

Computation of the Normal Vector to a Digital Plane By Sampling Significant Points DGCI'2016

J-O. Lachaud, X. Provençal, T. Roussillon

Digital plane

Introduction

Standard (6-connected) digital plane

Let $\mathbf{N}(a,b,c)$ be a normal vector $(a,b,c\in\mathbb{Z},\gcd(a,b,c)=1)$ and $\mu\in\mathbb{Z}$ be an intercept. A standard digital plane is defined as the set

$$\mathbf{P} = \{ x \in \mathbb{Z}^3 | \mu \le x \cdot \mathbf{N} < \mu + \omega \}.$$

We assume that $0 < a \le b \le c$, $\mu = 0$, $\omega = \|\mathbf{N}\|_1$.

Digital plane

Introduction

Standard (6-connected) digital plane

Let $\mathbf{N}(a,b,c)$ be a normal vector $(a,b,c\in\mathbb{Z},\gcd{(a,b,c)}=1)$ and $\mu\in\mathbb{Z}$ be an intercept. A standard digital plane is defined as the set

$$\mathbf{P} = \{ x \in \mathbb{Z}^3 | \mu \le x \cdot \mathbf{N} < \mu + \omega \}.$$

We assume that $0 < a \le b \le c$, $\mu = 0$, $\omega = \|\mathbf{N}\|_1$.

Recognition problem

Problem

Introduction

Knowing the digital set \mathbf{P} (and knowing that \mathbf{P} is a digital plane), find its normal vector \mathbf{N} .

Our approach in a nutshell

- \blacksquare we start from a trivial solution $\hat{\mathbf{N}}(1,1,1)$
- lacksquare we iteratively improve it until $\hat{\mathbf{N}}=\mathbf{N}$

Extension to digital surfaces

Digital surface

Introduction

A digital surface is defined as the topological border of a set of voxels. Note that a digital surface is locally a piece of standard digital plane (where digital points are the vertices of voxels)

Region growing algorithm

Knowing a digital surface, make a piece of digital plane grow while it is tangent and included into the digital surface. Note that we can add constraints (eg. closeness to the seed, compactness, . . .).

Related works

Usual approach

We make a connected region grow (eg. breadth-first search in the adjacency graph) while it is a piece of digital plane (recognition algorithm).

Introduction

E. Charrier and L. Buzer, An efficient and quasi linear worst-case time algorithm for digital plane recognition, DGCI 2008, LNCS, vol. 4992, Springer, 2008, pp. 346-357.

I. Debled-Rennesson and J.-P. Reveilles, An incremental algorithm for digital plane recognition, DGC|'1994, 1994, pp. 207-222,

Y. Gérard, I. Debled-Rennesson, and P. Zimmermann, An elementary digital plane recognition algorithm, Discrete Applied Mathematics 151 (2005), no. 1, 169-183.

C. E. Kim and I. Stojmenović, On the recognition of digital planes in three-dimensional space, Pattern Recognition Letters 12 (1991), no. 11, 665-669.

R. Klette and H. J. Sun, Digital planar segment based polyhedrization for surface area estimation, Proc. Visual form 2001, LNCS, vol. 2059, Springer, 2001, pp. 356-366.

L. Provot and I. Debled-Rennesson, 3d noisy discrete objects: Segmentation and application to smoothing, Pattern Recognition 42 (2009), no. 8, 1626-1636.

P. Veelaert, Digital planarity of rectangular surface segments, Pattern Analysis and Machine Intelligence, IEEE Transactions on 16 (1994), no. 6, 647-652.

Main drawbacks of the usual approach

(-) combinatorial explosion of pieces of digital plane, even of maximal ones ie. not included in greater pieces of digital plane.

Introduction

D. Coeurjolly and I. Sivignon, Minimum Decomposition of a Digital Surface into Digital Plane Segments is NP-Hard, Discrete Applied Mathematics, 157(3), pp. 558–570.

