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Abstract. Many problems in image analysis, digital processing and
shape optimization are expressed as variational problems and involve
the discretization of the Laplace-Beltrami operator. Discretization of the
Laplace-Beltrami operator has been widely studied for meshes or poly-
hedral surfaces. On digital surfaces, trivial applications of classical op-
erators are usually not satisfactory (lack of multigrid convergence, lack
of precision. . . ). In this paper, we first evaluate previous alternatives
and propose a new digital Laplace-Beltrami operator showing interest-
ing properties. This new operator adapts Belkin et al. [1] for digital
surfaces embedded in 3D. The core of the method relies on an accurate
estimation of measures associated to digital surface elements. We ex-
perimentally evaluate the interest of such operator for digital geometry
processing tasks.

1 Introduction

Objectives In geometry processing, Partial Differential Equations
(PDEs) containing Laplace-Beltrami operator arise in surface fairing,
mesh smoothing, mesh parametrization, remeshing, feature extraction,
shape matching, etc [2]. Prior work on a robust and convergent operator
is mandatory: for example, in applications such as [3], the discrete lapla-
cian controls the shape of isolines of the distance maps and therefore the
quality of the reconstruction.

Contributions We propose a discrete Laplace-Beltrami operator on dig-
ital surfaces (subsets of Z2 embedded in 3D). This new operator adapts
Belkin et al. [1] on our complex. The method uses a precise estimation
of areas associated with digital elements. This estimation is achieved
through a convergent digital normal estimator described in [4, 5]. We
show experimental convergence of our operator, and compare it with var-
ious discretizations of the literature adapted on digital surfaces. We com-
pare the behavior of the heat diffusion associated with the heat equation
[6] between our approximation and the laplacian constructed through
the Discrete Exterior Calculus (DEC) framework.



Related Works First works on discrete calculus may be found in the
Regge Calculus [7] for quantum physics, where tetrahedra in combination
edge lengths are used. Works on geometric aquisition devices and models
drived studies toward calculus working on meshes and mor generally on
simplicial complexes. Early work include the famous cotangent formula
[8] for solving the problem of minimal surfaces, which is an analog of the
standart finite element method [2].

After that, the framework of Discrete Exterior Calculus (DEC) was de-
velopped in the computational mathematics and geometry processing
community focusing their work on triangular meshes. Exact calculus
generalizing the cotan discretization in 2D based on finite elements [9]
emerged from the ”German school” but with a restriction to triangu-
lar complexes. Another more recent formulation of the DEC comes from
Hirani’s thesis [10] and later by the monograph [11]. Their construction
works on simplicial complexes, but they do not proove convergence to-
ward the smooth counterparts, focusing their work on local operators
and validity of the generalized Stokes’ theorem.

In parallel, another discrete calculus emerges in the image, graph, electric
circuits and network analysis community, summed up in [12]. Although
intrinsic measures of quantities can be incorporated, it has no relation
with the ambient space, leading to a calculus designed to analyse data
without knowledge of an embedding.

Finally, we can see an aliked discrete calculus on ”chainlets” in geometric
measure theory, for the mathematical analysis of general compact shapes
like fractals [13, 14]. The Laplace-Beltrami operator is defined here for
very general spaces, but computational aspects are unclear.

Outline Many problems in image analysis, digital processing and shape
optimization can be expressed as variationnal problems and involve the
discretization of the Laplace-Beltrami operator (see for example [2].

An important objective when proposing discretization of the operator is
to give convergence results: as meshes refine and tend toward the un-
derlying manifold under certain properties, the approximated Laplace-
Beltrami operator should tends toward the usual one on the manifold.
On arbitrary triangular meshes, it is shown that the discrete operator
cannot recover all the properties of the smooth manifold one [15]. Re-
garding DEC, Hildebrandt et al. [16] provided convergence results when
the triangulated meshes tend toward the manifold with those properties:
Hausdorff distance tends to zero, mesh normals tend to surface normals
and the mesh is projected one-to-one on the continuous surface. Simi-
lar proofs exist in the context of finite element methode [17, 18] and for
chainlet discrete calculus [19]. Recent work [20] shows a laplacian that
have all the desired properties discribed in [15] with an extension to
polygon meshes. Their method rely on modifying the embedding of the
complex by moving vertices inside the mesh.

1.1 argumentaires
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2 Discretizations of the Laplace-Beltrami
operator

Let M be a 2 Riemannian manifold with or without boundary embedded
in R3, that is a pair (M, g) where M is a smooth manifold and g is a
Riemannian metric on M (ie with know an intrinsic notion of distances).
Let

∆ : C∞(M)→ C∞(M)

u 7→ −div(gradu),

be the intrinsic smooth Laplace-Beltrami operator [6] where C∞ is the
set of smooths function of M .
Discretizations of such operator comes in many flavour for meshes or
polyhedral surfaces. Let Γ be a mesh (a triangular one for example),
V (Γ) its set of vertices and E(Γ) its edges. Let ũ : V (Γ)→ R be a twice
differentiable function. We recall first the definition of the cotan operator
[8] denoted LCOT :

LCOT ũ(w) =
1

2Aw

∑
p∼w

(cot(αwp) + cot(βwp))(ũ(p)− ũ(w)), (1)

where p ∼ w are the one-ring points from w and Aw is one third the
area of all triangles incident on vertex w. αwp and βwp are the angles
opposing the corresponding edge wp (see Fig. 1).

2.1 Notations

We wish to compare discritizations of the Laplace-Beltrami operator on
triangular meshes with our discritization on digital surfaces. Given a
triangular surface Γ, We denote by LCOT the famous cotan operator [8],
by LDEC the laplace operator related to the Discrete Exterior Calculus
[10, 11] and by LMESH the mesh laplacian presented in [1]. For a digital
surface D, operators are called LCOT , LDEC and LMESH . We call our
discritized operator acting on digital surfaces L?

h where h is the grid step.
We recall some desired properties of the discrete laplacian described in
[15]:
Symmetry(SYM): ωij = ωji. The symmetry property ensures both real
eigenvalues and orthogonal eigenvectors.
Locality (LOC): ωij is different of 0 if and only if i and j shares a common
edge.
Linear Precision (LIN): Lu = 0 whenever u is a linear function restricted
to a plane.



Fig. 1. Illustration of LCOT on triangular meshes. Points in the one-ring around w
are in black, he area of integration Aw is in green (one third the area of all triangles
incident on vertex w), the angles αwp and βwp opposing the corresponding edge wp are
in blue.

Positive Weights (POS): ωij ≥ 0 whenever i is not equal to j.

Positive Semi-Definiteness (PSD): the matrix is symmetric positive semi-
difinite regarding the standart inner product and has a one-dimensionnal
kernel. (SYM) and (POS) imply (PDS), but (PSD) does not implies
(POS).

Dirichlet Convergence (CON): Ln → ∆ such that solutions to the dis-
crete Dirichlet problem using Ln converge to the solution of the smooth
one.

We also add our own convergence setting:

Digital Convergence (DCON): Given an digital surface sampled with grid
step h, we have

|Ltũ−∆u| ≤ σ(h), (2)

where lim
h→0

σ(h) = 0 and the function σ is called the convergence speed.DC: ajouter
Belkin dans le
tableau

DC: ajouter
Belkin dans le
tableau

SYM LOC LIN POS PSD CON DCON

MEAN VALUE 7 3 3 3 7 7 ?
INTRINSINC DEL 3 7 3 3 3 ? ?

LDEC 3 3 7 3 3 7 ?
LCOT 3 3 3 7 3 3 ?
L?

h 7 7 7 3 7 ? 3

Table 1. Properties of various laplacians



3 Experiments

3.1 Experimental Convergence

ajouter h1/3 h2/3 dans les graphes

3.2 Shape approximation using eigenvectors
decomposition

We use in this section the framework of spectral analysis for geome-
try. Given a symmetric matrix L, we know from linear algebra theory
that is has real eigenvalues and a set of real and orthogonal eigenvec-
tors thus giving us a basis. Given any laplacian square matrix L, we
denote by e1, e2, . . . , en its normalized eigenvectors and the matrix E
whose columns are those eigenvectors. By λ1, λ2, . . . , λn we denote the
associated eigenvalues where n is the size of L.

Given an input vector X in the standard R3 basis, we want to rewrite it
onto the basis formed by the eigenvectors of L:

X =

n∑
i=1

eix̃i =


E11 . . . E1n

E21 . . . E2n

...
...

...
En1 . . . Enn



x̃1
x̃2
...
x̃n

 = EX̃.

This expression represents a transform of X to X̃ in terms of the basis
given by the eigenvectors of L. This is called a spectral transform and we
have:

X̃ = ETX,

where ET is the transpose of E. Now we can approximate the input
signal X by using a fixed number k of eigenvectors:

X(k) = E(k)(E(k))TX,

where E(k) is a matrix of size n × k containing the first k eigenvectors
columnwise.

