′(u− v) (definition of k′).
Hence there is a k for which algorithm FindIntersection quits first loop at line 3. Then, the dichotomy
trivially outputs the exact k for which we have a pair of points outside and inside P separated by a vector
u− v.
The only difficulty left is the forced exit at line 5. We show that this cannot happen if ω ≤Max. Indeed,
if u < v, then the test at line 3 will fail before k ≥ ω. Let us assume that the test at line 3 succeeds, i.e.
o + 2u + k(u− v) 6∈ P , hence

o + 2u + k(u− v) ≥ ω.
Since o + u < 2ω by lemma 5, we get k(u− v) > −ω. Otherwise said, since u < v, k < ω

v−u < ω ≤Max.
To conclude, if u < v, the loop at line 3 will be over before the test at line 5 is triggered. Hence FindIn-
tersection does not return ∞ in this case. As a corollary, if u ≤ v, FindIntersection only returns ∞
if u = v.

We also have a result on the complexity of FindIntersection.

Lemma 7. Assuming ω ≤Max. For a valid tetrahedron T = (o; u,v,w) with o+2u 6∈ P , FindIntersection
either returns ∞ or an integer 0 < k < ω. Furthermore it calls the predicate “Is x ∈ P ?” at most
log2 Max + log2 ω times.

Proof. If u < v, the fact that integer k is no greater than ω is proven in the previous Lemma. Then the
first loop cannot make more than log2 k iterations, since k is doubled at each iteration. The second loop is
a dichotomy whose number of iterations is the logarithm of the size of the interval, which is smaller than k.
Hence the predicate is called at most log2 k + log2 k times. Now, 2 log2 k ≤ 2 log2 ω ≤ log2 Max + log2 ω.
If v ≤ u, we know that the test at line 5 is triggered when k ≥Max. Since k is doubled at each iteration,
the predicate is called at most log2 Max, which is smaller than log2 Max + log2 ω.

2.5 The detailed algorithm

The function FindNormal that computes the normal vector N of a digital plane P is presented step by
step in Algorithm 2. It mostly sums up to test, for each possible operation, if its preconditions are satisfied
and if so, then apply it. This is a trivial task to do in the case of local operations (lines : 4, 6, 8), where it
is enough to look at the local configuration. If the local configuration is empty for any permutation σ, then
non-local operations are sought for. Thanks to Lemma 6, calls to FindIntersection allow to determine
the following informations:

(1) A permutation σ such that σ(u) ≤ σ(v) ≤ σ(w).

(2) The number M of minimums of the set {u,v,w}.
(3) In the case where M is 1 or 2, integers α and β such that Fα,βσ or Bβσ is a valid operation.

More precisely, if M = 1, then Lemma 6 ensures that there exists a permutation σ that satisfies the test on
line 16. In such case, the validity of the operation used on line 17 is a consequence of Lemma 3. Afterward,
if M = 2, then, again, there must exists a permutation σ that satisfies the test on line 20 and Lemma 4
guarentees the validity of the operation used on line 21. Finally, M = 3 is the only case where done is still
false at line 23 and the algorithm stops.
Note also that sometimes there are several operations that are valid. For instance, two or three different
translations may be possible at the same time. The algorithm picks any of them. This does not change the
overall validity of the algorithm.
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Algorithm 2: Function FindNormal: iterative computation of the normal vector of a digital plane
P , given an oracle predicate telling if a point belongs to P and an initial valid tetrahedron within P .

Input: A valid tetrahedron T = (o; u,v,w), a predicate “is x in P ?” and a constant Max.
Output: A valid tetrahedron T′ = (o′; u′,v′,w′) such that N̂(T′) = N, where N is the normal to P .

1 stop← False ;
2 while not stop do
3 for each permutation σ do C[σ]← Configuration(T, σ) ;
4 if ∃σ such that C[σ] = Translation then
5 T← Tσ(T) ;

6 else if ∃σ such that C[σ] = Brun− Selmer then
7 T← Bσ(T) ;

8 else if ∃σ such that C[σ] = FullySubtractive then
9 T← Fσ(T) ;

10 else
11 for each circular permutation σ do
12 k[σ]← FindIntersection((o;σ(u), σ(v), σ(w)), P,Max);
13 l[σ]← FindIntersection((o;σ(u), σ(w), σ(v)), P,Max);

14 done← False ;
15 for each circular permutation σ do
16 if not done and k[σ] <∞ and l[σ] <∞ then

17 T← F
k[σ],0
σ (T) ;

18 done← True ;

