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Context

A ,
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Parameter-free estimation of normal vectors over a digital surface

Approach

= One need to average things in a small area around each estimate

(?) without specifying the size and shape of the area.

(-) Existing methods have at least one size parameter (fitting,
convolution, integral invariants, variational approaches, ...)

= Digital plane segments are able to adapt to the local geometry.
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Digital plane and digital plane segment (DPS)

Standard and 6-connected digital plane (segment)

Let N(a, b, ¢) be a normal vector (a,b, c € Z, ged (a,b,¢) = 1) and
i € Z be an intercept. A standard digital plane is defined as the set

P={zcZ3u<z N<p+w}

(We assume that 0 < a < b <¢, p =0, w = [|[N]1).
A DPS is any 6-connected subset of a digital plane.
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Algorithms for DPS recognition

There exists a lot of recognition algorithms! See, for instance,

@ E. Charrier and L. Buzer, An efficient and quasi linear worst-case time algorithm for digital plane
recognition, DGCI'2008, LNCS, vol. 4992, Springer, 2008, pp. 346—357.

@ I. Debled-Rennesson and J.-P. Reveilles, An incremental algorithm for digital plane recognition,
DGCI'1094, 1994, pp. 207—222.

Y. Gérard, |. Debled-Rennesson, and P. Zimmermann, An elementary digital plane recognition
algorithm, Discrete Applied Mathematics 151 (2005), no. 1, 169-183.

C. E. Kim and |. Stojmenovié, On the recognition of digital planes in three-dimensional space,
Pattern Recognition Letters 12 (1991), no. 11, 665-669.

R. Klette and H. J. Sun, Digital planar segment based polyhedrization for surface area estimation,
Proc. Visual form 2001, LNCS, vol. 2059, Springer, 2001, pp. 356—-366.

L. Provot and |. Debled-Rennesson, 3d noisy discrete objects: Segmentation and application to
smoothing, Pattern Recognition 42 (2009), no. 8, 1626-1636.

) W W E

P. Veelaert, Digital planarity of rectangular surface segments, Pattern Analysis and Machine
Intelligence, IEEE Transactions on 16 (1994), no. 6, 647—652.
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Incremental recognition of DPS for normal estimation

Classical approach: select-and-decide algorithms

(?) Select a new point x and decide if S U {x} is still a DPS
(=) A too small DPS does not provide a relevant normal vector
(=) An inextensible DPS may not reveal the local geometry

= They require heuristics with hidden input parameters

Another approach: plane-probing algorithms

They probe P to select x for us. Parameter-free.
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Previous plane-probing algorithms

(A) Upward-oriented frame. No guarantee that it stays near the
starting point.
@ [LPR2016] J-O. Lachaud, X. Provencal, T. R. An output-sensitive algorithm

to compute the normal vector of a digital plane. Theoretical Computer
Science, 624:73-88, 2016.

(B) Downward-oriented frame. The origin is immutable.

@ [LPR2017] J-O. Lachaud, X. Provencal, T. R. Two Plane-Probing Algorithms
for the Computation of the Normal Vector to a Digital Plane. Journal of
Mathematical Imaging and Vision, 59(1):23-39, 2017.

® H-algorithm,
® R-algorithm.
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A common procedure for both H- and R-algorithm

We are given a predicate P:
“is x € P7".
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A common procedure for both H- and R-algorithm

We are given a predicate P:
“is x € P7".

start with a triangle T’
in a reentrant corner
M) = (1,4, 1)
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A common procedure for both H- and R-algorithm

We are given a predicate P:
“is x € P7".

= start with a triangle T’
in a reentrant corner
M) = (1,4, 1)

= update one vertex
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A common procedure for both H- and R-algorithm

We are given a predicate P:
“is x € P7".

start with a triangle T’

in a reentrant corner
M) = (1,4, 1)

= update one vertex

reapeat until N(7) = N
(for a deep enough corner)
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Update procedure

At a given step:
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Update procedure

At a given step:

= consider a candidate set S
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Update procedure

At a given step:
= consider a candidate set S
= filter S through P
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Update procedure

At a given step:
= consider a candidate set S
= filter S through P

= select a closest point s*:
the circumsphere of T'U s*
doesn’t contain any other
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Update procedure

At a given step:
= consider a candidate set S
= filter S through P

= select a closest point s*:
the circumsphere of T'U s*
doesn’t contain any other

= update T' with this point
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Difference between H- and R-algorithm

Each algorithm considers a distinct candidate set:

Sp (x): 6 Hexagon vertices
Sk (¢): 6 Rays (which are infinite)

~
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Motivation

The R-algorithm experimentally requires a smaller area

H-algorithm

R-algorithm
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Main features of the R-algorithm

= starts with a triangle of normal (1,1,1) in a corner

= updates the current triangle by one geometrical operation

= using only the predicate P: “is x € P?"

= reaches N, the normal of P (if the corner is deep enough)

= triangles stay around the starting corner “within a small area”
: O(wlogw) calls to P
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Contribution and outline

R!-algorithm

= has the same output as the R-algorithm
= but keeps only 1 ray and 1 point over 6 rays at each step
: O(w) calls to P (tight upper bound), instead of O(wlogw)

1. local probing: 6 rays — at most 2 rays and 1 point
2. geometrical study: 2 rays — 1 ray and 1 point
3. efficient algorithm: 1 ray and 1 point — a closest point
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1. Local probing

Tip: o— and e o e are

impossible on digital planes.

