Digital Plane Recognition With Fewer Probes

T. Roussillon¹, J-O. Lachaud²

¹Université de Lyon, INSA Lyon, LIRIS, France

² Université Savoie Mont Blanc, LAMA, France

March 28, DGCl'2019

Partly funded by:

- CoMeDiC ANR-15-CE40-0006
- PARADIS ANR-18-CF23-0007-01

Context

Main objective

Parameter-free estimation of normal vectors over a digital surface

Approach

- \Rightarrow One need to average things in a small area around each estimate
- (?) without specifying the size and shape of the area.
- (-) Existing methods have at least one size parameter (fitting, convolution, integral invariants, variational approaches, . . .)
- \Rightarrow Digital plane segments are able to adapt to the local geometry.

Digital plane and digital plane segment (DPS)

Standard and 6-connected digital plane (segment)

Let $\mathbf{N}(a,b,c)$ be a normal vector $(a,b,c\in\mathbb{Z},\gcd(a,b,c)=1)$ and $\mu \in \mathbb{Z}$ be an intercept. A standard digital plane is defined as the set

$$\mathbf{P} = \{ x \in \mathbb{Z}^3 | \mu \le x \cdot \mathbf{N} < \mu + \omega \}.$$

(We assume that $0 < a \le b \le c$, $\mu = 0$, $\omega = ||\mathbf{N}||_1$). A DPS is any 6-connected subset of a digital plane.

Algorithms for DPS recognition

There exists a lot of recognition algorithms! See, for instance,

E. Charrier and L. Buzer, An efficient and quasi linear worst-case time algorithm for digital plane recognition, DGCI'2008, LNCS, vol. 4992, Springer, 2008, pp. 346-357.

1. Debled-Rennesson and J.-P. Reveilles, An incremental algorithm for digital plane recognition, DGCl'1994, 1994, pp. 207-222.

Y. Gérard, I. Debled-Rennesson, and P. Zimmermann, An elementary digital plane recognition algorithm, Discrete Applied Mathematics 151 (2005), no. 1, 169-183.

C. E. Kim and I. Stojmenović, On the recognition of digital planes in three-dimensional space, Pattern Recognition Letters 12 (1991), no. 11, 665-669.

R. Klette and H. J. Sun, Digital planar segment based polyhedrization for surface area estimation, Proc. Visual form 2001, LNCS, vol. 2059, Springer, 2001, pp. 356-366.

L. Provot and I. Debled-Rennesson, 3d noisy discrete objects: Segmentation and application to smoothing. Pattern Recognition 42 (2009), no. 8, 1626-1636.

P. Veelaert, *Digital planarity of rectangular surface segments*, Pattern Analysis and Machine Intelligence, IEEE Transactions on 16 (1994), no. 6, 647–652.

Incremental recognition of DPS for normal estimation

Classical approach: select-and-decide algorithms

- (?) Select a new point ${\bf x}$ and decide if $S \cup \{{\bf x}\}$ is still a DPS
- (-) A too small DPS does not provide a relevant normal vector
- (-) An inextensible DPS may not reveal the local geometry
 - \Rightarrow They require heuristics with hidden input parameters

Another approach: plane-probing algorithms

They probe ${f P}$ to select ${f x}$ for us. Parameter-free.

Previous plane-probing algorithms

- (A) Upward-oriented frame. No guarantee that it stays near the starting point.
 - [LPR2016] J-O. Lachaud, X. Provençal, T. R. An output-sensitive algorithm to compute the normal vector of a digital plane. *Theoretical Computer Science*, 624:73–88, 2016.
- (B) Downward-oriented frame. The origin is immutable.
 - [LPR2017] J-O. Lachaud, X. Provençal, T. R. Two Plane-Probing Algorithms for the Computation of the Normal Vector to a Digital Plane. *Journal of Mathematical Imaging and Vision*, 59(1):23-39, 2017.
 - H-algorithm,
 - R-algorithm.

We are given a predicate \mathcal{P} : "is $\mathbf{x} \in \mathbf{P}$?".

Motivation

- \blacksquare start with a triangle T in a reentrant corner $\mathbf{N}(T)=(1,1,1)$
- update one vertex
- \mathbf{I} reapeat until $\mathbf{N}(T) = \mathbf{N}$ (for a deep enough corner

We are given a predicate \mathcal{P} : "is $\mathbf{x} \in \mathbf{P}$?".

