Plane-probing algorithms for the analysis of digital surfaces

Tristan Roussillon

Université de Lyon, INSA Lyon, LIRIS, France

DGDVC, 30/03/2021

PARADIS (ANR-18-CE23-0007-01) research grant

Data

voxel sets in 3d digital images

Digital surfaces

pros/cons

- + efficient spatial data structures
- + set operations (union, intersection, ...)
- + integer-only, exact computations
- + ...
- poor geometry

Digital surfaces

pros/cons

- + efficient spatial data structures
- + set operations (union, intersection, ...)
- + integer-only, exact computations
- + ...
- poor geometry

Analysis of digital surfaces

- enhance the geometry by estimating normal vectors
- \Rightarrow applications: measurements, deformation for simulation or tracking, surface fairing, rendering...

A lot of methods

- ▶ fitting,
- ▶ Voronoi diagram,
- ▶ integral invariants,
- convolution,
- energy minimization,
- probabilistic approaches,
- **.**..

Flaw

Existing methods are not quite satisfactory

- ightharpoonup parameter required (\approx width of a neighborhood)
- ▶ that parameter is hard to pick
 - get decent estimates in flat/smooth parts
 - preserve sharp features

Challenge

Desiderata

- parameter-free method
- theoretical guarantees
 - exact on flat parts
 - converge on smooth parts as resolution increases

Key idea

- bound neighborhoods by their thickness instead of their width
- digitized planes have a thickness bounded by a small constant

Plane-probing algorithms

Definition

Given a digitized plane P and a starting point $p \in P$, a plane-probing algorithm computes the normal vector of P by sparsely probing it with the predicate "is $x \in P$?".

H and R

[LPR2017] J-O. L., X. P., T. R. Two Plane-Probing Algorithms for the Computation of the Normal Vector to a Digital Plane. *J. Math. Imaging Vis.*, 59(1):23–39, 2017.

 R^1

[LR2019] T. R., J-O. L., An efficient and quasi linear worst-case time algorithm for digital plane recognition, DGCl'19, LNCS, vol. 11414, p.380–393, 2019.

PH, PR, PR¹

[LMR2020] J-O. L., J. M., T. R. An Optimized Framework for Plane-Probing Algorithms, J. Math. Imaging Vis., 62(5):718–736, 2020.

Implemented in DGtal (dgtal.org)

Outline

Context and motivation

Plane-probing algorithms
Generalized Euclidean algorithm

Delaunay triangulation Generalization

Application to digital surfaces

One of the oldest algorithms

Euclidean algorithm

Given a couple of integers,

- subtract the smaller from the larger one, and repeat
- until both numbers are equal.

Example

step	0	1	2	3	4
а	3	3	3	1	1
Ь	8	5	2	2	1

we focus on the sequence of subtractions, assume gcd(a, b) = 1

$$\mathbf{m}_1 = (1,0), \quad \mathbf{m}_1 \cdot \mathbf{N} = a = 3$$

 $\mathbf{m}_2 = (0,1), \quad \mathbf{m}_2 \cdot \mathbf{N} = b = 8$

$$\mathbf{m}_1 = (1,0), \quad \mathbf{m}_1 \cdot \mathbf{N} = a = 3$$

 $\mathbf{m}_2 = (-1,1), \quad \mathbf{m}_2 \cdot \mathbf{N} = b = 5$

$$\mathbf{m}_1 = (1,0), \quad \mathbf{m}_1 \cdot \mathbf{N} = a = 3$$

 $\mathbf{m}_2 = (-2,1), \quad \mathbf{m}_2 \cdot \mathbf{N} = b = 2$

$$egin{aligned} \mathbf{m}_1 &= (3,-1), & \mathbf{m}_1 \cdot \mathbf{N} &= a = 1 \\ \mathbf{m}_2 &= (-2,1), & \mathbf{m}_2 \cdot \mathbf{N} &= b = 2 \end{aligned}$$

$$\mathbf{m}_1 = (3, -1), \quad \mathbf{m}_1 \cdot \mathbf{N} = a = 1$$

 $\mathbf{m}_2 = (-5, 2), \quad \mathbf{m}_2 \cdot \mathbf{N} = b = 1$

Extension to 3d

No unique extension to the Euclidean algorithm!

Assuming $0 \le a \le b \le c$:

- ▶ *Brun*: $(a, b, c) \rightarrow (a, b, c b)$;
- ► Selmer: $(a, b, c) \rightarrow (a, b, c a)$;
- ightharpoonup Farey: (a,b,c) o (a,b-a,c);
- ► Fully-Subtractive: $(a, b, c) \rightarrow (a, b a, c a)$;
- Poincaré: $(a, b, c) \rightarrow (a, b a, c b)$.

Note: the same operation is done at each step

A class of generalized Euclidean algorithms

Given three positive numbers (a, b, c), with gcd(a, b, c) = 1,

- while they are not all equal to 1,
- ▶ subtract from a number $x \in \{a, b, c\}$ a strictly smaller number $y \in \{a, b, c\}$, y < x.

