

Characterization of bijective discretized rotations by Gaussian integers

T. Roussillon, D. Coeurjolly
CNRS - LIRIS UMR 5205, Université de Lyon, 69622 Villeurbanne, France

Abstract

A discretized rotation is the composition of an Euclidean rotation with a rounding operation. It is well known that not all discretized rotations are bijective: e.g. two distinct points may have the same image by a given discretized rotation. Nevertheless, for a certain subset of rotation angles, the discretized rotations are bijective. In the regular square grid, the bijective discretized rotations have been fully characterized by [NOUVEL AND RÉMILA (IWCIA'2005)]. We provide a simple proof that uses the arithmetical properties of Gaussian integers.

Gaussian integers

Gaussian integers are the set $\mathbb{Z}[i] := \{u + vi \mid u, v \in \mathbb{Z}\}$, where $i^2 = -1$. Within the complex plane \mathbb{C} , they constitute the 2-dimensional integer lattice \mathbb{Z}^2 .

- **E** An *addition* by κ maps \mathbb{Z}^2 to $\mathbb{Z}^2 + (u, v)$ (*translation*).
- The *norm* of $\kappa = u + vi$ is defined by $N\kappa := \kappa \bar{\kappa} = u^2 + v^2$.
- **a** A multiplication by κ maps \mathbb{Z}^2 to $\mathbb{Z}(u,v) + \mathbb{Z}(-v,u)$ (rotation by angle θ such that $\tan(\theta) = v/u$ and scaling by $\sqrt{N\kappa}$).

Gaussian integers \equiv integers (Euclidean division, factorization into primes, gcd...).

Discrete rotations

Let $\alpha \in \mathbb{Z}[i]$ be equal to a + bi.

An Euclidean rotation is defined as follows:

$$r_{\alpha}: \mathbb{Z}[i] \to \mathbb{C}$$
 $\forall \kappa \in \mathbb{Z}[i], \ r_{\alpha}(\kappa) = \frac{\kappa \cdot \alpha}{\sqrt{N\alpha}}.$

 $\forall z \in \mathbb{C}$, [z] is the unique Gaussian integer s.t. $z \in D([z])$, the discretization cell of [z]. A discrete rotation is defined as follows:

$$[r_{\alpha}]: \mathbb{Z}[i] \to \mathbb{Z}[i]$$
 $orall \kappa \in \mathbb{Z}[i], \ [r_{\alpha}](\kappa) = \left[\frac{\kappa \cdot \alpha}{\sqrt{N\alpha}}\right].$

We focus on Pythagorean rotation angles, i.e. angles such that $\sqrt{N\alpha}=c\in\mathbb{Z}$. For any primitive solution of $N\alpha=c^2$, there exists a unique $\gamma:=p+qi$ such that 0< q< p, $\gcd(p,q)=1, p-q$ odd and

$$\alpha = \gamma \cdot \gamma \,,$$

$$c = \gamma \cdot \bar{\gamma} \,.$$

Characterization of bijective rotations [NOUVEL AND RÉMILA (IWCIA'2005)]

The discretized rotation $[r_{\alpha}]$ is bijective iff $\gamma = (k+1) + ki, k \in \mathbb{Z}^+$.

Bijective case: $\gamma = 2 + i$, $\alpha 3 + 4i$, c = 5.

Not bijective case: $\gamma = 4 + i$, $\alpha = 15 + 8i$, c = 17.

Idea of the proof that uses arithmetical properties of Gaussian integers

- \blacksquare We do not divide $\kappa \cdot \alpha$ by c, but we consider the result with respect to the discretization cells of the scaled lattice $c\mathbb{Z}^2$
- $\exists \forall \kappa, \lambda \in \mathbb{Z}[i]$, we focus on the difference $s_{\alpha,c}(\kappa,\lambda) := \kappa \cdot \alpha \lambda \cdot c$, called *remainder*, such that $\kappa \cdot \alpha \in cD(\lambda)$ and $\lambda \cdot c \in \alpha D(\kappa)$, ie. such that $s_{\alpha,c}(\kappa,\lambda) \in cD(0)$ and $s_{\alpha,c}(\kappa,\lambda) \in \alpha D(0)$.
- $\exists \forall \kappa, \lambda \in \mathbb{Z}[i], s_{\alpha,c}(\kappa, \lambda) = \gamma s_{\gamma, \bar{\gamma}}(\kappa, \lambda) \text{ because } \gcd(\alpha, c) = \gamma.$
- \blacksquare Let $S_{\bar{\gamma}}$ (resp. S_{γ}) be equal to $\{\rho \in \mathbb{Z}[i] \mid \rho \in \bar{\gamma}D(0)\}$ (resp. $S\{\rho \in \mathbb{Z}[i] \mid \rho \in \gamma D(0)\}$). The discretized rotation $[r_{\alpha}]$ is bijective iff $S_{\bar{\gamma}} = S_{\gamma}$.

Bijective case ($\gamma = 2 + i$)

Not bijective case ($\gamma = 4 + i$)

Future works

Other Algebraic integers could be of interest for Digital Geometry purposes. *E.g. Eisenstein integers* and discretized rotations on the *hexagonal lattice*.