- start with a triangle T in a reentrant corner $\mathbf{N}(T)=(1,1,1)$
- update one vertex
- illet reapeat until $\mathbf{N}(T) = \mathbf{N}$ (for a deep enough corner

Contribution

- \blacksquare start with a triangle Tin a reentrant corner N(T) = (1, 1, 1)
- update one vertex
- \blacksquare reapeat until $\mathbf{N}(T) = \mathbf{N}$

- \blacksquare start with a triangle Tin a reentrant corner N(T) = (1, 1, 1)
- update one vertex
- reapeat until $\mathbf{N}(T) = \mathbf{N}$ (for a deep enough corner)

- \blacksquare start with a triangle Tin a reentrant corner N(T) = (1, 1, 1)
- update one vertex
- reapeat until $\mathbf{N}(T) = \mathbf{N}$ (for a deep enough corner)

- \blacksquare start with a triangle Tin a reentrant corner N(T) = (1, 1, 1)
- update one vertex
- reapeat until $\mathbf{N}(T) = \mathbf{N}$ (for a deep enough corner)

- \blacksquare start with a triangle Tin a reentrant corner N(T) = (1, 1, 1)
- update one vertex
- reapeat until $\mathbf{N}(T) = \mathbf{N}$ (for a deep enough corner)

- \blacksquare start with a triangle Tin a reentrant corner N(T) = (1, 1, 1)
- update one vertex
- reapeat until $\mathbf{N}(T) = \mathbf{N}$ (for a deep enough corner)

- \blacksquare start with a triangle Tin a reentrant corner N(T) = (1, 1, 1)
- update one vertex
- reapeat until $\mathbf{N}(T) = \mathbf{N}$ (for a deep enough corner)

- \blacksquare start with a triangle Tin a reentrant corner N(T) = (1, 1, 1)
- update one vertex
- reapeat until $\mathbf{N}(T) = \mathbf{N}$ (for a deep enough corner)

- \blacksquare consider a candidate set S
- lacksquare filter S through ${\mathcal P}$
- \blacksquare select a *closest* point s^* : the circumsphere of $T \cup s^*$ doesn't contain any other
- \blacksquare update T with this point

- consider a candidate set S
- lacksquare filter S through ${\mathcal P}$
- select a *closest* point s^* : the circumsphere of $T \cup s^*$ doesn't contain any other
- \blacksquare update T with this point

- \blacksquare consider a candidate set S
- lacksquare filter S through ${\cal P}$
- select a *closest* point s^* : the circumsphere of $T \cup s^*$ doesn't contain any other
- \blacksquare update T with this point

- \blacksquare consider a candidate set S
- \blacksquare filter S through ${\cal P}$
- ullet select a *closest* point s^{\star} : the circumsphere of $T \cup s^{\star}$ doesn't contain any other
- \blacksquare update T with this point

- \blacksquare consider a candidate set S
- \blacksquare filter S through ${\cal P}$
- ullet select a *closest* point s^{\star} : the circumsphere of $T \cup s^{\star}$ doesn't contain any other
- \blacksquare update T with this point

Difference between H- and R-algorithm

Each algorithm considers a distinct candidate set:

 S_H (\times): 6 Hexagon vertices

 S_R (\diamond): 6 Rays (which are infinite)

The R-algorithm experimentally requires a smaller area

Main features of the R-algorithm

R-algorithm

- \blacksquare starts with a triangle of normal (1,1,1) in a corner
- updates the current triangle by one geometrical operation
- lacksquare using only the predicate \mathcal{P} : "is $\mathbf{x} \in \mathbf{P}$?"
- lacksquare reaches ${f N}$, the normal of ${f P}$ (if the corner is deep enough)
- triangles stay around the starting corner "within a small area"
- $O(\omega \log \omega)$ calls to \mathcal{P}

Contribution and outline

R^1 -algorithm

- has the same output as the R-algorithm
- but keeps only 1 ray and 1 point over 6 rays at each step
- ullet $O(\omega)$ calls to \mathcal{P} (tight upper bound), instead of $O(\omega\log\omega)$

Outline

- 1. local probing: 6 rays ightarrow at most 2 rays and 1 point
- 2. geometrical study: 2 rays ightarrow 1 ray and 1 point
- 3. efficient algorithm: 1 ray and 1 point ightarrow a closest point

Tip: → and → → are impossible on digital planes.