19 for each circular permutation σ do
20 if not done and k[σ] =∞ and l[σ] <∞ then

21 T← B
l[σ]
σ (T) ;

22 done← True ;

23 if not done then stop← True ;

24 return T;

3 Validity of algorithm FindNormal

In this section we prove the validity of algorithm FindNormal (Algorithm 2) for determining the normal
vector of a digital plane P , given only a predicate “is x ∈ P ?” and a valid input tetrahedron. More precisely
we prove here that

Theorem 1. Let P be a digital plane of normal N. Assume ω ≤Max and a valid input tetrahedron. Then
function FindNormal (Algorithm 2, page 12) produces a tetrahedron T = (o; u,v,w) with a normal vector
equal to the normal of P . Furthermore, point o is just below the upper plane (i.e. o = ω − 2), vectors
u,v,w are Bezout vectors for N (i.e. u = v = w = 1), and (v − u,w − u) form a basis of the lattice
X0 = {x ∈ Z3 | x = 0}.

We denote by (Ti)i≥0 the sequence of tetrahedra such that T0 is the input valid tetrahedron and Ti =
(oi; ui,vi,wi) = opi(Ti−1) for i ≥ 1, where opi is the operation applied on i− th iteration of the while loop
(line 2) and Ti is the value of T after the action of opi.
The proof follows these key steps:

1. Lemma 8: at each iteration of the while loop (line 2), a valid operation is applied on a valid tetrahe-
dron. Hence operation opi is valid and tetrahedron Ti is valid.
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2. Lemma 9: the sequence (Ti)i≥0 is finite and Algorithm 2 terminates in a finite number of steps n less
than ω.

3. Lemma 10: when Algorithm 2 terminates, we have that N̂(Tn) = N and all other relations.

3.1 Each operation opi is valid

Lemma 8. Let n be the number of iterations done by Algorithm 2, which may be +∞ for now. For any
integer 1 ≤ i ≤ n, operation opi and tetrahedron Ti are valid.

Proof. The proof is by induction on the iteration number i, showing that each Ti is valid. We know that
T0 is valid since it is the input tetrahedron. We then assume that Ti−1 is valid.
First, according to the local configuration, Algorithm 2 may decide that opi is a local operation (translation
at line 4, Brun-Selmer at line 6, or FullySubtractive at line 8). Then Lemma 2 concludes that opi is valid,
hence Ti is valid by definition.
Second, if line 10 is reached, then the local configuration is empty for any permutation σ. It follows that
o + 2σ(ui−1) 6∈ P , o + σ(ui−1) + σ(vi−1) 6∈ P and o + σ(ui−1) + σ(wi−1) 6∈ P . Then every call to
FindIntersection at lines 11 and 12 satisfies its prerequisites. On the one hand, Lemma 7 holds for each
permutation and tells that every call terminates. On the other hand Lemma 6 also holds and arrays k and
l are filled with integers which are caracteristics of the order between u, v and w.

If opi was some generalized FullySubtractive operation F
k[σ],0
σ , then it must be that k[σ] <∞ and l[σ] <∞.

Lemma 6 tells that σ(u) < σ(v) and σ(u) < σ(w), so that {u,v,w} has a unique minimum. Furthermore,

k[σ] <∞ induces Lσ(k[σ], 0) ∈ P and Lσ(k[σ]− 1, 0) 6∈ P . It follows that Lemma 3 holds, so F
k[σ],0
σ = opi

is valid on Ti−1 and Ti is valid.

If opi was some generalized Brun-Selmer operation B
l[σ]
σ , then it must be that k[σ] =∞ and l[σ] <∞. At

this point, this is enough to conclude that {u,v,w} has exactly two minimums. Indeed, if there was only
one then an operation Fα,βσ would already have been selected. On the other hand, by Lemma 6, l[σ] < ∞
implies σ(u) < σ(w), so it must be that σ(u) = σ(v) < σ(w). Finally, l[σ] <∞ induces Lσ(0, l[σ]) ∈ P and

Lσ(0, l[σ]− 1) 6∈ P . Lemma 4 thus holds, so B
l[σ]
σ = opi is valid on Ti−1 and Ti is valid.

Otherwise, nothing is done and the function exits. We have just checked all cases, and in each case, opi was
valid on Ti−1, so Ti was valid.

3.2 Algorithm 2 terminates in a finite number of steps

Lemma 9. Sequence (Ti)i≥0 is finite and Algorithm 2 terminates in a finite number of steps n less than ω.

