

Decomposition of Rational Discrete Planes

T. Roussillon¹, S. Labbé²

¹ INSA Lyon - LIRIS, tristan.roussillon@liris.cnrs.fr ² CNRS - LABRI, sebastien.labbe@labri.fr

Rational Discrete planes

Given a non-zero normal vector $\mathbf{a} \in \mathbb{N}^3$, a standard arithmetical rational discrete plane is defined as follows: $\mathcal{P}_{\mathbf{a}} := \{\mathbf{x} \in \mathbb{Z}^3 \mid 0 \leq \mathbf{x} \cdot \mathbf{a} < \|\mathbf{a}\|_1 \}$. It is represented by a graph $\mathcal{G}_{\mathbf{a}}$ whose nodes are $\{0, \dots, \|\mathbf{a}\|_1 - 1\}$ and whose arcs are such that $\forall i \in \{1, 2, 3\}$, $(\mathbf{x} \cdot \mathbf{a}, \mathbf{x} \cdot \mathbf{a} \pm a_i) \in \mathcal{G}_{\mathbf{a}}$ iff $\mathbf{x}, \mathbf{x} \pm e_i \in \mathcal{P}_{\mathbf{a}}$.

Definitions

- **E** Let $\mathbf{a}, \mathbf{b} \in \mathbb{N}^3 \setminus \{\mathbf{0}\}$, with $gcd(\mathbf{a}) = gcd(\mathbf{b}) = 1$, be such that $\mathbf{a} \mathbf{b} \in \mathbb{N}^3 \setminus \{\mathbf{0}\}$ and δ be in $\{-\|\mathbf{b}\|_1 + 1, \dots, \|\mathbf{a}\|_1 \|\mathbf{b}\|_1\}$.
- \blacksquare Let $S(\mathcal{G}_{\mathbf{a}}, \mathbf{b}, \delta)$ contain the nodes $h \in \{0, \dots, \|\mathbf{a}\|_1 1\}$ such that $(h\|\mathbf{b}\|_1 \delta) \mod \|\mathbf{a}\|_1 < \|\mathbf{b}\|_1$ and all the arcs emanating from those nodes.
- \mathbf{E} $\mathcal{S}(\mathcal{G}_{\mathbf{a}}, \mathbf{b}, \delta) \simeq \mathcal{G}_{\mathbf{b}}$ if there exists a bijection $f: \{0, \dots, \|\mathbf{a}\|_1 1\} \mapsto \{0, \dots, \|\mathbf{b}\|_1 1\}$ such that:

 $\forall i \in \{1, 2, 3\}, (h, h + a_i) \in \mathcal{S}(\mathcal{G}_{\mathbf{a}}, \mathbf{b}, \delta) \Leftrightarrow (f(h), f(h) + b_i) \in \mathcal{G}_{\mathbf{b}} \text{ and } (h, h - a_i) \in \mathcal{S}(\mathcal{G}_{\mathbf{a}}, \mathbf{b}, \delta) \Leftrightarrow (f(h), f(h) - b_i) \in \mathcal{G}_{\mathbf{b}},$

where f is defined as $f(h) := \left \lfloor \frac{h \| \mathbf{b} \|_1 - \delta}{\| \mathbf{a} \|_1} \right \rfloor$, its inverse being $f^{-1}(h) = \left \lceil \frac{h \| \mathbf{a} \|_1 + \delta}{\| \mathbf{b} \|_1} \right \rceil$.

Main theorem

Let $\mathbf{a} \in \mathbb{N}^3 \setminus \{\mathbf{0}\}$ be such that $gcd(\mathbf{a}) = 1$. If \mathbf{a} is not a permutation of one of the vectors (0,0,1), (0,1,1), (1,1,1) and (1,1,2), then there exist \mathbf{b} and δ such that

 $\mathcal{G}_{\boldsymbol{a}} = \mathcal{S}(\mathcal{G}_{\boldsymbol{a}}, \boldsymbol{b}, \delta) \cup \mathcal{S}(\mathcal{G}_{\boldsymbol{a}}, \boldsymbol{a} - \boldsymbol{b}, -\delta + 1), \quad \mathcal{S}(\mathcal{G}_{\boldsymbol{a}}, \boldsymbol{b}, \delta) \simeq \mathcal{G}_{\boldsymbol{b}} \quad \text{ and } \quad \mathcal{S}(\mathcal{G}_{\boldsymbol{a}}, \boldsymbol{a} - \boldsymbol{b}, -\delta + 1) \simeq \mathcal{G}_{(\boldsymbol{a} - \boldsymbol{b})}.$

Examples

Sketch of the proof

Existence of b:

There exists at least one vector $\mathbf{b} \in \mathbb{N}^3 \setminus \{\mathbf{0}\}$ such that $\gcd(\mathbf{b}) = 1$ and $\|\|\mathbf{b}\|_1 \mathbf{a} - \|\mathbf{a}\|_1 \mathbf{b}\|_{\infty} < \frac{\|\mathbf{a}\|_1}{2}$ if and only if \mathbf{a} is not a permutation of (0,0,1), (0,1,1), (1,1,1) or (1,1,2).

(Based on a variant of the notion of approximation of a rational vector and Minkowski's theorem)

Existence of δ :

There exists $\delta \in \{-\|\mathbf{b}\|_1 + 1, \dots, \|\mathbf{a}\|_1 - \|\mathbf{b}\|_1\}$ such that $\|\|\mathbf{b}\|_1 \mathbf{a} - \|\mathbf{a}\|_1 \mathbf{b}\|_{\infty} < \frac{\|\mathbf{a}\|_1}{2} \Leftrightarrow \|\|\mathbf{b}\|_1 \mathbf{a} - \|\mathbf{a}\|_1 \mathbf{b}\|_{\infty} \leq \min\left(\|\mathbf{b}\|_1 - 1 + \delta|, \|\mathbf{a}\|_1 - \|\mathbf{b}\|_1 - \delta|\right)$. (Simple calculations)

Criterion for bijection:

 $\mathcal{S}(\mathcal{G}_{\mathbf{a}}, \mathbf{b}, \delta) \simeq \mathcal{G}_{\mathbf{b}} \text{ if } \|\|\mathbf{b}\|_{1}\mathbf{a} - \|\mathbf{a}\|_{1}\mathbf{b}\|_{\infty} \leq \min(\|\mathbf{b}\|_{1} - 1 + \delta|, \|\mathbf{a}\|_{1} - \|\mathbf{b}\|_{1} - \delta|).$ (Technical part, see paper)

Remark

There are four undecomposable graphs, which are the building blocks for constructing all the others:

