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Abstract

When processing the geometry of digital surfaces (boundaries of voxel sets),
linear local structures such as pieces of digital planes play an important role.
To capture such geometrical features, plane-probing algorithms have demon-
strated their strength: starting from an initial triangle, the digital structure
is locally probed to expand the triangle approximating the plane parameters
more and more precisely (converging to the exact parameters for infinite digi-
tal planes). Among the different plane-probing algorithms, the L-algorithm is
a plane-probing algorithm variant which takes into account a generally larger
neighborhood of points for its update process. We show in this paper that this
algorithm has the advantage to guarantee the so-called Delaunay property of the
set of probing points, which has interesting consequences: it provides a minimal
basis of the plane and guarantees an as-local-as-possible computation.
Keywords: Digital Plane Recognition, Plane-Probing Algorithms, Delaunay
Property

1. Introduction

In digital geometry, a digital surface is a quadrangular mesh that corresponds
to the boundary of a union of regularly spaced unit cubes. The digital nature of
such surfaces is a great advantage for computations in many material sciences or
medical imaging applications (e.g., [1l 2 [3]). However, the local geometry is very

poor and difficult to analyze since the cubes provide at most six different normal
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directions. In order to estimate the geometry of the digital surfaces, an approach
is to analyze locally the digital surface within a given neighborhood. The size
of the neighborhood should be chosen carefully, because we risk blurring sharp
features if the neighborhood is too large. The challenge is to seek the right trade-
off between finding an appropriate geometrical estimation and preservation of
sharp features.

Purely digital methods have thus emerged and try to perform digital surface
analysis. Geometrical properties of continuous planes are translated into digital
planes [4]. For example, [B] introduces the concepts of leaning points and leaning
plane for digital plane recognition. Other works propose digital plane recogni-
tion algorithms with low complexity from a finite subset of three-dimensional
integer points, e.g., [6 [7]. To estimate differential quantities, there exist meth-
ods that require user-defined parameters such as Voronoi-based methods [8] and
integral invariant methods [9]. In this context, plane-probing algorithms could
lead to normal vector estimators without the need of external parameters.

Plane-probing algorithms are methods which adapt the neighborhood pro-
gressively. The first plane-probing algorithm was proposed in [I0]. It probes
some points in the digital surface and the output represents locally an approx-
imation of the digital surface. Other plane-probing algorithms were proposed
later [I1l 12]. They consider a tetrahedron whose apex is outside the digital
surface and a triangle formed of three points that belong to the digital surface.
The apex of the tetrahedron always stays in the same position so that one can
focus on the movement of the triangle. See Fig. [1| for an example on a digital
plane.

Despite the fact that plane-probing algorithms return the exact normal on
an infinite digital plane, they may encounter difficulties with non-planar surfaces
[12]. Probing for points not too far away from the initial point can alleviate those
difficulties. That is why, we wish here to estimate a minimal neighborhood that
provides a good normal estimation.

There are mainly three types of tetrahedron-based plane-probing algorithms:

H-algorithm and R-algorithm, first introduced in [12], and L-algorithm [13]. The
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Figure 1: The evolution (from left to right) of a tetrahedra-based plane-probing algorithm on
a digital plane of normal (1,2,5).

primary difference between those algorithms is the considered candidate set of
points at each iteration. Sometimes, one can observe that the R-algorithm
probes points more locally than the H-algorithm (see Fig. [2| and Fig. 3. Fur-
thermore, one can observe that the L-algorithm usually takes fewer steps than
the two other algorithms (see Fig. @) Nevertheless, in practice, the R-algorithm
and the L-algorithm always return the same triangle in the end and that final
triangle has only acute or right angles. It is not trivial at all to give a proof
of that fact because the triangles may have an obtuse angle throughout the

iterations.

Figure 2: The evolution for normal (1,73,100) with H-algorithm (a) and R-algorithm (b).
Here, L-algorithm has the same output as the R-algorithm. Every triangle of the evolution is

superimposed. The initial triangle is blue. The last one is red.

In order to find an invariant, we focus in this paper on pairs of consecutive

triangles. For all three above-mentioned algorithms, two consecutive triangles
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(a) (b) (c)

Figure 3: The evolution for normal (2,5,156) with H-algorithm (a), R-algorithm (b) and L-
algorithm (c). The notations are the same as Fig.

share two common vertices and with the two other distinct vertices one can
define a unique circumscribing ball. These balls have very strong and interesting
properties in the case of the L-Algorithm. For example, the radius of the balls
is strictly increasing (see Fig. @) In addition, the interior of the balls do not
include any point of the digital plane. For normal vectors between (1,1,1)
and (80,80,80), we have counted the number of points which lie in both the
plane and the ball circumscribing two consecutive triangles. There are in total
75235972 points detected in balls for the H-algorithm; 424 points are detected
for the R-algorithm; while no points for the L-algorithm. We name this invariant
property the Delaunay property after the empty-circle condition used to define
the Delaunay triangulation of a set of points in computational geometry. In
particular, all the triangular facets whose circumcircle contains none of the
points of a digital segment have been characterized in [I4]. This work can be
thought of a partial 3D extension of that result.

Indeed, our objective is to demonstrate that the Delaunay property holds
for the L-algorithm and to provide a theoretical upper bound for the position
of the final triangle. The Delaunay property is also useful for an optimized
implementation of the L-algorithm [I3].

The outline of the paper is as follows: we start by introducing the general
framework of plane-probing algorithms and the L-algorithm in sec. [2] The main
theorem that mentions the Delaunay property is announced in sec. (3], followed

by some proximity results for the L-algorithm. We complete the paper with two
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Figure 4: Evolution of the radius of the balls circumscribing two consecutive triangles for
a digital plane of normal (2,5,156) with H-algorithm (green), R-algorithm (blue) and L-

algorithm (red). Only L-algorithm has non-decreasing variation.

sections: in sec. [ we prove the important Lemmal[7]leaving the technical details
to sec. 5, which is arranged into three categories: projection-based-results (5.1)),
circumsphere-based-results (5.2)), and proximity results (5.3]).

2. Digital plane probing and the L-algorithm

A digital plane is an infinite digital set defined by a normal N € Z3 \ {0}, a
shift value u € Z and a thickness w € Z as follows [15]:

P,n={xeZ | p<x-N<pu+twh (1)

In this paper, we set w := |NJ|; and we assume w.l.o.g. that 4 = 0 and
that the components of N are non-negative but not all zero, i.e., N € N3\ {0}.
Given a digital plane P € {Pon | N € N3\ {0}} of unknown normal vector, a
plane-probing algorithm computes the normal vector N of P by sparsely probing
it with the predicate “is x in P?”. We describe below a specific plane-probing
algorithm, called L-algorithm (see Algorithm . An extensive description of
the L-algorithm and its properties is provided in [I3]. For the sake of clarity,

we briefly describe its critical steps below.
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Algorithm 1: L-algorithm

Input: The predicate InPlane := “Is a point x € P?”, a point o € P
Output: A normal vector N and a basis of the translated lattice

{x|x- N=w-1}.

1 g0+, e; (VIEO))IGGZ/3Z — (94— er)rez/sz ; // initialization
21+ 0;
3 while {x € N | InPlane(x)} # 0 do

4 Let (k,a, 3) be such that, for all y € {x € NV | InPlane(x)},

Vz(:) +alq— Vk+1) +5( Vk+2) <ry; // equation 1D
5 V,(:+1) (1) +a(q *Vk+1)+5(q Vk+2) ; // equation 1%’
6 vi € {0,1,2} \ k, vl(l+1) — Vl( R
7 11+ 1;
8 1 () v )

9 Let by and by be the shortest and second shortest vectors of B ;

10 return by x bo, (b1, b2) ; // X denotes the cross product

We call the set {x | x - N = w — 1} a translated lattice because it is a

translation of the lattice {x | x - N =0} and they share the same bases.