Proof. The termination of Algorithm 2 is straightforward from the fact that each opi being valid, we have
oi > oi−1 while each Ti being valid implies oi < ω. Thus the sequence (oi)i≥0 is a bounded strictly
increasing sequence of integers and thus finite. Furthermore, since T0 is valid, we have o0 ∈ P , hence
o0 ≥ 0. It follows easily that oi ≥ i, hence n < ω.

3.3 When Algorithm 2 terminates, we have N̂(Tn) = N

Lemma 10. When Algorithm 2 terminates, we have N̂(Tn) = N, un = vn = wn = 1, on = ω − 2, and
(vn − un,wn − un) forms a basis of the lattice {x ∈ Z3 | N · x = 0}.

Proof. Let M =

 un
vn
wn

 and 1 = e1 + e2 + e3, where the vectors (ek)1≤k≤3 form the canonical basis of Z3.

As argued previously (Section 2.5), the only case that allows the algorithm to stop is when {un,vn,wn}
has exactly three minumums, which implies that un = vn = wn = k, k ≥ 1. As a consequence, we have

MN = k1.

13



Because Tn is valid (Lemma 8), det(u,v,w) = 1. Besides, by definition 〈u, N̂(Tn)〉 = 〈u, (u−v)×(u−w)〉 =
det(u,v,w). The same thing holds for 〈v, N̂(Tn)〉 and 〈w, N̂(Tn)〉 = det(u,v,w) = 1, which means that

MN̂(Tn) = 1.

Since M is invertible, we have N = kN̂(Tn), which is equivalent to N = N̂(Tn), because the hypothesis
gcd (N) = 1 implies that k = 1.
Moreover, on + un ∈ P (Tn is valid), and on + 2un 6∈ P at termination. So on + un < ω and ω ≤ on + 2un.
But un = 1 implies o = ω − 2.
Last, the unit parallelepiped in the frame (on; un,vn,wn) does not contain any other integer points. Other-
wise, in this frame, such an integer point would have non integer coordinates, which contradicts that transi-
tion matrices have only integer coefficients (Definition 2). This proves that the face (on+un,on+vn,on+wn)
of Tn does not contain any integer point except its vertices. Hence vn − un and wn − un form a basis of
the lattice {x ∈ Z3 | N · x = 0}.

4 Time complexity of algorithm FindNormal

It is relatively straightforward to find an upper bound for the time complexity of algorithm FindNormal.
There are six different permutations, and three different circular permutations. Permutations are numbered
such that circular permutations have indices 0, 1, 2 and the remaining ones have indices 3, 4, 5. Therefore,
accesses to arrays C, k and l takes constant times.

Theorem 2. Function FindNormal (Algorithm 2, page 12) has a time complexity O(ωT log2 Max), where
T is an upper bound on the time complexity of one call to predicate “is x ∈ P ?”.

Proof. First, Lemma 9 indicates that the number of iterations n of the main loop of FindNormal (line 2)
is lower than ω, the thickness of P .
Second, computing the six different configurations requires O(1) operations and six calls to predicate “is
x ∈ P ?”. Then testing or applying any local operation requires O(1) operations. If all configurations are
empty, then six calls to FindIntersection are done. Lemma 7 tells that predicate “is x ∈ P ?” is tested
at most log2 Max + log2 ω times per call to FindIntersection. Last, performing any non-local operation
is also constant time. To sum up, overall complexity of one iteration is in O(1) + O(T ) + (log2 Max +
log2 ω)O(T ) +O(1). Since ω ≤Max, we get the result.

It is straightforward to see that the upper bound on the number of iterations can be reached. It suffices to
consider a plane P of normal N = (1, 1, 1) and thickness ω, and a starting tetrahedron (o; e1, e2, e3). Then
the algorithm performs ω − 1 translations until exiting.
One can see also that the last iteration may reach the complexity O(log2 Max), for instance in the example
quoted above. It is unknown to the authors if there are planes and starting tetrahedra such that the
bound Θ(ω log2 Max) is reached. Experimental evaluation shows a much better worst-case and average-
case behavior (see Section 6).