(-) maximal pieces of digital plane may be not tangent.

Our approach

We make a piece of digital plane grow while it is tangent.

Previous work into this direction

Introduction

[LPR2016] J-O. Lachaud, X. Provençal, T. R. An output-sensitive algorithm to compute the normal vector of a digital plane. *Theoretical Computer Science*, 624:73–88, 2016.

Several operations based on the predicate " $x \in \mathbf{P}$?"

- local: translation, Brun-Selmer, fully-substractive
- non-local: generalization of Brun-Selmer et fully-substractive

Algorithm

```
\begin{array}{ll} \textbf{Input:} & \text{a predicate } "x \in \mathbf{P} ?", \text{ a solution } S. \\ \textbf{while } true & \textbf{do} \\ & \textbf{if} & there \ exists \ a \ valid \ operation \ \lambda \ \textbf{then} \\ & S \leftarrow \lambda(S) \\ & \textbf{else break} \\ \textbf{end} \\ & \textbf{return } S. \end{array}
```


Features of the proposed algorithm

A same framework, but a different algorithm

- we start by a trivial piece of digital plane of normal vector $\hat{N}(1,1,1)$
- we make this piece of digital plane grow by one operation
- \blacksquare using only the predicate "is $x \in \mathbf{P}$?"
- the piece of digital plane stays around the seed
- \blacksquare the number of steps, which depends on ω , is output-sensitive.

Second algorithm

Introduction

Segment [pq]

• We set $p \in \mathbf{P}$ and q := p + (1, 1, 1) $(q \notin \mathbf{P})$.

Triangle

- \blacksquare At each step, a solution is described by a triangle T,
- $\blacksquare T$ is intersected by [pq] (algorithm invariant),
- \blacksquare its vertices (ccw oriented) are denoted by v_k (k is mod. 3)
- \blacksquare and its edges are defined as $\forall k, d_k = v_{k+1} v_k$.

Initialization from an inside corner

Preconditions

- $p \in \mathbf{P} \Rightarrow q \notin \mathbf{P}$.
- $\{p + e_0 + e_1, p + e_1 + e_2, p + e_2 + e_0\} \subset \mathbf{P}$ (inside corner).

Starting triangle

- $\forall k, v_k := p + e_k + e_{k+1}.$
- $T := (v_k)_{k \in \{0,1,2\}}$

Preconditions

- $p \in \mathbf{P} \Rightarrow q \notin \mathbf{P}$
- $\{p + e_0 + e_1, p + e_1 + e_2, p + e_2 + e_0\} \subset \mathbf{P}$ (inside corner).

Starting triangle

- $\forall k, v_k := p + e_k + e_{k+1}.$
- $T := (v_k)_{k \in \{0,1,2\}}$

Growing procedure

Neighborhood

Introduction

In order to make our piece of digital plane grow, we check whether the points located on a plane parallel to T, above T and "around" qare in P or not. More precisely, we consider the set

$$\Sigma(T) := \{ q \pm d_k \}_{k \in \{0,1,2\}}.$$

First version

Algorithm

```
a predicate "x \in \mathbf{P}?", a starting triangle T.
while ((\Sigma(T) \cap \mathbf{P}) \neq \emptyset) do
     Compute the convex hull of T \cup (\Sigma(T) \cap \mathbf{P})
    Find T', the upper triangular facet intersected by [pq]
    T \leftarrow T'
end
return T
```


Why does it work?

Height of a point

 $\forall x \in \mathbb{Z}^3$, the dot product $x \cdot \mathbf{N}$ is called the *height* of x.

Rationale

Introduction

we iteratively search for "higher" points of ${\bf P}$ in direction ${\bf N}$, until three points whose height is maximal and equal to $\omega-1$ are found.

Why does it work?

Height of a point

 $\forall x \in \mathbb{Z}^3$, the dot product $x \cdot \mathbf{N}$ is called the *height* of x.