2.1. Description of the L-algorithm

Initialization. Let (eg,e1,ez) be the canonical basis of Z3. Given a starting
point o € P, let q be equal to o + >, e, (q is by definition not in P) and
let v,(co) be equal to q — ey, for all k € Z/3Z. We define the initial triangle as
T := (vi”) 252 provided that T C P.

Candidate set. At each step i € N, the triangle T = (V](Ci))kez/gz represents
the current approximation of the plane P. The L-algorithm updates one vertex
of T® per iteration. That vertex is replaced with a point of P from a candidate

set defined as follows:

N = v+ ala = Vi) + Bla = vily) | k € Z/3Z, (a,8) € N2\ {(0,0)}}.
(2)
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Figure 5: Tllustration of the neighborhood N (¥ (marked with hollow diamonds)

At each step i € N, let HS? (resp. H(f)) be the open half-space bounded
by the plane passing by T(?) and containing q (resp. not containing q). Let
us consider the ball B(T(®) x) circumscribing T(*) and a point x € Hgf). It
jinduces a total preorder on 7—[9 through the inclusion relation (see
. For any pair x,x’ € ’H@, we say that x’ is closer to T(Y) than x, denoted
by X' <t x, if and only if (B(T®,x') nHY) € (B(T®,x) N H) (see Fig. [6).

The L-algorithm updates a vertex of T(?) with a point of the set N P
that is a closest one according to <t (note that this is a finite set, see sec. .
More precisely, if N) P # 0, there is an index k € Z/37Z and there are
numbers (a, 3) € N?\ {(0,0)} such that

vx e N NP, v,(f) +a(q — v,(:J)rl) + B(q— Vl(czl2) <t X. (3)

Note that the triple (k,«, ) may not be unique when several points are in a
cospherical position and in this case any triple could be picked for the next

iteration.
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Figure 6: Illustration of the balls B(T(),x’) (purple) and B(T() x) (blue). Since
(B(T®,x') N HEP) lies in (B(T®,x) N ’Hfﬁ)), we have x’ < x.

Once a triple (k, a, 8) has been selected, the update rule is:

i+l i i i

Vl(c+ )= Vl(c) +a(q— Vl(gj-l) + Blaq — Vl(cj-Q)y
i+1 i

D =il 0
(i+1) _ (@

Vita = Vl(cj—Q'

As shown in Algorithm (1} lines El to @ equations and @) are used to

update the current triangle.

Termination. The algorithm terminates at a step n, when the neighborhood has
an empty intersection with the plane, i.e., when N NP = (§ (Algorithm
line [3). The number of steps, n, is less than or equal to w — 3, which is a tight
bound reached for any normal of components (1,1,7) with » € N\ {0}. This
result can be found in [I2] Theorem 1]. Slightly different candidate sets are
introduced in [12]. However, they are included in N' (©) by definition for all steps
i € {0,...,n} and all mentioned results were actually already proved in [12] for
the larger candidate set N we consider in this paper. In addition, if o is one
of the lowest point in P, i.e., o - N = 0, T lines up with P, as recalled in the

following theorem:

Theorem 1 ([I2], Corollary 5). If o is a lower leaning point i.e., o - N = 0, the
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normal of T is equal to N and any two edges form a basis of the translated

lattice of upper leaning points, i.e., {x € Z3 | x - N =w — 1}.

The condition o+ N = 0 is crucial for the correctness of the output of the
algorithm. In many cases, we could not ensure the exactitude of the estimated

normal because o is not a lower leaning point.

2.2. Basic properties

We gather in this section the main properties that the L-algorithm shares

with its predecessors studied in [I2]. The following results involve these vectors:

Vie{0,...,n}, Vk € 2/3Z, m\" .= q—v". (5)

Theorem 2 ([12], Lemma 3). For alli € {0,...,n}, det(m0 ,mg ),mé )) =1.

This shows that, for all steps i € {0,...,n}, {m(()l), mgl), mg)} is a basis of

73, which is especially useful in sec.

Theorem 3 ([12], Lemma 5). For alli € {0,...,n}, Vk € Z/3Z, m,(:) -N > 0.

(@)

It V;(jﬂ) (z) + oz(m,(;j_l) + B(my,), then we have V(H_ )

N>v".N
by Theorem In other words, the algorithm always replaces a vertex with a
higher candidate point in direction N. That property is a key point in the proof
of Theorem [1} Tt also implies that the set A NP is always finite. Indeed, the
scalar product (v, O 4 a(mkH) + B(mk+2)) - N tends to infinity when « or
(or both) tend to infinity. That is to say, when « or 3 is large enough, the point
v,(C ) —|—oz(m§€+1) +ﬂ(mk+2) does not belong to P. As a consequence, Algorlthm
can be implemented naively by visiting every point in the set NV NP on lines
4 and 5. A more efficient algorithm is proposed in [13], where a smaller subset
is shown to be enough to find a closest point.

In addition, we can derive the following small lemma which is needed in

sec. [l

Lemma 4. For alli € {0,...,n}, p® - N >0, with p() :=q -3, m!"
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Proof. By definition p(®) = o and o is assumed to belong to P. As a conse-
quence, p(o) -N > 0.

For any ¢ € {1,...,n — 1}, there is (k,a,3) such that mEj’H) = mgj) -
amgfll — ﬁmg_Q, m,iiill) = m,(cij_l and m,(f:;) = mgflz by . Then, we remark
that plt).N—p().N = arn,(g1 -N—i—ﬁmfj}rQ-N7 which is positive by Theorem
We can therefore conclude by induction. O

3. Main results

For convenience let T~V denotes the degenerated triangle whose three ver-
tices are all at 0. At each step i € N, let B®) be the ball uniquely determined
by the four distinct points of TG~ U T®. We have experimentally observed
that the following property is verified by the L-Algorithm, but neither by the
H-Algorithm, nor by the R-Algorithm:

Property 5 (Delaunay property for plane-probing algorithms). For all i €

{0,...,n}, the ball B does not contain any point of P in its interior.

If we randomly pick a point from the set N¥ NP at each iteration, our
procedure would still terminate and return a triangle whose normal is equal to
the normal of the plane. However, that triangle might have a very bad aspect
ratio and its vertices might lie far away the starting point. The Delaunay
property is a strong geometric result ensuring that the last triangle have only
acute or right angles (Corollary 8] in sec. and that its vertices stay close
enough to the starting point (sec. |3.2]).

3.1. The Delaunay property and its consequences
The main purpose of this paper is to prove the following theorem:
Theorem 6. The L-algorithm verifies the Delaunay property (Property @

The proof of Theorem [f] requires the following lemma whose quite technical

and lengthy proof is postponed to sec.

10
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Lemma 7. For alli € {0,...,n — 1}, if the interior of BY) contains no point

of P, then the interior of BT contains no point of P N ’H@.
Proof. of Theorem [f]

Base case. B®), which passes through all the vertices of a unit cube, contains

no integer point in its interior and as a consequence, no point of P.

Induction step. We assume that B®) contains no point of P in its interior for
any i € {0,...,n—1} and we want to show that no point of P lies in the interior
of BU+1),

By definition, the boundary of B and the boundary of B("*1) pass through
the vertices of T(?) and there is a point x*, chosen by the algorithm, lying in

H and such that x* € TE+D \ TO (see Fig. [1).