5 Keeping algorithm as local as possible with Delaunay correc-
tions

Let T be the tetrahedron produced by the function FindNormal. Theorem 1 states that two edges of
triangle uvw form a basis of the lattice X0 = {x ∈ Z3 | x = 0}. Given such a lattice, it is well known
that its Delaunay triangulation is a set of triangles such that the two shortest edges of each triangle form
a reduced basis of X0. In this section we introduce an optimization for Algorithm 2 that ensures that the
edges of the tetrahedron produced as output form a reduced basis of X0.
As presented in Algorithm 2, function FindNormal is not deterministic. For instance, at line 6, there might
be two permutations that provides the Brun-Selmer configuration. In such case, even though Theorem 1
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ensures the validity of the algorithm, different outputs may be produced, as illustrated in Figure 6. Since
at each step of the algorithm the six points in the neighborhood defined by vectors u,v,w are considered,
smaller vectors imply more locality. One could modify the algorithm in such way that when more than
one permutation provide a given configuration, the one that produces the smallest tetrahedron is selected.
Nevertheless, there exists cases where no non-deterministic choices are made and still the output tetrahedron
does not produce a reduced basis.

o

u

v

w

2u
2v

2v

u+w
v +w

2w

o′

u′
v′

w′

o′

u′
v′

w′

T B(u,v,w)(T) B(v,u,w)(T)

Figure 6: Left: a tetrahedron such that two permutations provide a Brun-Selmer configuration. Middle and
right: tetrahedra obtained by each Brun-Selmer operation.

Given (a,b) a basis of a two dimensional lattice, there is an iterative algorithm to compute a reduced basis
from (a,b). This algorithm consist of simply replacing the longest vector among (a,b) by the shortest one
among a + b and a− b, if it is smaller.
Let B be the function that, given a tetrahedron T = (o; u,v,w) returns (a,b), the two shortest vec-
tors among {v − u,w − u,v − w}. We say that T defines a reduced basis if (a,b) = B(T) is such that
max(|a|, |b|) ≤ min(|a− b|, |a + b|).
In order to modify our algorithm such that the output tetrahedron defines a reduced basis, we introduce
the Delaunay correction, Dσ as:

DId :


o′ = o
u′ = u + v −w
v′ = v
w′ = w

o

u

u+ v −w

v

w

DId−−→
o′

u′

v′

w′

D(u,w,v)−−−−−→

Figure 7: Continuation of the example showed in Figure 2, the Delaunay Correction D(u,w,v) replaces
u = (3, 0,−2) by u + w− v = (0,−1, 1) so that v′ −u′ = (2, 2,−3) and w′ −u′ = (−1, 1, 0) form a reduced
basis of X0 = {x ∈ Z3 | 〈x, (3, 3, 4)〉 = 0}.
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Lemma 11. Let T = (o; u,v,w) and (a,b) = B(T), there exists two permutations σ, σ′ such that

(1) a + b ∈ {v′ − u′,w′ − u′,v′ −w′} where Dσ(T) = (o′; u′,v′,w′).

(2) a− b ∈ {v′′ − u′′,w′′ − u′′,v′′ −w′′} where Dσ′(T) = (o′′; u′′,v′′,w′′).

Proof. Without loss of generality, suppose a = v − u and b = w − u. Let σ = (v,w,u), we have T′ =
(o; u,v + w − u,w) and v′ − u′ = (v + w − u) − u = (v − u) + (w − u) = a + b. The proof for a − b is
similar with σ′ = (v,u,w).

Let T be a tetrahedron obtained from function FindNormal and define L(T) as the lattice generated by
vectors (a,b) = B(T) starting from point o + u,

L(T) = {o + u + αa + βb | (a,b) = B(T) and α, β ∈ Z}.

One easily checks that L(T) = L(Dσ(T)). The three vectors of the tetrahedron T being such that u =
v = w, we have that L(T) is orthogonal to N and completely included in P . Thus, for all σ, we have
σ(u) +σ(v)−σ(w) ∈ P . From these observations, we conclude that a reduced basis may be computed from
the output of function FindNormal by iteratively applying well chosen operations Dσ to the tetrahedron
as long as a shorter basis is obtained and the result would still be a valid tetrahedron. Moreover, as stated in
the following lemma, operation Dσ preserves the normal vector of the tetrahedron. It also provides sufficient
conditions for Dσ to preserve the validity of the tetrahedron. As a consequence, there is no need to wait for
the end of the execution of Algorithm 2 before using this operation.

Lemma 12. Let T = (o; u,v,w) be a valid tetrahedron such that no permutation provides the Translation or
Brun-Selmer configuration and suppose there exists a permutation σ such that o + σ(u) + σ(v)− σ(w) ∈ P .
In such case, T′ = Dσ(T) is a valid tetrahedron with N̂(T′) = N̂(T).