- (0) stop
- (1) unique candidate, trivial
- (2) (e) select closest. (v) 2 rays.
- (3) 2 rays and a point...

Tip: → and → → are impossible on digital planes.

- (0) stop
- (1) unique candidate, trivial
- (2) (e) select closest, triv (v) 2 rays.
- (3) 2 rays and a point..

Tip: → and → → are impossible on digital planes.

- (0) stop
- (1) unique candidate, trivial
- (2) (e) select closest (v) 2 rays.
- (3) 2 rays and a point..

Tip: → and → → are impossible on digital planes.

- (0) stop
- (1) unique candidate, trivial
- (2) (e) select closest, trivial (v) 2 rays...
- (3) 2 rays and a point..

Tip: → and → → are impossible on digital planes.

- (0) stop
- (1) unique candidate, trivial
- (2) (e) select closest, trivial(v) 2 rays...
- (3) 2 rays and a point...

Tip: → and → → are impossible on digital planes.

- (0) stop
- (1) unique candidate, trivial
- (2) (e) select closest, trivial(v) 2 rays...
- (3) 2 rays and a point...

2. Geometrical study (acute case)

R[i] is the i-th point on ray R.

Lemma

Either R[0] or R'[0] is closest.

Proof (sketch)

The sphere passing by T(and so $\mathbf{t_0}$) and R'[i+1] contains either R'[i] or R[0] (or both), i.e. another candidate point

2. Geometrical study (acute case)

R[i] is the i-th point on ray R.

Lemma

Either R[0] or R'[0] is closest.

Proof (sketch)

The sphere passing by T(and so $\mathbf{t_0}$) and R'[i+1] contains either R'[i] or R[0] (or both), i.e. another candidate point.

2. Geometrical study (obtuse case)

Theorem

A closest point is either in $R \cup \{R'[0]\}$ or in $R' \cup \{R[0]\}$.

Proof (sketch)

- we cut rays through their common point
- on one side, we are in the acute case and use the previous result

2. Geometrical study (obtuse case)

Theorem

A closest point is either in $R \cup \{R'[0]\}$ or in $R' \cup \{R[0]\}$.

Proof (sketch)

- we cut rays through their common point
- on one side, we are in the acute case and use the previous result

2. Geometrical study (obtuse case)

Theorem

A closest point is either in $R \cup \{R'[0]\}$ or in $R' \cup \{R[0]\}$.

Proof (sketch)

- we cut rays through their common point
- on one side, we are in the acute case and use the previous result


```
\mathbf{X} \bullet
\Rightarrow 1 \mathcal{S} \leftarrow sphere circumscribing \mathsf{T} \cup \{\mathbf{x}\};
      2 (i, j) \leftarrow \text{intersection}(S, R);
         // R[k] closer than x iff k \in [i, j]
      3 if \neg \mathcal{P}(R[i]) then return x;
      4 else
              k \leftarrow \mathsf{closestOnRay}(\mathsf{T}, \mathsf{R});
               if k \notin [i, j] then return \mathbf{x}:
              else k \in [i, j]
                    if \mathcal{P}(R[k]) then return R[k];
                    else return findLast(\mathcal{P}, R, i, k);
```


1 $S \leftarrow$ sphere circumscribing $T \cup \{x\}$;

$$\Rightarrow$$
 2 $(i,j) \leftarrow \text{intersection}(S, R)$;
// R[k] closer than x iff $k \in [i,j]$

