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Digital plane

L

Standard (6-connected) digital plane

Let N(a, b, ¢) be a normal vector (a,b,c € Z, ged (a,b,¢) = 1) and
i € Z be an intercept. A standard digital plane is defined as the set

P={zeZu<z N<pu+uw

We assume that 0 < a <b<¢, p=0, w= ||N|;.
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Recognition problem

/|

Knowing the digital set P (and knowing that P is a digital plane),
find its normal vector N.

Our approach in a nutshell

= we start from a trivial solution N(1,1,1)

= we iteratively improve it until N = N
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Extension to digital surfaces

Digital surface

A digital surface is defined as the topological border of a set of
voxels. Note that a digital surface is locally a piece of standard digital
plane (where digital points are the vertices of voxels)

Region growing algorithm

Knowing a digital surface, make a piece of digital plane grow while it
is tangent and included into the digital surface. Note that we can
add constraints (eg. closeness to the seed, compactness, ... ).
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Motivation for another approach

Main drawbacks of the usual approach

(-) combinatorial explosion of pieces of digital plane, even of
maximal ones ie. not included in greater pieces of digital plane.

@ D. Coeurjolly and I. Sivignon, Minimum Decomposition of a Digital Surface
into Digital Plane Segments is NP-Hard, Discrete Applied Mathematics,
157(3), pp. 558-570.

(-) maximal pieces of digital plane may be not tangent.

el

Our approach

We make a piece of digital plane grow while it is tangent.
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Previous work into this direction

@ [LPR2016] J-O. Lachaud, X. Provencgal, T. R. An output-sensitive algorithm to
compute the normal vector of a digital plane. Theoretical Computer Science,
624:73-88, 2016.

eral operations based on the predicate “z € P 7"

local: translation, Brun-Selmer, fully-substractive

non-local: generalization of Brun-Selmer et fully-substractive

Algorithm

Input: a predicate “z € P 7", a solution S.
while true do
if there exists a valid operation \ then
S + A(S)
else break
end
return S

LIRIS

J-O. Lachaud, X. Provencal, T. Roussillon Normal vector of a digital plane 7/ 25



Introduction Related works First algorithm Second algorithm Conclusion/Perspectives

Features of the proposed algorithm

A same framework, but a different algorithm

= we start by a trivial piece of digital plane of normal vector

N(1,1,1)
= we make this piece of digital plane grow by one operation
= using only the predicate “is z € P 7"
= the piece of digital plane stays around the seed

: the number of steps, which depends on w, is output-sensitive.
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lllustration: P(2,6,11), starting from the origin
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lllustration: P(2,6,11), starting from the origin
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lllustration: P(2,6,11), starting from the origin
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Notations

Segment [pq]
:WesetpePand ¢g:=p+(1,1,1) (¢ ¢ P).

Triangle
= At each step, a solution is described by a triangle T,
= T is intersected by [pg| (algorithm invariant),

its vertices (ccw oriented) are denoted by vy (k is mod. 3)

and its edges are defined as Vk, dy = vgpi1 — vg.

da U1
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Initialization from an inside corner

:peP=q¢P.
{p+eov+e, pt+er+es p+ex+ey}t CP (inside corner).

Starting triangle

2 Vk, v :=p+ e+ epta

2 T = (Vk)refo,1,2)-
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Initialization from an inside corner

Preconditions
:peP=q¢P.
{p+eov+e, pt+er+es p+ex+ey}t CP (inside corner).

Starting triangle

2 Vk, v :=p+ e+ epta

2 T = (Vk)refo,1,2)-

€2
V2
V" U1
/)
€o €1
Vo
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Growing procedure

Neighborhood

In order to make our piece of digital plane grow, we check whether
the points located on a plane parallel to T, above T and “around” ¢
are in P or not. More precisely, we consider the set

E(T):={qx dk}ke{o,l,Q}-

V2

ds U1
do

p Y0 B
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First version

Algorithm
Input: a predicate “xz € P 7", a starting triangle 7.
while (X(T)NP) #0) do

Compute the convex hull of U (X(7) N P)

Find 7", the upper triangular facet intersected by [pq]

T« T
end

return T
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Why does it work ?

Height of a point

& N

Va € Z3, the dot product z - N is called the height of . X”

we iteratively search for “higher” points of P in direction N, until
three points whose height is maximal and equal to w — 1 are found.
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Operation characterization

Edge vectors of the tetrahedron T'U ¢, not in T

for each step, Vk, my := q — vp,.

(i) my

I
for each step, Vk, mj, = { (ii) my —my, 1l € {0,1,2} \ k

Case (i) occurs at least one time and at most two times over three.
(proof by case enumeration)
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Operation characterization

Edge vectors of the tetrahedron T'U ¢, not in T

for each step, Vk, my := q — vp,.

Operation

(i) my

! _
for each step, Vk, mj, = { (ii) my —my, 1l € {0,1,2} \ k

Case (i) occurs at least one time and at most two times over three.
(proof by case enumeration)

Unimodular matrix

Let M the 3 x 3 matrix that consists of vectors (mg)ye(o,1,2}- For
each step, det (M) = 1.
(proof by induction)
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Algorithm correctness

Height of the last triangle

If pis a lower leaning point, ie p.N =0 (= ¢.N = w), then
Vk,vp.N = w — 1 at the last step.

If 3k s.t. d..IN # 0, then either ¢ — dj, or q + dj belongs to P
(because ¢ belongs to the set of lowest points above P), which
implies that X(7") NP # (), a contradiction.

Therefore Vk,dy,.N = 0 and Vk, my.N = c¢,c > 0,
which can be written as M N = c1.

Since M is invertible (unimodular), N = (M)~ 'cl and c =1
(components of N are relatively prime).
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Lattice of upper leaning points

Corollary

(+dp, d;) is a basis of the lattice of upper leaning points
{r eP|lz.N =w—1}.
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Lattice reduction

A basis (u1,u2) is reduced iff ||uq ], ||uz|| < [Jur — uzll < |lug + usl|-

the returned basis of this first version is generally not reduced

reduction may be run as a post-processing

but the following version returns basis that are almost always
reduced
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Second version

Algorithm

Input: a predicate “x € P 7", a starting triangle 7T

while (3(T)NP) #0) do
Compute the set S* of points s* € (3X(7) N P) such that the
circumsphere of T'U s* does not include any point s € (X(7)NP)
in its interior
Compute the convex hull of T'U S*
Find 7", the upper triangular facet intersected by [pq]

T« T
end

return T’

NB. nothing change in the proofs because S* C (X(7) N P).
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Experimental analysis

= Vectors from (1,1,1) to (200,200,200)
= Number of tests : 6578833

Version First Second
avg nb steps 21.8 20.9
nb non reduced | 4803115 (73%) | 924 (0.01%)
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Conclusion

A new local and output-sensitive algorithm

= it starts by a trivial triangle of normal vector N(1,1,1)

= it makes this triangle grow by one operation

= using the predicate “isz € P 7"

= if the seed is a lower leaning point, it stops when N = N.

= a basis of upper leaning points is returned, which is located
around the seed and almost always reduced (version 2).

= the number of steps is less than w, each step is constant-time.
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Extension to digital surfaces

= we run our algorithm from each inside corner

we discard “bad” triangles coming from “bad” corners.

— 7
— =~ )
= =
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Extension to digital surfaces

= we run our algorithm from each inside corner

= we discard “bad” triangles coming from “bad” corners.
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Extension to digital surfaces

Main issues

(?7) process degenerate cases (flat in one direction)
(?) find complementary triangles
(?) discard triangles that intersect the background (in concave parts)
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Thank you for your attention
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