)

H @)

\ o

Figure 7: The point x* € TG+ \ T() has been chosen by the algorithm to update T(). The
ball BG+1) s defined from T(*) U {x*}. The easy part of the proof of Theorem El is based on
the fact that (B(”rl) N ’H(j)) - (Bm N ’H@). The hard part is the proof of Lemma

First, we can safely discard the points of P that are located in ’H(_i). Indeed,
x* € "HS:) (by definition) and x* ¢ B (by hypothesis) together imply that
(B(i)ﬂ’}-li)) - (B(“‘l)ﬂ?-[gf)), thus (B(“‘l)ﬂ?{@) C (B(i)ﬂ/H@) (see Lemma

in . We conclude that the interior of (B4+1) N ’H@) contains no

11
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point of P, because it is included in the interior of (B(i) N H(f)), itself included
in the interior of B, which is assumed to contain no point of P.

If we denote by H? the plane containing T(Y), we can similarly show that
the interior of (B(”l) ﬁ?—l(i)) contains no point of P, because (B(”l) ﬁ?{(i)) =
(B N H@) by the definition of BH and B+,

Finally, regarding the points of P that are located in ’Hsri), by Lemma |7, we

know that none of them are in the interior of BU*1 | which concludes. O

One of the consequences of Theorem [f]is the following result:
Corollary 8. The final triangle T has acute or right angles.

Proof. By Theorem@ the circumsphere B(™ does not contain any point of P in
its interior. In particular, the circumcircle passing through the vertices of T(")
does not contain in its interior the points v,(cn) + (v,(cn_ir)1 - v](en)) + (VI(CH+)2 - v,(cn)),
for all k € Z/3Z . By Lemma [21] on page this implies that the final triangle

has three acute or right angles. O

That geometrical result has another consequence that requires the following

definition:

Definition 9. Let L be a rank-two integral lattice. A basis (x,y) of L is minimal
if and only if x|, [lyll < [lx =yl < llx +yll, where || - || denotes the Euclidean

norm.

Such a basis is said minimal because this definition matches with the well-

known Minkowski’s minima [16], Theorem 7).

Corollary 10. The two shortest edges of the final triangle T™ form a minimal
basis of the translated lattice of upper leaning points, i.e., {x € Z* | x - N =
w—1}.

Proof. We know by Theorem [I] that any two edges of the final triangle form a
basis of the translated lattice of upper leaning points. We show below that the
fact that all angles are acute or right (Corollary implies that the two shortest

edges form a minimal basis.

12
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Let x,y, z be respectively equal to (v§") —v(()n)), (vén) —v(()n)) and (vén) —v§"))

and assume w.l.o.g. that x and y are the two shortest vectors, i.e., |[|x]|, ||y] <

llz||. On one hand, since —z = x —y, we have by definition

[l Iyl < flx = ylI-

On the other hand, since x -y > 0 by Corollary [8] it is obvious that
Ix =yl < lx+yl.

Putting all together, we have ||x|[, [|y|| < [|x —y|| < [|x + y||, which means by
definition that the basis (x,y) is minimal. OJ O

Thanks to the Delaunay property, we have been able to prove that the L-
algorithm always terminates with an acute or right triangle. In addition, the
two shortest edges of the final triangle form a minimal basis of the translated
lattice of upper leaning points. In the following section, we use this result to

show that the last triangle cannot be too far away from the starting point.

3.2. Bound on the maximal distance

The goal of this section is to show an upper bound for the magnitude of
the last three vectors (m,in))kez/327 i.e., for the distance of the three vertices
(V]in))keZ/SZ from the fixed point q, which is located very close to the starting
point o.

Let x,y, z be respectively equal to (vgn) fvé")), (vé") fv(()")) and (vé") fvgn))
and assume w.l.0.g. that their magnitude are such that ||x|| < |ly|| < ||z]|-

Let us focus on the rank-two translated lattice L := {x € Z* | x - N =
w—1}. Tts volume, denoted by vol(L), is defined as the square root of the Gram
determinant of any basis (by,bz) of L [I6 Definitions 3 and 7]. If we choose
the basis returned by Algorithm 1] (see also Theorem , we can easily compute
that vol(L) = |N||.

By Corollary [10} ||x|| and ||y || are respectively the shortest and second short-

est non-zero vectors of L, i.e., the first and second Minkowski’s minima of L.

13



We can therefore relate them with vol(L) and thus ||N|| using known results
from lattice theory. Equation @ involves Hermite’s constant [16], Definition
us  14], whereas equation @ involves Minkovski’s Second Theorem [I6, Theorem

5] and the trivial lower bound /2 < ||X||

I[|* < IINII (6)

Iyl < \[IINII (7)

Furthermore, since the last triangle T(") has three acute or right angles by
Corollary I, we can use the law of cosines to bound from equations @ and [7]

the length of the longest side:

2 2,
2| < \/\/glNII + NP> (8)

250 Now, for all k € Z/3Z, let us consider the orthographic projection of mfcn)

in direction N defined as:

pr(my”) = my" — (m(k \ ||N||) N

Since pN (m,(cn)) is trivially bounded by ||z||, we can derive from ({§)) an upper

bound for ||m,(€n)|| as follows:

2 2 2
(M2 (e (m) 2 n) N m) N N
— _9 Lo Lo N
s ()1 = e (m’f ||N||) +<m’€ ||N||> <||N|)
N 2
o Hm(n)HQ _ <m(n) . >
¢ N

2 2
< _|IN| + Z||N||?
< 3|| ||+3|| [

= P < (w7 )+ 5 INI+ SN
Since a direct consequence of Theorem I ism ) -N =1, we finally obtain
vk € Z/32, | < ZINJ* + —IN| + .
255 Hence,
max{}m{"]}} < \/ INJ2 + N + 77 Q

14
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This result shows that the last triangle has vertices not too far away from
q and thus, from the starting point o. More precisely, their distance to q is
comparable to the magnitude of the normal vector of the digital plane. This
provides some evidence that the L-algorithm locally probes the digital plane to
determine its normal vector. This property is quite important for the analysis
of digital surfaces with the help of a plane-probing algorithm.

Note, however, that this result is still partial, because our derivation only
holds for the last triangle T and not for all previous triangles. Even if it is

unlikely, points farther away might be probed in the course of the algorithm.

4. Proof of Lemma [T
This section is dedicated to the proof of

Lemma 7. For alli € {0,...,n — 1}, if the interior of BY) contains no point

of P, then the interior of BU+Y) contains no point of P N ’Hg).

The proof is based on the fact that the point x* selected by the algorithm
at a given step i is closer than other specific points of N'¥) by definition. Those
specific points are shown to be closer than the points lying in specific subsets of
"HS:). We thus partition the points of ngi) into different categories according to
their position and we treat each case with distinct lemmas before concluding.
Since we now focus on a step ¢ € {0,...,n — 1}, for sake of simplicity, we drop

the exponent (i) in the notations of this section.

4.1. Outline of the proof and notations

Remind that p is equal to q — ), my. By Theorem [2, mg, m; and m,
form a basis of Z3. We conveniently describe any integer point y € Z3 as
Yy =P+ > cmy, with ¢ € Z for all k € Z/3Z. By construction, the
bounding plane of H, is defined by the vertices of T, which can be written
as {p+my+m;,p+m; +my,p+ my+ my}. All points p+ ), cpmy on

that plane, including those vertices, are such that ), ¢, = 2. Hence, we have

15



p+ > cemy, € Hy < >, ¢, > 3. In this section, we only consider points in
H4, i.e., such that >, ¢, > 3.

285 We consider several cases:
(Case 1) the coefficients co, c1, c2 are all strictly positive (see Lemma [11),

(Case 2) one coefficient is zero and the others are strictly positive; these points are
exactly the ones probed in the L-algorithm (see also the definition of the
candidate points, equation )7

HCase 3) one coeflicient is strictly negative and the others are strictly positive (see

Lemma and Lemma ,

(Case 4) one coefficient is strictly positive and the others are strictly negative or

null (see Lemma [14] and Lemma [15)).

To check that any y € Hy is in one of the previous cases, it is enough to

s consider the partition of Z? into eight octants depending on the signs of the

coefficients and with a convention for null coefficients (see Fig. . The negative

octant, in red, does not intersect H, and is therefore discarded. The positive

octant is itself divided into two regions, the interior, in yellow, corresponds to

(Case 1)] whereas the boundary faces, in green, corresponds to[(Case 2)] Among

s0  the last six octants, three of them, in blue, correspond to whereas the
other three, in purple, correspond to |[(Case 4)|

The proofs of the following lemmas require a lot of technical details that are

postponed in sec. [f| for the sake of readability. They also require the introduction

of new notations (see Fig. [9):
Vk € Z/3Z, d; = mygyq1 —Mgyio = Vo — Vi, (10)

305
For sake of clarity, we use the bar notation whenever a scalar product with
N is required, i.e., ¥ instead of y - N for any vector y € Z3.
Lemma 4] ensures that p > 0. Since Vk € Z/3Z, m) > 0 by Theorem

all points of the form p + )~ ¢xmy, with positive coefficients are such that

16
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(b) () (d) (e)

Figure 8: The discrete space Z3 (intersected with the box [—5,5]° for the illustration) is
partitioned into five regions: the yellow, green, blue and purple regions respectively correspond

to [(Case 1) [(Case 2)| |[(Case 3)| and [(Case 4)| the red one is discarded because none of its

points lie in 4 (the three black arrows indicate the direction of the grid axes).

P+ > ,cam, > 0. That is why we will only check if P+ >, cxnp < w,
whenever we want to determine whether such a point is in P or not.

Finally, let ¥ be the set of all permutations over {0, 1,2}. Permutations
will be useful to describe in a uniform way the various sign combinations of the

coefficients.

42

The following lemma indicates that the points y corresponding to

do not need to be considered because they are not in P.

Lemma 11. Lety = p + >, cpmy, be such that Y, ¢ > 3. If co,c1,¢2 > 0,
then'y ¢ P.

17
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N,

Figure 9: Notations for v;, (black), my, (red) and dj (blue). Note that Ny, (grey) is used only

in sec. @

Proof. Note that y = q+ ), (cx — 1)my. Since (¢ —1) > 0 for all k € Z/3Z
(by hypothesis), @ = w (by definition) and m; > 0 (by Theorem [3), then
Yy=q+ (cx—1)m, >q=wandy ¢P. O

4.8.

This subsection contains Lemma |12] and Lemma that focus on
More precisely, they indicate that the points y corresponding to do
not need to be considered because if they are in P, then there is at least one

specific point x e N NP (Lemma such that x <ty (Lemma.

Lemma 12. Lety =p+ ), cxmy, be such that ), ¢, > 3. Let 0 € ¥ be such
that c,0) < 0 and cy1),Co(2) > 0. If y € P, then p + 2myq) + mg2) € P or
P +m, (1) +2m,(9) € P (the two points can be both in P).

In addition, if —c, () < min (¢,(1), Co(2)) — 1, then p+ (co(0) + Co(1))My(1) +
(Co(0) + Co(2))Mo(2) € P.

Proof. We assume w.l.o.g. that ¢ is the identity substitution.
Since y € P, we have

Y=p+ Y iy =q+ » (cp — 1), < w.
k k

Since g = w, the last inequality is equivalent to ), (¢ — 1)my < 0.
With A set to min (m;, m2) and noticing that ¢p < 0 < —(co — 1) > 1, we

equivalently have

(Cl —+ co — 2)h < (61 — 1)ﬁ1 + (02 — 1)ﬁ2
—(Co — 1) - —(Co - 1)

18
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In addition, we have

ch23<:>61+62—22—60+1,
k
which means that h < mg.

We conclude that if h = m; (resp. h = my), p + 2m; + m2 (resp. p +
m; + 2my) is strictly smaller than p+ ), M) = q = w and thus, the point
p +2m; + my (resp. p+ mj + 2msy) is in P.

For the second part, we similarly derive from ), (cx — 1)m; < 0:

(Cl — 1)ﬁ1 + (CQ — l)ﬁg
—(co—1)

(min (c1,¢2) — 1)
—(co—1)

(m; +my) <

Since we assume (min (¢1,c2) — 1) > —¢g, we have %%21))71) > 1 and it
follows that (m; + m3) < my.
As a consequence,
P+ (co + cr)my + (o + c2)m <ﬁ+zckﬁk =Yy <w,
k

which concludes. O

Lemma 13. Lety = p+ ), cxmy, be such that ), ¢, > 3. Let 0 € ¥ be such
that co0) < 0 and c,(1), co2) > 0. If y € P and if the interior of B contains no

point of P, then there exists a point x € N NP such that x <Ty.

Proof. We assume w.l.o.g. that o is the identity. We also assume w.l.o.g. that

¢1 < ¢o and consider three separate cases (see Fig. :
(i) (e1 —1) < e2 < —co,
(i) (1 —1) < —¢p < ca,
(iii) —cp < (1 — 1) < ea.

Since y € P, either p + my + 2m;, or p + 2m; + my is in P by Lemma [T2]
For (i) and (ii), we suppose here that only p 4+ m; +2m;, € P, because the case
where only p+2m; +mjy € P can be proven symmetrically. For (iii), Lemma

provides a stronger result, that is y € P implies p+(co+c1)mi+(co+c2)my € P,
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Figure 10: Relative position of —cg with respect to ¢; and ca. Three separate cases, (i), (ii),

and (iii), are considered in the proof.

which in turn implies both p + m; + 2ms € P and p + 2m; + my € P because
(co+c1) >2and (cog+c2) >2 (P+ 1y +2my,p+2m; + My < p+ (co+
c1)m; + (cp + c2)My < w by Theorem .

Let u := —mgy + m; + my. By equation , u is also equal to d; + m;.
The first step of the proof is to show the following results:

d1 - Mo Z O, (11)
ms -u > 0, (12)
p+m;+2m, € P =
di-u>0, (13)
(—=d3) -u>0, (14)
and
p+2m;+ms € P=m; -u>0. (15)

Those results are used in a second step to complete the proof: , , ,
are used in cases (i) and (ii), while and are used in case (iii).

First step. If p+my+2my isin P, so is p4+2my (p+2ms < p+in; +2ms < w by
Theorem . As the interior of B does not contain any point of P by hypothesis,
p + 2my ¢ B. By rewriting

p+2my =vg—dg=vy+d; —do,

we can apply Lemma on page with the two vectors (—dp),d; and the
point v, as origin. Since vy, vo — dg = v; and vy + d; = v are indeed on the
boundary of B, we get (—dp) - d; > 0. From that, we finally get because
(=dp) - dy > 0 implies d; - mg > 0 by Lemma on page

We can similarly get and . To explain why, we focus on the case

where p +mj + 2msy is assumed to be in P because the other case is symmetric.
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Note first that p + mg € P (using the same arguments as in the previous
paragraph for p+ 2ms). As a consequence, both p +m; 4+ 2ms and p +my are
not in B by hypothesis. We can then apply Lemma [22] on page [30] with the two
vectors my, (—u) and the point vo as origin. Since vo and vg + mgs —u = vy
are indeed on the boundary of B, we get ms - (—u) < 0 and thus .