Proof. Let T′ = (o′; u′,v′,w′) and, without loss of generality, assume that σ = Id. We show that T′ satisfies
the three conditions required by Definition 1. First, o′,o′+u′,o′+v′,o′+w′ ∈ P is straightforward from the
definition of Dσ and the hypothesis. Second, u′ > 0 is a consequence of the fact that no permutation provides
the Translation or Brun-Selmer configuration. By contradiction, assume that u′ < 0 so that u + v < w.
Since T is valid, we have that u,v,w are strictly positive and strictly smaller than ω − o. The previous
inequalities imply that o + u + v ∈ P . Again, without loss of generality, assume that u ≤ v, then we have
that o + 2u ∈ P and there are two possibilities for o + u + w:

(1) o + u + w ∈ P , in such case, o + 2u, o + u + v and o + u + w are all in P and form the Translation
configuration.

(2) o + u + w 6∈ P , in such case, the points o + 2u, o + u + v and o + u + w form the Brun-Selmer
configuration.

Both cases are contradictory to the hypotheses, hence u′ > 0.
Third, det(u′,v′,w′) = 1 since Dσ defines a unimodular matrix. Finally, we have that Dσ preserves the
normal vector of a tetrahedron:

N̂(T′) = (v′ − u′)× (w′ − u′) = (v − (u + v −w))× (w − (u + v −w)),

= (w − u)× (2w − u− v)) = (w − u)× (u− v + 2(w − u)),

= (v − u)× (w − u) = N̂(T).

By abuse of notation we note |B(T)| = |a| + |b| where (a,b) = B(T). Let Π be the function that, given
a tetrahedron T = (o; u,v,w), test if the orthogonal projection of o on the plane defined by o + u, o + v,
o + w is inside the triangle o + u, o + v, o + w or not. Then, just before the else if of line 8, add the
following lines:
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else if ∃σ such that σ(u) + σ(v)− σ(w) ∈ P and |B(Dσ(T))| < |B(T)| and Π(Dσ(T)) then
T← Dσ(T) ;

We introduce the Π function because unlike all previous operations, Dσ may output a tetrahedron such
that the point o is not under the upper face o + {u,v,w} of the tetrahedron. Note that Theorem 1 does
not require this property, so this would not affect the validity of the algorithm. Nevertheless, we use this
criterion here in order to obtain shorter vectors u,v,w and thus more locality.

Lemma 13. Let T be a tetrahedron such that Π(T), σ(u) +σ(v)−σ(w) ∈ P and |B(Dσ(T))| < |B(T)|, for
some permutation σ. Then, if ¬Π(Dσ(T)) then there exist a permutation σ′ such that σ′(u)+σ′(v)−σ′(w) ∈
P , |B(Dσ′(T))| < |B(T)| and Π(Dσ′(T)).

Proof. Without loss of generality, suppose σ = Id. Let T1 be the triangle o + {u + v − w,v,w} and T2
be the triangle o + {u,v + u − w,w}. It suffices to see that the union of T1 and T2 is the parallelogram
o + {u,v,w,u + v −w}. Consequently, let σ′ = (v,u,w), we have that :

(Π(T) and ¬Π(Dσ(T)) =⇒ Π(Dσ′(T)).

Let Algorithm 2F be this modified version of Algorithm 2.

Proposition 1. Let P be a digital plane of normal N. Assume ω ≤ Max and a valid input tetrahedron.
Then Algorithm 2F produces a tetrahedron T = (o; u,v,w) with a normal vector equal to the normal of P .
Furthermore, point o is just below the upper plane (i.e. o = ω − 2), vectors u,v,w are Bezout vectors for
N (i.e. u = v = w = 1), and B(T) form a reduced basis of the lattice X0 = {x ∈ Z3 | x = 0}.

Proof. First, Dσ is only used when it provides a strictly smaller pair of vectors B(T). Thus, it might only
be used a finite number of times consecutively. The termination of the algorithm is guaranteed since Dσ

does not modify the point o while all the other operations strictly increases o.
On the other hand, the modifications made on Algorithm 2 consist in applying operation Dσ in cases where
Lemma 12 guarantees the validity of the resulting tetrahedron. Hence Theorem 1 still applies. In particular,
at one point in the execution of the algorithm, the tetrahedron T is such that u = v = w. At this point,
the only operation that might be applied is Dσ and it is applied a finite number of times until B(T) forms
a reduced basis.