Switch on card(Sy NP):
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1. Local probing

Tip: o— and e o e are

impossible on digital planes.

Switch on card(Sy NP):
(0) stop
(1) unique candidate, trivial
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1. Local probing

Tip: o— and e o e are

impossible on digital planes.

Switch on card(Sy NP):
(0) stop
(1) unique candidate, trivial

(2) (e) select closest, trivial
(v) 2 rays...
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1. Local probing

Tip: o— and e o e are

impossible on digital planes.

Switch on card(Sy NP):
(0) stop
(1) unique candidate, trivial

(2) (e) select closest, trivial
(v) 2 rays...

(3) 2 rays and a point...
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2. Geometrical study (acute case)

R[] is the i-th point on ray R. )2

Either R[0] or R'[0] is closest.

R'[0]
R[0]

LIRIS

T. Roussillon, J-O. Lachaud Digital Plane Recognition With Fewer Probes 14 / 20



Motivation Plane-probing g s Contribution

2. Geometrical study (acute case)

R[i] is the i-th point on ray R.

Lemma
Either R[0] or R'[0] is closest.

Proof (sketch)

The sphere passing by T(and so
to) and R'[i + 1] contains either
R'[i] or R[0] (or both), i.e.
another candidate point.

LIRIS

T. Roussillon, J-O. Lachaud Digital Plane Recognition With Fewer Probes 14 / 20




Motivation Plane-probing algorithms Contribution

2. Geometrical study (obtuse case)

A closest point is either in
RU{R'[0]} orin R"U{R[0]}.

R[0]
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2. Geometrical study (obtuse case)

A closest point is either in
RU{R'[0]} orin R"U{R[0]}.

Proof (sketch)

= we cut rays through their
common point o] ,
R[]
to
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2. Geometrical study (obtuse

A closest point is either in
RU{R'[0]} orin R"U{R[0]}.

Proof (sketch)

= we cut rays through their
common point

= on one side, we are in the
acute case and use the
previous result
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3. Efficient algorithm for 1 ray and 1 point

Re <
X0

=> 1 S <« sphere circumscribing TU{x} ;
2 (i,7) < intersection(S, R) ;
// R[k] closer than x iff k € [i,]]
if =P(R[:]) then return x;
else
k < closestOnRay(T, R) ;
if k¢ [i,j] then return x;
else k € [i, j]
L if P(R[k]) then return R[k] ;

© 00 N O OO W

else return findLast(P, R, i, k) ;
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3. Efficient algorithm for 1 ray and 1 point

Re ¢ g o

X L J
1 S < sphere circumscribing TU{x} ;

= 2 (i,j) < intersection(S, R) ;

// R[k] closer than x iff k € [i,]]
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else return findLast(P, R, i, k) ;
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3. Efficient algorithm for 1 ray and 1 point

X L J
S < sphere circumscribing TU{x} ;

(,7) < intersection(S, R) ;
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N =
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else return findLast(P, R, i, k) ;
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3. Efficient algorithm for 1 ray and 1 point

Re b 4 3 o
X k L J
S < sphere circumscribing TU{x} ;

(,7) < intersection(S, R) ;

// R[k] closer than x iff k € [i,]]

if =P(R[:]) then return x;

else

k < closestOnRay(T, R) ;
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N =
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else return findLast(P, R, i, k) ;
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3. Efficient algorithm for 1 ray and 1 point

-

S < sphere circumscribing TU{x} ;

(,7) < intersection(S, R) ;

// R[k] closer than x iff k € [i,]]

if =P(R[:]) then return x;

else

k < closestOnRay(T, R) ;

if & ¢ [i,j] then return x;

else k € [i, j]
if P(R[k]) then return R[%] ;
else return findLast(P, R, i, k) ;

N
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3. Efficient algorithm for 1 ray and 1 point

Re ® ® *—+¢ = = — $ o o
X L k J

1 S < sphere circumscribing TU{x} ;

2 (i,7) < intersection(S, R) ;

// R[k] closer than x iff k € [i,]]

3 if =P(R][i]) then return x;

4 else

5 k < closestOnRay(T, R) ;

6 if & ¢ [i,j] then return x;

i else k € [i, j]

8 if P(R[k]) then return R[%] ;
=9 L else return findLast(P, R, i, k) ;
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Summary

arithmetical
Il . L
step calls to P J— Vol
1. local probing 6 0O(1) 0
2. geometrical study 0 0O(1) 0
3. final algorithm L or 2 most often, 0(1) lor2

exceptionnally more
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Complexity and experimental results

Overall complexity

O(w) calls to P
tight upper bound (see, for instance, N(1,1,7),Vr € {1,2,...})
= lower on average: O(log(w)) updates and 6-8 calls per update

Experimental comparison

- I
6.578.833 digital planes whose e uciiastet)o P(total)
normal vector is ranging from al apv . . v
(1,1,1) to (200, 200, 200) (with - : £l

R 14.49 | 25 | 254.95

relatively prime components). R | 706 | 14 |122.36
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Conclusion and perspectives

R!-algorithm

= has the same output as the R-algorithm

but keeps only 1 ray and 1 point at each step

O(w) calls to P (instead of O(wlogw) for the R-algorithm)
far fewer calls in practice

Perspectives in the context of PARADIS research project

short-term: bound the area required by the algorithm

mid-term: plane-probing algorithms for digital surface analysis

1 Ph.D. position (> September), applications are welcome !
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Thank you for your attention
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