Rationale

Introduction

we iteratively search for "higher" points of P in direction N, until three points whose height is maximal and equal to $\omega - 1$ are found.

Edge vectors of the tetrahedron $T \cup q$, not in T

for each step, $\forall k, m_k := q - v_k$.

Operation

for each step,
$$\forall k, m_k' = \left\{ egin{array}{ll} \mbox{(i)} \ m_k \ \mbox{(ii)} \ m_k - m_l, l \in \{0,1,2\} \setminus k \end{array} \right.$$

Case (i) occurs at least one time and at most two times over three. (proof by case enumeration)

Second algorithm

Operation characterization

Edge vectors of the tetrahedron $T \cup q$, not in T

for each step, $\forall k, m_k := q - v_k$.

Operation

for each step,
$$\forall k, m_k' = \left\{ egin{array}{ll} \mbox{(i)} \ m_k \ \mbox{(ii)} \ m_k - m_l, l \in \{0,1,2\} \setminus k \end{array} \right.$$

Case (i) occurs at least one time and at most two times over three. (proof by case enumeration)

Unimodular matrix

Let M the 3×3 matrix that consists of vectors $(m_k)_{k \in \{0,1,2\}}$. For each step, $\det(M) = 1$. (proof by induction)

Height of the last triangle

If p is a lower leaning point, ie $p.N = 0 \ (\Rightarrow q.N = \omega)$, then $\forall k, v_k.N = \omega - 1$ at the last step.

- If $\exists k \text{ s.t. } d_k.N \neq 0$, then either $q d_k$ or $q + d_k$ belongs to **P** (because q belongs to the set of lowest points above \mathbf{P}), which implies that $\Sigma(T) \cap \mathbf{P} \neq \emptyset$, a contradiction.
- Therefore $\forall k, d_k.N = 0$ and $\forall k, m_k.N = c, c > 0$.
- which can be written as MN = c1.
- \blacksquare Since M is invertible (unimodular), $N=(M)^{-1}c\mathbf{1}$ and c=1(components of N are relatively prime).

Height of the last triangle

If p is a lower leaning point, ie $p.N = 0 \ (\Rightarrow q.N = \omega)$, then $\forall k, v_k.N = \omega - 1$ at the last step.

- If $\exists k$ s.t. $d_k.N \neq 0$, then either $q d_k$ or $q + d_k$ belongs to **P** (because q belongs to the set of lowest points above \mathbf{P}), which implies that $\Sigma(T) \cap \mathbf{P} \neq \emptyset$, a contradiction.
- Therefore $\forall k, d_k. N = 0$ and $\forall k, m_k. N = c, c > 0$,
- which can be written as MN = c1.
- \blacksquare Since M is invertible (unimodular), $N=(M)^{-1}c\mathbf{1}$ and c=1(components of N are relatively prime).

Height of the last triangle

If p is a lower leaning point, ie $p.N = 0 \ (\Rightarrow q.N = \omega)$, then $\forall k, v_k.N = \omega - 1$ at the last step.

- If $\exists k$ s.t. $d_k.N \neq 0$, then either $q d_k$ or $q + d_k$ belongs to **P** (because q belongs to the set of lowest points above \mathbf{P}), which implies that $\Sigma(T) \cap \mathbf{P} \neq \emptyset$, a contradiction.
- Therefore $\forall k, d_k.N = 0$ and $\forall k, m_k.N = c, c > 0$.
- which can be written as $MN = c\mathbf{1}$.
- \blacksquare Since M is invertible (unimodular), $N=(M)^{-1}c\mathbf{1}$ and c=1(components of N are relatively prime).

Height of the last triangle

If p is a lower leaning point, ie $p.N = 0 \ (\Rightarrow q.N = \omega)$, then $\forall k, v_k.N = \omega - 1$ at the last step.