By Lemma [20| on page m; - (d; +my) > 0 implies d; - (d; +m;) > 0.
Since u = d; + mjy, is actually a simple consequence of .

It remains 7 whose proof is separated into two distinct cases.

If d; - dy < 0, we have dg - (d; + m;) < 0 and thus by Lemma on
page 28

Otherwise, i.e., if (—d;)-d2 < 0, we apply Lemmawith vectors (—dp), do
and the point vy as origin. Since the points v, vo —d; = v and vg+ds = vy
are on the boundary of B, we deduce that the point vo —d; +ds = q —u is
necessarily in the interior of 5. Moreover, since no point of B belongs to P, we
deduce that q — u is not in P.

We have therefore q—u > w < 1 < 0. It follows that Vo < w = Vo +1 < w,
which means that the point vo +u = p + 2m; + my is in P. In this case,
we have and as a consequence, , because m; - (d; + m;) > 0 implies
ds-(dy +my) <0 by Lemma

Second step.
(i) We assume first that (¢; — 1) < ¢3 < —cg. One can check that

y:P+ZCkmk
k

= Vo on CoIlg + (Cl — 1)m1 + (CQ — 1)m2

=vo+ (—co—c1 + 1)(d1) + (—co — c2 + 1)(—da) + (D _ & — 2)u.
k

Let w := (—co — ¢1 + 1)(dy) + (—co — c2 + 1)(=d2) + (X, ek — 2)u. All its
coefficients, i.e., (—co —c1 + 1), (—co —c2 + 1), (3, ¢k — 2), are positive by
hypothesis. Since we also have (13 and , we can apply Lemma [27| on page
[33] to show that vo +my <1 vo+ w. As a result, there exists a point in N NP,
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namely vo + mo, which is closer than y according to <.
(if) We assume now 0 < (¢; — 1) < —¢p < ¢2 and we rewrite y as another

positive linear combination:

Yy =vo+comg+ (c; —1)m; + (c2 — 1)my

=vo+ (—co—c1+1)(dy) + (co + ca — 1)(m3) + (¢1 — 1)(u).

By assumptions, all coefficients, i.e., (—co —¢1 + 1), (co +¢c2 — 1), (1 — 1), are

positive. From that and , , 7 , we can use Lemma [28| on page
to get vo +my <1 y. Again, there exists a point in A'NP, namely v + ms,
which is closer than y according to <.

(iii) We finally assume 0 < —cp < (c; — 1) < ¢2 and we rewrite y as:

Yy =vo+comp+ (¢1 — 1)my + (c2 — 1)my

=vg+ (co+e1 —1)(my) + (co + co — 1)(m2) + (—co)(u).

By assumptions, all coefficients, i.e., (co+c1—1), (co+ca—1), (—cp), are positive.
From that and , 7 Lemma on page shows that there exists a point
X 1= vo+am; +fmy, with o, 8 € N\{(0,0)},a < (co+c1—1),8 < (co+ca—1),
such that x <t y. To conclude (iii), it remains to check that such a point is in

P. Indeed, since p + (co + ¢1)my + (co + c2)my € P (Lemma [12)), we have:

i:ﬁ+(a+1)ﬁ1+(ﬁ+l)ﬁ2 Sﬁ+(60+01)ﬁ1+(00+82)ﬁ2 < Ww.

44

This subsection contains Lemma [14] and Lemma (15| that focus on [(Case 4)|
More precisely, they indicate that the points y corresponding to|(Case 4)|do not

need to be considered because, as in the previous section, if they are in P, then

there is at least one specific point x € N'NP (Lemma such that x <ty
(Lemma [15)).
Lemma 14. Lety =p+ ), cxmy, be such that ), ¢, > 3. Let 0 € ¥ be such

that c,(0), ¢o(1) < 0, then 'y € P implies both:
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® p+m,() +2mgye) € P orp+m,) +2m,eo) € P,
® p+2m,y €P.

Proof. We assume w.l.o.g. that ¢ is the identity.
Since y € P, we have
y:ﬁJchkﬁk :G+Z(ck - ].)ﬁk < Ww.
k k
Since g = w, the last inequality is equivalent to ), (¢, — 1)my < 0.
With h set to max (mp, m;) and noting that (cz — 1) > 2 (since >, cx > 3

and ¢g, c; < 0), we equivalently have

—(co— 1)y — (¢ — DT (—co — 1 +2)h
M, < (co — 1)mp — (a1 )m1<(60 01+).

02—1 Cg—l

In addition, we have

ZCkZ3<:>C2—1Z_CO—Cl+2,
k

which means that m, < h.

We conclude that if h = g (resp. h = m;), p + m; + 2my (resp. p +
m, + 2my) is strictly smaller than p + ), M) = q = w and thus, the point
p + m; + 2my (resp. p + mg + 2my) is in P. A fortiori and whatever h is,
P +2m, € P. O

Lemma 15. Lety =p + ), ckmy, be such that ), ¢, > 3. Let 0 € ¥ be such
that c,(0y, co1y < 0. If y € P and if the interior of B contains no point of P,
then there exists a point x € N NP such that x <t y.

Proof. We assume w.l.o.g. that ¢ is the identity.

Since y € P, p+ 2my € P by Lemma That point, which is also at
vg — dg = vi + dj, is not in the interior of B by hypothesis and we can apply
Lemmaon page 30| with the two vectors (—dp), d; and the point vo as origin
to get (—do)-dy > 0.

Furthermore, either p+m; +2m, € P or p+2m; + my € P by Lemma
We assume below that p + m; 4+ 2ms € P, because the case where only p +

2m; + my € P can be proven symmetrically.
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One can check that

y=p+ chmk = v+ comg + (1 — 1)my + (c2 — 1)my
k

=vo + (—e1 + 1)(=do) + (—co)d1 + () _ e — 2)m.
k

Let w := (—c1 + 1)(—do) + (—co)d1 + (3_, cx — 2)my.  All coefficients, i.e.,
(—c1 4+ 1), (—co), (O, ek — 2), are positive. Since, in addition, (—do) - d; > 0,
we can use Lemma [30] on page to show that vg + my <t vg + w, where

vo+w =y and vg + ms = p + m; + 2ms. O

4.5. Conclusion of the proof

Now we have all the material required to prove Lemma

Proof. For all i € {0,...,n — 1}, the interior of B is assumed to contain no
point of P.

Let x* be the point chosen by the algorithm at step i, i.e., x* = TG+ \ T®),
We want to show that x* <t y, for ally € PN 7—[9. Let y be denoted as
p® + >k ckm,(f). Note that >, cx > 3 because y € ’Hg). Moreover, since

y € P, the coefficients cannot be all strictly positive by Lemma [T1]

e if one coefficient is zero and the others are strictly positive [(Case 2)| then
x* <ty by the design of the algorithm,

, @ ifone coefficient is strictly negative and the others are strictly positive
then there exists a point x € N NP such that x <t y by Lemma
Then, x* <t x by the design of the algorithm and x* <t y by transitivity.

e if one coefficient is strictly positive and the others are strictly negative or

null [(Case 4)] then, similarly, there exists a point x € AN P such that
x <1y by Lemma Then, x* <1 x by the design of the algorithm and

x* <7y by transitivity.