- 3 if $\neg \mathcal{P}(R[i])$ then return x;
- 4 else

$$b \leftarrow \mathsf{closestOnRay}(\mathsf{T}, \mathsf{R});$$

- 6 if $k \notin [i,j]$ then return \mathbf{x} ;
- 7 else $k \in [i, j]$
- 8 | if $\mathcal{P}(R[k])$ then return R[k];
- 9 else return findLast(\mathcal{P} , R, i, k);

```
\mathbf{X}
     1 \mathcal{S} \leftarrow sphere circumscribing \mathsf{T} \cup \{\mathbf{x}\};
     2 (i, j) \leftarrow \text{intersection}(S, R);
         // R[k] closer than x iff k \in [i, j]
\Rightarrow 3 if \neg \mathcal{P}(R[i]) then return \mathbf{x};
      4 else
              k \leftarrow \mathsf{closestOnRay}(\mathsf{T}, \; \mathsf{R}) :
               if k \notin [i, j] then return \mathbf{x};
              else k \in [i, j]
                    if \mathcal{P}(R[k]) then return R[k];
                    else return findLast(\mathcal{P}, R, i, k);
```


- 1 $S \leftarrow$ sphere circumscribing $T \cup \{x\}$;
- 2 $(i, j) \leftarrow \text{intersection}(S, R)$; $// R[k] \text{ closer than } x \text{ iff } k \in [i, j]$
- 3 if $\neg \mathcal{P}(R[i])$ then return \mathbf{x} ;
- 4 else

5
$$k \leftarrow \mathsf{closestOnRay}(\mathsf{T}, \mathsf{R})$$
;

$$\rightarrow$$
 6 if $k \notin [i,j]$ then return \mathbf{x} ;

7 else
$$k \in [i,j]$$

8 | if
$$\mathcal{P}(R[k])$$
 then return $R[k]$;

else return findLast(
$$\mathcal{P}$$
, R, i , k);

```
\mathbf{X}
    1 \mathcal{S} \leftarrow sphere circumscribing \mathsf{T} \cup \{\mathbf{x}\};
    2 (i, j) \leftarrow \text{intersection}(S, R);
       // R[k] closer than x iff k \in [i, j]
    3 if \neg \mathcal{P}(R[i]) then return x;
    4 else
             k \leftarrow \mathsf{closestOnRay}(\mathsf{T}, \mathsf{R});
             if k \notin [i, j] then return \mathbf{x};
             else k \in [i, j]
                  if \mathcal{P}(R[k]) then return R[k];
                  else return findLast(\mathcal{P}, R, i, k);
```

```
\mathbf{X}
    1 \mathcal{S} \leftarrow sphere circumscribing \mathsf{T} \cup \{\mathbf{x}\};
    2 (i, j) \leftarrow \text{intersection}(S, R);
       // R[k] closer than x iff k \in [i, j]
    3 if \neg \mathcal{P}(R[i]) then return x;
    4 else
             k \leftarrow \mathsf{closestOnRay}(\mathsf{T}, \, \mathsf{R});
             if k \notin [i, j] then return \mathbf{x};
             else k \in [i, j]
                  if \mathcal{P}(R[k]) then return R[k];
                  else return findLast(\mathcal{P}, R, i, k);
```

Summary

Update

step	calls to ${\cal P}$	arithmetical operations	√., [.]
1. local probing	6	O(1)	0
2. geometrical study	0	O(1)	0
3. final algorithm	1 or 2 most often, exceptionnally more	O(1)	1 or 2

Complexity and experimental results

Overall complexity

- $O(\omega)$ calls to \mathcal{P}
- lacksquare tight upper bound (see, for instance, $\mathbf{N}(1,1,r), orall r \in \{1,2,\ldots\}$)
- \blacksquare lower on average: $O(\log(\omega))$ updates and 6-8 calls per update

Experimental comparison

6.578.833 digital planes whose normal vector is ranging from (1,1,1) to (200, 200, 200) (with relatively prime components).

	calls to ${\mathcal P}$				
	(per update)		(total)		
alg.	avg.	max.	avg.		
R	14.49	25	254.95		
R^1	7.06	14	122.36		

Conclusion and perspectives

\mathbb{R}^1 -algorithm

- has the same output as the R-algorithm
- but keeps only 1 ray and 1 point at each step
- $O(\omega)$ calls to \mathcal{P} (instead of $O(\omega \log \omega)$ for the R-algorithm)
- far fewer calls in practice

Perspectives in the context of PARADIS research project

- short-term: bound the area required by the algorithm
- mid-term: plane-probing algorithms for digital surface analysis
- \blacksquare 1 Ph.D. position (\ge September), applications are welcome!

Thank you for your attention