- If $\exists k$ s.t. $d_k.N \neq 0$, then either $q d_k$ or $q + d_k$ belongs to **P** (because q belongs to the set of lowest points above \mathbf{P}), which implies that $\Sigma(T) \cap \mathbf{P} \neq \emptyset$, a contradiction.
- Therefore $\forall k, d_k.N = 0$ and $\forall k, m_k.N = c, c > 0$.
- which can be written as MN = c1.
- \blacksquare Since M is invertible (unimodular), $N=(M)^{-1}c\mathbf{1}$ and c=1(components of N are relatively prime).

Second algorithm

Lattice of upper leaning points

Corollary

 $(\pm d_k, \pm d_l)$ is a basis of the lattice of upper leaning points $\{x \in \mathbf{P} | x.N = \omega - 1\}.$

Lattice of upper leaning points

Corollary

 $(\pm d_k, \pm d_l)$ is a basis of the lattice of upper leaning points $\{x \in \mathbf{P} | x.N = \omega - 1\}.$

Reduced basis

A basis (u_1, u_2) is reduced iff $||u_1||, ||u_2|| \le ||u_1 - u_2|| \le ||u_1 + u_2||$.

- the returned basis of this first version is generally not reduced
- reduction may be run as a post-processing
- but the following version returns basis that are almost always reduced

Lattice reduction

Reduced basis

- the returned basis of this first version is generally not reduced
- reduction may be run as a post-processing
- but the following version returns basis that are almost always reduced

Lattice reduction

Reduced basis

- the returned basis of this first version is generally not reduced
- reduction may be run as a post-processing
- but the following version returns basis that are almost always reduced

Reduced basis

Introduction

- the returned basis of this first version is generally not reduced
- reduction may be run as a post-processing
- but the following version returns basis that are almost always reduced

Lattice reduction

Reduced basis

- the returned basis of this first version is generally not reduced
- reduction may be run as a post-processing
- but the following version returns basis that are almost always reduced

Second version

Algorithm

```
Input: a predicate "x \in \mathbf{P}?", a starting triangle T.
while ((\Sigma(T) \cap \mathbf{P}) \neq \emptyset) do
    Compute the set S^* of points s^* \in (\Sigma(T) \cap \mathbf{P}) such that the
    circumsphere of T \cup s^* does not include any point s \in (\Sigma(T) \cap \mathbf{P})
    in its interior
    Compute the convex hull of T \cup S^*
    Find T', the upper triangular facet intersected by [pq]
    T \leftarrow T'
end
return T
```

NB. nothing change in the proofs because $S^* \subseteq (\Sigma(T) \cap \mathbf{P})$.

Second algorithm

Experimental analysis

Setting

- \blacksquare Vectors from (1,1,1) to (200,200,200)
- Number of tests: 6578833

Results

Version	First	Second
avg nb steps	21.8	20.9
nb non reduced	4803115 (73%)	924 (0.01%)

Conclusion

A new local and output-sensitive algorithm

- lacksquare it starts by a trivial triangle of normal vector $\hat{\mathbf{N}}(1,1,1)$
- it makes this triangle grow by one operation
- \blacksquare using the predicate "is $x \in \mathbf{P}$?"
- if the seed is a lower leaning point, it stops when $\hat{\mathbf{N}} = \mathbf{N}$.
- a basis of upper leaning points is returned, which is located around the seed and almost always reduced (version 2).
- \blacksquare the number of steps is less than ω , each step is constant-time.

Main idea

- we run our algorithm from each inside corner
- we discard "bad" triangles coming from "bad" corners.

Main idea

- we run our algorithm from each inside corner
- we discard "bad" triangles coming from "bad" corners.

Main idea

- we run our algorithm from each inside corner
- we discard "bad" triangles coming from "bad" corners.

Main issues

- (?) process degenerate cases (flat in one direction)
- (?) find complementary triangles
- (?) discard triangles that intersect the background (in concave parts)

Thank you for your attention