Since there is no other possibility, the proof is complete. O
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5. Technical details

The proof of Lemma[7]refers to several technical details that we elaborate in
this section. The results are organized into three categories. First, we present
in sec. 5.1l some relations between the normal of the faces of the tetrahedron
formed by the current triangle and the fixed point q (Lemma , which hints
the fact that q always projects inside the current triangle. We also include sev-
eral useful angle relations in the tetrahedron. Then, we present several general
and purely geometrical circumsphere-based properties in sec. [5.2] because the
relation <+ and the selection of a closest point according to <  involve circum-
spheres. Finally, in sec. we derive in an algebraic way several other results
about the comparison of specific points according to <t. These results are used
in Lemma and Lemma which are the main ingredients in the proof of

Lemma [T

5.1. Projection-based results

Remind that k is taken modulo 3. To keep notations short, we simply write
Vk instead of Vk € Z/3Z in this section. Let us introduce the following extra

notations (see Fig. [9):

(&) . () (4)
Vk, N7 i=my ) Xxmy o,

vi € {0,...,n}, o ‘ ‘
Dokefo1,2} Ny = N(T®).

(16)

Note that the following equality also holds for the estimated normal vector,

which is normal to the current triangle:

Vi€ {0,...,n}, Vk, N(T®) =a{’ xa{¥,.
Lemma 16. For alli € {0,...,n}, Vk, Ng) ~N§f}rl >0 and Ng) -N(T@) > 0.
Proof.

Base Case. The triangle T(®) and q forms a trirectangular tetrahedron. We

have Vk, N;O) .Ngﬁl =0 and Néo) -N(T(O)) > 0.
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Induction case. We now assume that for any ¢ € {0,...,n—1}, Vk, N( ) N,(Cll >

0 and N,(f) .N(T®) > 0. By the update rule, equation |4 I we straightforwardly

have:

NI(:+1) _ N](:), N](gl::ll) N(z) + OéN,(C), N(2+1) N(+2 + BN

1+1 Sr(i+1 (2
N;+)'N1(q+1):N() N,(€+1—|— ||N )H2
(i it (i i) (i (i o (i
N NEE) = N NP, + o) RO + 880, - N+ ap N2,

k+
N N = N R 4 BN

Since we have VEk, N,(jﬂ) . N,ii_tll) > N,(;) . Nl(i)u and N,(jﬂ) - N(TOHD)) >

Ngﬂ) . N(T(”l)), the induction hypothesis implies the result. O

The acuteness of the angle between N,(j) and N(T®) for all k suggests that
q always projects into the triangle T().  From now on, we omit once again

the exponent (i) for clarity. We go on with this purely geometrical result (see
Fig. [L1)):
Lemma 17.

Let d and d’ be two vectors that span a plane of normal N :=d’ x d. Let m be
another vector that projects along N into the interior of the conver combination
ofd and d’; i.e. (Nxd) - m<0and (Nxd)-m>0. Ifd-d >0, then
d m>0andd - -m>0.

Proof. We first expand (N xd)-m < 0, which is equivalent to (d xm)-(d xd’) >

0, using the scalar quadruple product rule:
|d||*’d"-m — (d-d')d-m > 0. (17)

We then similarly expand (N xd’)-m > 0, equivalent to (d’ xm)-(d xd’) <0,
as:

(d-d)d -m— |d'|*d-m < 0. (18)
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Figure 11: Ilustration of Lemma Note that m does not belong to the span of d and d’.
However, it projects along N into the interior of the convex combination of d and d’ (hatched

area).

Ifd-d’ =0, we can conclude from for d’ - m and from for d - m.

If not, then d-d’ > 0 and we can derive lower and upper bounds for d’ - m,

respectively from and :

(d-d) , )2
d- d -
faz ¢ MM S )

d-m. (19)
Multiplying both sides by ||d||? and (d - d’) leads to:
ld-d'l?d-m < [|ld2]d)d - m < (|d- |2 = d]?]d]?) (- m) < 0.

Since ||d - d’||? < ||d’[|?||d||?, we conclude that d - m > 0. In addition, since

d-m>0andd-d’>0,itfollowsfr0mthatd’-m>0. O

We now combine the two preceding lemmas to find angular relations in the
tetrahedron formed by the current triangle and q, i.e., involving the vectors (my)

and (dg). See Fig. These results are used in Lemma [L3and in sec.

L [

myio dy41 my.io dpyr my myo dpyr my myo dpyr my

(a) (b) (c) (d)

Figure 12: Illustration of Lemmain (a), Lemma in (b) and Lemma in (¢) and (d).

Lemma 18. For all k, ifdk~dk+1 S 0, then dk+1-mk+2 > 0 and dk~mk+2 < 0.
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Proof. (See fig. [[2}(a).) We use Lemma with d,d’, m respectively set to

(—=dg), dg41 and my4o. Note that the normal dj x dg41 is by definition equal

to N(T). Note also that Lemma [16|implies (see and [B.2):
(N(T) x (—dy)) - myys <0,
(N(T) x dpg1) - mpp2 > 0,
which is the projection criterion of Lemma

Since we assume in addition that (—dg)-dg4+1 > 0, we conclude by Lemma

that (—dk) -myio > 0 and dg41 - mgqo > 0. ]
Likewise,

Lemma 19. For all k, if dj. - dk+1 <0, then dg - (dk + mk) > 0 and dk+1 .
(di +my) < 0.

Proof. (See fig. [[2}(b).) We use Lemma with d,d’, m respectively set to
(—=dg), dpy1 and —(dy + myg). Note that the normal is equal to N(T) and the

projection criterion is implied by Lemma (16 (see and [B.4)):
(N(T) x (—=dy)) - (= (dx +my)) <0,

(N(T) X dk+1) . ( — (dk + Il’lk)) > 0.
From Lemma we thus have dj, - (dg +mg) > 0 and dg41 - (dg +my) > 0. O
Finally,

Lemma 20. For all k, if my - (dx +my) > 0, then dgy1 - my < 0 and dgyq -
(di + mg) < 0. Similarly, if mg4q - (dg + mg) > 0, then di - my41 > 0 and
d - (dk erk) > 0.

Proof. (See fig. [[2}(c),(d).) We focus on the first part, because the proof of the
second part is quite similar.

We use Lemma with d,d’, m respectively set to (dx + my), my and
(—=dg41). Note that the normal is equal to my x (dg + my) = Ny + Ny

28



Journal Pre-proof

and the projection criterion is implied by Lemma [16] (see and :

((Nk+1 + Nk+2) x (dg + mk)) - (—=dgy1) <0,

(Nia1 + Nyyo) x my) - (—dgs1) > 0.

s0  From Lemma[l7, we thus have dj11 -my < 0 and dj41 - (dg +my) < 0, which

concludes. O

5.2. Circumsphere-based results

In this section, we show several general and purely geometrical circumsphere-

based results. They are illustrated in Fig.[I3] Lemma[21]is the most often used,

sis notably in some of the key results, such as Lemma [I3] and Lemma [I5] as well
as in Corollary [8] Lemma [22]is invoked in Lemma [13] whereas Lemma [23] and
Lemma 4] are crucial in sec. 5.3l Note that we use the term ball for a 3D ball
and disk for its 2D counterpart. For the sake of clarity, we identify any point in

x € R3 with the vector x of its coordinates.

u
w
(a) Lemma 21 (b) Lemma
(c) Lemma (d) Lemma

Figure 13: Illustrations for circumsphere-based lemma of sec. A point is depicted as a
black disk if it is inside the ball of interest, and as a hollow disk if it is not in the closed ball.
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Lemma 21. Let u,w be two non-zero vectors of R3. Let B be a closed ball
whose border passes through the origin 0 as well as through u and w. The point

s :=u+ w belongs to the interior of the ball B if and only if u-w < 0.