6 Conclusion

In this paper, we described and analyzed an output sensitive algorithm that computes the normal vector of
a digital plane. The number of points tested is bounded by O(ω log Max) which, in the case of standard
digital planes (thickness ω = ‖N‖1), is proportional to ‖N‖1 log(‖N‖1).
Although it is not clear that this bound may effectively be reached, there are some very simple cases for
which a high number of operations is required. For instance, let N = (1, n, n), µ = 0 and ω = 2n + 1,
starting with the tetrahedron T = (o; e1, e2, e3), Algorithm 2 applies the FullySubtractive operation exactly
n− 1 times. Thus the computation time may not be less than Ω(n).
Nevertheless, in general, function FindNormal is significantly faster than the worst-case upper bound of
Theorem 2. We have plotted the number of points tested using the predicate “is x ∈ P?” with respect to
the 1-norm of the normal vector in Figure 8. These results show a large gap between the median case and the
worst case. Figure 9 shows the number of operations used for both versions of function FindNormal. Both
curves show the median number of operations used for the same 5000 random normal vectors of Figure 8,
one using Algorithm 2 as displayed at page 12 (the basic algorithm), the other using the modified one where
Delaunay corrections ensure that the output provides a reduced basis. These results show that Delaunay
corrections do not affect the overall behavior of the algorithm.
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Figure 8: Number of points tested using the predicate “is x ∈ P?” with respect to the 1-norm of the
normal vector. Each column is the results of 5000 computations. For each computation, a normal vector
was randomly choosen in such way that its 1-norm in located in the interval displayed by the width of each
column.

The results regarding time complexity presented in this paper can easily be improved. For instance, Appendix
A shows a better bound on the output values algorithm FindIntersection, for the case where it is not
∞. Nevertheless, this is not enough in order to prove an asymptotic worst-case time complexity below
O(n log n). However, finding tight theoretical bounds for both worst-case and average case time complexity
is still an open question.
There are many future directions of research raised by this work. On the theoretical side, it would be
important to relate our recognition algorithm to other multidimensional continued fraction algorithms, and
exhibit for instance its ergodicity properties. On a more practical level, it would be very interesting to have a
similar algorithm where we can control the global displacement between the input and the output tetrahedra.
Indeed, our objective is to design an algorithm that extracts the local linear geometry of arbitrary digital
surfaces (see Figure 1 for preliminary results). The predicate “is x ∈ P?”, defined simply as “does x
belong to the digital surface ?”, is now only locally a digital plane. Keeping the global displacement as
low as possible guarantees that we can extract the local geometry of the digital surface almost everywhere.
Having a fuzzy predicate “is x ∈ P?” returning for instance a probability between 0 and 1 would also
be a natural and interesting extension to our method. We are thinking of adapting our algorithm to a
branch-and-bound algorithm, exploring several possibilities while favoring states with highest probabilities.
Such extensions would also be relevant for the geometric analysis of digital objects coming from 3D imaging
tools like scanners, where partial volume effects occur.

18



Figure 9: Number of operations (including Delaunay corrections) with respect the 1-norm of the normal
vector. Each point is the median of 5000 computations using the same normal vectors as in Figure 8. The
vertical intervals show the localization of the 50% central values.

A On a tighter bound for time complexity

It is possible to find tighter bounds for the values returned by FindIntersection and hence on the com-
plexity of non-local operations.

Lemma 14. If T is a valid tetrahedron, o+2u 6∈ P and FindIntersection returns an integer 0 < k <∞,
then k < min(u,v).

Proof. Let us denote pk := o + 2u + k(u−v). Since FindIntersection did not return ∞, we have u < v,
pk ∈ P and pk−1 6∈ P . We proceed as follows:

• We show that pk > o + u. Indeed, we have

o + u + (v − u) < ω (since o + v ∈ P )

pk + (v − u) ≥ ω (since pk + (v − u) = pk−1 6∈ P and v − u > 0)

By subtracting the first to the second, we get immediately pk > o + u.

• We also have pk < pk−1 < . . . < p0 since v − u > 0.

• Putting these two relations together gives:

o + u < pk < pk−1 < . . . < p0 = o + 2u.

This is a strictly increasing sequence of k + 1 integers in an interval containing u integers. It follows that
k + 1 ≤ u, which concludes.
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This lemma induces a natural corollary on the complexity of non-local operations:

Corollary 1. If operation F k,0σ was performed on tetrahedron Ti by FindNormal, then k < min(ui,vi,wi).
If operation Blσ was performed on tetrahedron Ti by FindNormal, then l < min(ui,vi,wi).
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