Example

$$\mathbf{m}_1 = (1,0,0), \quad \mathbf{m}_1 \cdot \mathbf{N} = a = 1$$

 $\mathbf{m}_2 = (0,1,0), \quad \mathbf{m}_2 \cdot \mathbf{N} = b = 2$
 $\mathbf{m}_3 = (0,0,1), \quad \mathbf{m}_3 \cdot \mathbf{N} = c = 3$

A class of generalized Euclidean algorithms

Given three positive numbers (a, b, c), with gcd(a, b, c) = 1,

- while they are not all equal to 1,
- ▶ subtract from a number $x \in \{a, b, c\}$ a strictly smaller number $y \in \{a, b, c\}$, y < x.

Example

$$\mathbf{m}_1 = (1,0,0), \qquad \mathbf{m}_1 \cdot \mathbf{N} = a = 1$$

 $\mathbf{m}_2 = (0,1,0), \qquad \mathbf{m}_2 \cdot \mathbf{N} = b = 2$
 $\mathbf{m}_3 = (0,-1,1), \qquad \mathbf{m}_3 \cdot \mathbf{N} = c = 1$

A class of generalized Euclidean algorithms

Given three positive numbers (a, b, c), with gcd(a, b, c) = 1,

- while they are not all equal to 1,
- ▶ subtract from a number $x \in \{a, b, c\}$ a strictly smaller number $y \in \{a, b, c\}$, y < x.

Example

$$egin{aligned} \mathbf{m}_1 &= (1,0,0), & \mathbf{m}_1 \cdot \mathbf{N} &= a = 1 \\ \mathbf{m}_2 &= (-1,1,0), & \mathbf{m}_2 \cdot \mathbf{N} &= b = 1 \\ \mathbf{m}_3 &= (0,-1,1), & \mathbf{m}_3 \cdot \mathbf{N} &= c = 1 \end{aligned}$$

Digital plane

Let $\mathbf{N} \in \mathbb{Z}^3$ whose components (a,b,c) are coprime integers s.t. $0 < a \le b \le c$,

$$\textbf{P}_{\textbf{N}} := \{\textbf{x} \in \mathbb{Z}^3 \mid 0 \leq \textbf{x} \cdot \textbf{N} < \|\textbf{N}\|_1\}$$

- ho $(m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- \Rightarrow triangle $(q m_1, q m_2, q m_3)$
- \Rightarrow hexagon $\{\mathbf{q} + \mathbf{m}_i \mathbf{m}_j \mid i, j \in \{1, 2, 3\}, i \neq j\}$

- ho $(m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- \Rightarrow triangle $(q m_1, q m_2, q m_3)$
- ⇒ hexagon $\{ \mathbf{q} + \mathbf{m}_i \mathbf{m}_i \mid i, j \in \{1, 2, 3\}, i \neq j \}$

- ho $(m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- \Rightarrow triangle $(q m_1, q m_2, q m_3)$
- \Rightarrow hexagon $\{\mathbf{q} + \mathbf{m}_i \mathbf{m}_j \mid i, j \in \{1, 2, 3\}, i \neq j\}$

- ho $(m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- \Rightarrow triangle $(q m_1, q m_2, q m_3)$
- ⇒ hexagon $\{\mathbf{q} + \mathbf{m}_i \mathbf{m}_i \mid i, j \in \{1, 2, 3\}, i \neq j\}$

- ho $(m_1, m_2, m_3) := (e_1, e_2, e_3), q := (1, 1, 1) \notin P_N$
- $\Rightarrow \text{ triangle } \left(\textbf{q}-\textbf{m}_1,\textbf{q}-\textbf{m}_2,\textbf{q}-\textbf{m}_3\right)$
- \Rightarrow hexagon $\{\mathbf{q} + \mathbf{m}_i \mathbf{m}_j \mid i, j \in \{1, 2, 3\}, i \neq j\}$

⇒ a plane-probing algorithm

$$\Pi := \{ \textbf{P}_{\textbf{N}} \mid \textbf{N} \in \mathbb{Z}^3 \setminus \textbf{0} \}$$

Input

- ▶ $P \in \Pi$ described by the predicate InPlane: "is $x \in P$?"
- **a** a starting point **p** s.t. InPlane(**p**), $\mathbf{q} := \mathbf{p} + (1, 1, 1)$

Main trick

- Assume $\mathbf{p} \cdot \mathbf{N} = 0 \ (\Rightarrow \mathbf{q} \cdot \mathbf{N} = ||\mathbf{N}||_1)$, where \mathbf{N} , the normal of \mathbf{P}
- ► InPlane(\mathbf{x}) \Leftrightarrow ($\mathbf{x} \mathbf{q}$) \cdot \mathbf{N} < 0.