Proof. Consider a ball B with centre ¢ and radius r. First 0 € 9B is equivalent

to 72 = ¢2. Using this relation it follows:

uciBe (u—c?=c"s2 u=u’ (20)
wedBe (w—c)=c &2 w=w (21)
seBeut+w-0?<deut+w)?<2utw) e (22)

Developing (u + w)? in , we get u? + w? + 2u-w < 2(u + w) - ¢, which is
equivalent to u? +w?+2u-w < u?+w? by and . Subtracting u? 4 w?

from both sides gives the equivalent formulation u-w < 0. O

Lemma 22. Let u,w be two non-zero vectors of R3. Let B be a closed ball
whose border passes through the origin 0 and the points =u+w. If u and w

do not lie in the ball B, then u-w < 0.

Proof. Consider a ball B with centre ¢ and radius r. Using again the equivalence

0 € OB < r?2 = 2 it follows:

scOBe (utw—c =< ut+tw)?P=20u+w)-c, (23)
u¢Be (u—c)?>c?e2-u<u’ (24)
wé¢B& (w—0c)?>c e 2w w (25)

Gathering results together, we get:

wHwi2u-w=(ut+w)?=2u+w)-c (using (23))
<u?® 4+ w? (using and (25)).

Subtracting u? 4+ w? from both sides gives u-w < 0. O
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Lemma 23. Let u be a non-zero vector in R®. Let B be a closed ball whose
border passes through the origin 0. If u does not lie in the interior B of the ball
B, then no point du such that § > 1 lies in the ball B.

Proof. Consider a ball B with centre ¢ and radius r, and recalling that 0 € 0B

is equivalent to 12 = ¢?

, we get
u¢ B u—c?>c 2 uu’ (26)

We then compute:

(u—c¢)? = 6%u® —26u-c+c?

> 66— Du? +¢2 (by and factoring u?)
> 72, (since 6 > 1, u? > 0 and ¢* = r?)
We conclude since (du — ¢)? > 72 is equivalent to du & B. O

Lemma 24. Let u,w be two non-zero vectors of R3. Let B be a closed ball
whose border passes through the origin 0 and the two points u and w. No point

of the set A := {—au — bw | (a,b) € N2} lies in the interior B of the ball B.

Proof. Consider a ball B with centre ¢ and radius r, and recalling that 0 € 0B

2

is equivalent to 72 = ¢2, we get

uciBe (u—c=c? <2 -u=1u’ (27)

2 2

weEIB & (w—0c) =2 w=w. (28)

We then compute for arbitrary non-negative integers a and b:

(—au — bw — ¢)* = ¢ + (au + bw)? + 2¢ - (au + bw)
= + (au+ bw)? + au® + bw? (using and (28))

>r? (since a > 0, b> 0 and ¢ = r?)

We conclude since (—au — bw — ¢)2 > 72 is equivalent to —au —bw ¢ B. [
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5.3. Proximity results
In this subsection, we demonstrate some technical lemmas that give the

order relations induced by the spheres circumscribing the current triangle. They

are used in the proofs of Lemma and Lemma [15| to establish the Delaunay

property.
In what follows, we use the notation 6%(-,-), first introduced in [17], which

designates the following 4D determinant:
Definition 25.
op(x,y) = 7 (29)
with the relation
Vx,y € Hy, 03(xy)>0&vo+x<pvo+y (30)
and the identity [I7, equation (6)]
6%(z,2' +2") = 63(z,2') + 6%(2,2") + (22" - 2") det [d2, —d1, 2]. (31)

Lemma 26. Let u:= —mg+m; +my. Ifd;-u>0 (resp. (—ds)-u>0),
then 8% (my,au) > 0 (resp. 6% (ma,au) > 0) for all a € N.

Proof. The lemma is trivially true for a = 0 and we can safely assume that

a>1.

Base case. Using Lemma [21] with the vectors d;, u and the origin set to vo,
d; - u > 0 implies that the ball whose border passes through T and v, +u =
vo + m; does not include vy +d; +u = vg + u in its interior. That means that

6% (m1,u) > 0 and we can similarly show that 63 (mo,u) > 0 if (—dz2) - u > 0.

Induction step. Let m be either m; or my. We now assume that for some
a € N, 6%(m, au) > 0 and we want to show that §%(m, (a + 1)u) > 0.
By , we have
6%(m, (a + 1)u) = 6%(m, au) + 5% (m, u)

+ 2a(u - u)det[dy, —d, m].
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Since det [d2, —d;, m] = det [mg, m;, my|, which is equal to 1 by Theorem
the whole sum is strictly positive due to the induction hypothesis and the base

case. O

Lemma [27, Lemma 28 Lemma [29 are respectively used in the cases (i), (ii)
and (iii) of the proof of Lemma

Lemma 27. Let u:= —mgy+ m; + my and w := a(dy) + b(—dz) + ¢(u), with
a,b,c>0. Ifdy -u >0 and (—dz) - u > 0, then §%(mg, w) > 0.

Proof. By , we have
6% (ma, w) = 0% (m2, ady + b(—d>)) + 6% (my, cu)
+ 2((ad1 +b(—dy)) - cu) det [da, —d1, ms)].
We show below that the three terms are positive, so is the whole sum.

e For the first term, we apply Lemma [24] with the vectors —d;, d2 and the
origin set to vo to deduce that the point vo 4+ ad; + b(—dz) is not in the
interior of the ball passing through T and vy 4+ ms. Thus, 59[. (m27 ad; +
b(*dz)) > 0.

e Since (—dz) - u > 0, 6% (my, cu) > 0 by Lemma

e Finally, (ad1 + b(*dg)) -cu > 0 because a,b,c,d; - u and (—ds) - u are
assumed to be positive and, using Theorem |2 one can easily check that

det [dy, —d;, my] = det [mg, m;, my] = 1.
O

Lemma 28. Let u:= —mg + m; + my and w := a(d;) + b(ms) + c(u), with
a,b,c > 0. Ifmy-u > 0,d;-u>0,(—d2) -u >0 and dy - my > 0, then

5%(m2,w) Z 0.
Proof. By , we have

5911(m2,w) = 5%(m2, ad; + bmy) + 59r(m2, cu)

+ 2((&(‘11 + bmg) . cu) det [(2127 —dq, mg].

33



One can easily check that det[ds, —d;, my] = det [mg, my, ms], which is
equal to 1 by Theorem
In addition, we use again to decompose the first term and finally get

(5%(m2,w) = (5% (mg, adl) + 5-(-}\ (mg,bmg) + (5%(1’112, Cll)

+ 2ab(d1 . m2) + 2(ad1 + bmg) - cu.
We can now prove that each term of the sum is positive:

625 e For the first two terms, we consider the ball whose border passes through
T and vp + my. If a = 0 (resp. b € {0,1}), the point vy + ad; (resp.
v + bmy) trivially belongs to the boundary of the ball, which implies a
null term. If a > 1 (resp. b > 2), we consider the ray from vq in direction
d; (resp. from vy in direction my) and we use Lemma to show that
630 the point v 4+ ad; (resp. vg+ bmy) does not belong to the interior of the

ball, which means that 6% (mg,adl) >0 (resp. 6% (mg, me) >0).
e Since (—dz) - u > 0, 6% (ma, cu) > 0 by Lemma

e All scalar products of the last two terms are positive or null due to the

hypotheses.
635 D

Lemma 29. Let u := —my + my + my, w := a(m;) + b(ms) + c(u), with
a,b,c > 0. Let A be the set {am; + fms | a, 5 € N\ {(0,0)},a < a,B < b} and
w' € A be such that Yw" € A, 6%(w/,w”) > 0. Ifm;-u >0 and my-u > 0,

then 5% (w', w) > 0.
sa0  Proof. By , we have

63 (W', w) = 63.(W', (am; + bmy)) + 6% (W', cu)

+ 2<(am1 + bmy)) - cu) det [do, —dy, W'].

e The first term 0% (w’, (amy + bmy)) is positive by definition of w’.
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° 2((am1 + bmg)) . cu) is positive because we assume that a,b,c,m; - u
and ms - u are positive. Moreover, setting w’ := a’'m; + 0'my and using

Theorem [2] one can easily check that
det [dg, —d, w'] = (a’ + V') det [mg, m;, my] = (¢’ +b") > 1.
645 As a consequence, the third term of the sum is positive.

e It remains to show that the second term is also positive.