3.3 Smoothing

Ressortir figures
pour L?

h

Ressortir figures
pour L?

h– Graphes de convergences des différents laplaciens : convolution, com-
binatoire, cotangentes et Belkin sur la trigulation du complexe cu-
bique

– Laplacian smoothing

– Approximation de formes avec les valeurs propres du laplacien

– Distance géodésiques (papier de Crane) : comparaison laplacien com-
binatoire et laplacien de convolution
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Fig. 2. Multigrid convergence graphs with the cos(x) function with t = 0.1× h
1
3 .
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Fig. 3. Eigenfunctions display on a simple cube with faces aligned with R3 axis. Num-
bers on the top left of each figure represents the eigenvalue displayed in ascending
order.
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Fig. 4. Eigenfunctions display on a simple cube with faces aligned with R3 axis. Num-
bers on the top left of each figure represents the eigenvalue displayed in ascending
order.

k = 3 k = 10 k = 3 k = 10

Fig. 5. Eigenfunctions display on the octa-flower form. (First row) using LDEC , (second
row) with L?
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k = 10 k = 100 k = 500 k = 5000

k = 10 k = 100 k = 500 k = 500

Fig. 6. Images of the reconstruction using an increasing number of eigenvectors k.
(First row) using LDEC , (second row) with L?

h

k = 10 k = 100 k = 10000

k = 10 k = 100 k = 10000

Fig. 7. Images of the reconstruction using an increasing number of eigenvectors k.
(First row) using LDEC , (second row) with L?

h



3.4 Distance maps

We implemented here the work described in [3].
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5. Jérémy Levallois, David Coeurjolly, and Jacques-Olivier Lachaud.
Parameter-free and multigrid convergent digital curvature estima-
tors. In Discrete Geometry for Computer Imagery - 18th IAPR In-
ternational Conference, DGCI 2014, Siena, Italy, September 10-12,
2014. Proceedings, pages 162–175, 2014.

6. Steven Rosenberg. The Laplacian on a Riemannian Manifold. Cam-
bridge University Press, 1997. Cambridge Books Online.

7. T. Regge. General relativity without coordinates. Il Nuovo Cimento
Series 10, 19(3):558–571, 1961.

8. U. Pinkall and K. Polthier. Computing discrete minimal surfaces
and their conjugates. Experimental mathematics, 2(1):15–36, 1993.

9. K. Polthier and E. Preuss. Identifying vector field singularities using
a discrete Hodge decomposition. Visualization and Mathematics,
3:113–134, 2003.

10. A. N. Hirani. Discrete exterior calculus. PhD thesis, California
Institute of Technology, 2003.

11. M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden. Discrete
exterior calculus. arXiv preprint math/0508341, 2005.

12. L. J. Grady and J. Polimeni. Discrete calculus: Applied analysis on
graphs for computational science. Springer, 2010.

13. J. Harrison. Stokes’ theorem for nonsmooth chains. Bulletin of the
American Mathematical Society, 29(2):235–242, 1993.

14. J. Harrison. Flux across nonsmooth boundaries and fractal
gauss/green/stokes’ theorems. Journal of Physics A: Mathematical
and General, 32(28):5317, 1999.

15. M. Wardetzky, S. Mathur, F. Kaelberer, and E. Grinspun. Discrete
Laplace operators: No free lunch. Eurographics Symposium on Ge-
ometry Processing, pages 33–37, 2007.

16. K. Hildebrandt, K. Polthier, and M. Wardetzky. On the convergence
of metric and geometric properties of polyhedral surfaces. Geome-
triae Dedicata, 123(1):89–112, 2006.



17. D. N. Arnold, R. S. Falk, and R. Winther. Differential complexes
and stability of finite element methods i. the de rham complex. In
Compatible spatial discretizations, pages 23–46. Springer, 2006.

18. D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior
calculus, homological techniques, and applications. Acta numerica,
15:1–155, 2006.

19. J. Harrison. Geometric hodge star operator with applications to
the theorems of gauss and green. In Math. Proc. of the Cambridge
Philosophical Society, volume 140(01), pages 135–155. Cambridge
Univ Press, 2006.

20. Philipp Herholz, Jan Eric Kyprianidis, and Marc Alexa. Perfect
Laplacians for Polygon Meshes. Computer Graphics Forum (Proc.
of SGP), 2015.