By Lemma[20] my-u > 0 = d; -u > 0. From the last inequality, we have
by Lemma 6% (my, cu) > 0, which means that vo + m; <t vq + cu.
However, since vog + w' <t vy + m; by definition of w’, we have by

650 transitivity vo + w' <t vq + cu, i.e., d5(w’, cu) > 0.

Lemma [30] is used in the the proof of Lemma

Lemma 30. Let w := a(—dg)+b(dy)+c(ms), with a,b,c > 0. If (—dg)-dy > 0,

then 6% (mg, w) > 0.
65 Proof. By , we have

67 (my, w) = &3 (my, a(—do) + b(d1)) + & (my, cmy)

+ 2((a(—d0) +bdy) - ch) det [da, —d;, m).

One can easily check that det[ds, —d;, mp] = det [mg, mj, ms], which is
equal to 1 by Theorem [2}
In addition, we use again to decompose the first term and finally get

7 (my, w) = 0p (my, a(—dp)) + 0 (m2,b(d1)) + 6 (m2, cmy)

+ 2ab((—d0) . dl) + 2(&(—d0) + bdl) - cmyo,

We can now prove that each term of the sum is positive:
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e For the first term, we consider the ball whose border passes through T

and vo + u. If @ = 0, the point vg + a(—dg) = vq trivially belongs to
the boundary of the ball, which implies a null term. If a = 1, we apply
Lemma [21| with the vectors (—dy), d; and the origin set to vo to deduce
from (—dp)-d; > 0 that the point vo+d;+a(—dy) = vo+a(—dy) does not
belong to the interior of the ball, which means that 6% (ms, a(—dg)) > 0.
For a > 2, we consider the ray from vq in direction —dg to show that we

have the same result in that case too.

The two next terms are also positive or null and we can verify this using

Lemma [23] as in the proof of Lemma 28] (first item).

The fourth term is positve because a,b and ((—dy) - dy) are assumed to

be positive.

For the sign of the last term, it is enough to note that ((—dp)-d;) > 0 also
implies my - (—dp) > 0 and my -d; > 0 by Lemma As a consequence,
the term (a(—do) + bdl) - cmo develops into two positive scalar products

and is therefore positive.

6. Conclusion

We introduce the Delaunay property for plane-probing algorithms and prove
that the L-algorithm verifies the Delaunay property. We invoke several geom-
etry properties related to projections and spheres in order to proceed to the
proof by recurrence. Since L-algorithm verifies the Delaunay property, a di-
rect consequence is that the output triangle contains a minimal basis for the
underlying rank-two translated lattice. We also show that such minimal basis
provides a raw estimation of the bound for the distance between the vertex of
the last triangle to the fixed apex of tetrahedron.

As for future work, our study serves as a basis for the study of the locality

for the L-algorithm. The progress of the algorithm depends on every point
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that it visits during the iteration. We hope that we can find a bound for
the convex hull of every point visited by the algorithm in order to optimize
the performance of the algorithm on digital surfaces. On the other hand, we
also wish to understand theoretically how the R-algorithm always returns the
same acute or right triangle as the L-algorithm without verifying the Delaunay

property.
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Appendix A. Relation between the preorder and the intersection of

balls and half-spaces

In this section, we focus on a step i € {0,...,n—1} and ignore the exponent
(7) in the notations. Our goal is to show that <t is a total preorder on H..
For any pair x,y C H4, we remind that y <t x if and only if (B(T,y)NH) C
(B(T,x)NHy).

e Reflexivity: the ball defined by T and x € H is unique, thus (B(T,x)N
) C (B(T,%) NHe).

e Transitivity: it is induced by the transitivity of the order C.

e Totality: <t is total if (B(T,y)NH4) C (B(T,x)NH4) or (B(T,x)N
Hy) C(B(T,y)NHy) for all x,y € H4. We have two cases according to
the pair x,y:

— if B(T,x) = B(T,y), both alternatives are obviously true.

— if B(T,x) # B(T,y), the intersection of the boundaries of the two
balls is a curve lying in a plane, which is by definition, the one con-
taining T. Since H; does not contain that plane, we necessarily
have either (B(T,y) NH4) C (B(T,x)NHy) or (B(T,x)NH4) C
(B(T,y) ).

Remark 31. The preorder is not antisymmetric because there exist co-spherical

cases where x #y but B(T,x) = B(T,y).

Lemma 32. For all x,y € Hy, if (B(T,y)NHy) C (B(T,x) N Hy), then
(B(T,x)n#H_) C (B(T,y)NH_).

Proof. Again, we have two cases according to the pair x,y:
e if B(T,x) = B(T,y), the statement is obviously true.

o if B(T,x) # B(T,y), we first note that we can symmetrically define a

total preorder with H_ instead of H, which means that there are only two
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possible cases: either (B(T,x)NH_) C (B(T,y)"H_)or (B(T,y)NH_) C
(B(T,x) N H_). We now show by contradiction that the second one is

790 impossible. Indeed, if we have the two following inclusions

(B(T,y) NH4) € (B(T,x) N H),
(B(T,y)NH-) C (B(T,x)NH-),
by taking the union of both sides of the inclusions, we obtain B(T,y) C

B(T,x), which raises a contradiction as the two balls are assumed to be

disinct and, by definition, intersect.

s  Appendix B. Derivations

In this section, we detail some elements of the technical proofs which are

implied by Lemma

In Lemma [I8
(N(T) x (=dy)) - mpp2 =(N(T) x (Myps2 — Myp1)) - Mypo
— (mg41 x mgyo) - N(T) (B.1)
— N -N(T).

And,
(N(T) x (dg11)) - mppo =(N(T) x (mp1o —my)) - my o
— (my x myo) - N(T) (B.2)
=Nj11 - N(T).
2o In Lemma [®
(N(T) x (~dy)) - (dy, + my) dy) x (dj, + my)) - N(T)

((-
((—dx) x my) -N(T)
((-m
(N

(B.3)

My + myy2) X my) - N(T)

k2 + Nigr) - N(T).
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And,

(N(T) x dgs1) - (di +my) ) X dgg1) - (=dpg1 +myg)

) X djy1) - (mypq)

=(N(
(N(
(dig1 x (mpy)) - N(T) (B.4)
(((
(-

my o — my) X (mk+1)) ) N(T)

Nji2 — Ny)) - N(T).

For Lemma 20

((NkJrl + Niyo) x (dy + my)) - (—dgq1) = Ni1 + Niyo) x (mpgq — dit1)) - (—di+1)

Nyy1 4 Nigo) X (myy1)) - (—drga)

myy1) X (=dpr1)) - (Nppr + Nygo)

my 1) X (—myyo +my)) - (Nis1 + Nigo)

—Nj, = Nji2) - (Ngs1 + Niyo)

R (Nk Nis1 + NNy + Npyo - Ny + |\Nk+2||2)'
(B.5)

And,
(N1 + Nypo) x my) - (=diy1) =(my x (—dpr1)) - (Nig1 + Nypo)
=(my, X (—my42 +my)) - (Nii1 + Nijo)
:Nk+1 : (Nk+1 + Nk+2)

=(INpya[* + Nig1 - Nyyo).
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