Properties of generalized Euclidean algorithms

At each step

- P1 **p** and **q** both project into triangle $(\mathbf{q} \mathbf{m}_1, \mathbf{q} \mathbf{m}_2, \mathbf{q} \mathbf{m}_3)$ along (1, 1, 1)
- P2 matrix $\mathbf{M}:=[\mathbf{m}_1,\mathbf{m}_2,\mathbf{m}_3]$ is unimodular, i.e. $\det{(\mathbf{M})}=1$

Termination

- ▶ number of steps $\leq \|\mathbf{N}\|_1 3$ (6 calls to InPlane per step)
- ▶ at the end, if $\mathbf{p} \cdot \mathbf{N} = 0$ ($\Rightarrow \mathbf{q} \cdot \mathbf{N} = ||\mathbf{N}||_1$) $\forall k \in \{1, 2, 3\}, \ \mathbf{m}_k \cdot \mathbf{N} = 1$ \Rightarrow the normal of triangle ($\mathbf{q} - \mathbf{m}_1, \mathbf{q} - \mathbf{m}_2, \mathbf{q} - \mathbf{m}_3$) is \mathbf{N}

whichever the subtraction we choose

Example

Digital plane of normal (5, 2, 3)

Example

Digital plane of normal (5, 2, 3)

Example

Digital plane of normal (5, 2, 3)

All possible final triangles

About final triangles

- ightharpoonup vertices $\in \Lambda := \{ \mathbf{x} \in \mathbb{Z}^3 \mid \mathbf{x} \cdot \mathbf{N} = \|\mathbf{N}\|_1 1 \}$
- do not contain any other point of Λ (P2)
- ightharpoonup projection of $m {f p}$ along (1,1,1) (P1)

Towards a selection criterion

- ightharpoonup The Delaunay triangulation of Λ gives acute triangles
- **p** projects into one of them (if no co-circularity)

Towards a selection criterion

- ightharpoonup The Delaunay triangulation of Λ gives acute triangles
- **p** projects into one of them (if no co-circularity)

At each step:

- consider a candidate set 5
- ► filter 5 through InPlane
- pick a closest point s*: the circumsphere of T ∪ s* doesn't contain any other
- ▶ update *T* with this point

At each step:

- consider a candidate set 5
- ► filter 5 through InPlane
- pick a closest point s*: the circumsphere of T ∪ s* doesn't contain any other
- ▶ update *T* with this point

At each step:

- consider a candidate set 5
- ▶ filter 5 through InPlane
- pick a closest point s*: the circumsphere of T ∪ s* doesn't contain any other
- ▶ update *T* with this point

At each step:

- consider a candidate set 5
- ► filter 5 through InPlane
- pick a closest point s*: the circumsphere of T ∪ s* doesn't contain any other
- ▶ update *T* with this point

At each step:

- consider a candidate set 5
- ▶ filter 5 through InPlane
- pick a closest point s*: the circumsphere of T ∪ s* doesn't contain any other
- ▶ update *T* with this point

Algorithm R (candidates along rays)

- ▶ same algorithm as before, only *S* differs
- ▶ 5 is infinite but the filtering by InPlane gives a finite point set
- $ightharpoonup O(\|\mathbf{N}\|_1)$ steps, $O(\log(\|\mathbf{N}\|_1))$ calls to InPlane per step
- the last triangle is always acute

Algorithm R¹

Features

- ▶ has the same output as R
- ▶ but $O(\|\mathbf{N}\|_1)$ calls to InPlane instead of $O(\|\mathbf{N}\|_1 \log \|\mathbf{N}\|_1)$

How?

- 1. local probing: 6 rays \rightarrow at most 2 rays and 1 point
- 2. geometrical study: 2 rays \rightarrow 1 ray and 1 point
- 3. efficient algorithm: 1 ray and 1 point \rightarrow a *closest* point

Digital plane of normal (67, 1, 91)

Digital plane of normal (1,73,100)

Recap

Main features

- **N** from a point **p** s.t. $\mathbf{p} \cdot \mathbf{N} = 0$
- by sparse and local computations:
 - **p** projects into all triangles
 - ▶ with R and R¹, the current triangle is acute every two steps, always acute at the end
- $O(\|\mathbf{N}\|_1)$ calls to InPlane with H and R¹, $O(\|\mathbf{N}\|_1 \log (\|\mathbf{N}\|_1))$ with R

Drawbacks

- 1. do not retrieve **N** from any point
- 2. do not retrieve all triangles of the lattice Λ

Problem #1: starting from any point

Input

- P of normal N
- ▶ InPlane: "is $\mathbf{x} \in \mathbf{P}$?"

Equivalence used so far

- ightharpoonup assume $\mathbf{q} \cdot \mathbf{N} = \|\mathbf{N}\|_1$
- ▶ InPlane(\mathbf{x}) \Leftrightarrow ($\mathbf{x} \mathbf{q}$) \cdot **N** < 0

Generalized equivalence

- ightharpoonup assume $\mathbf{q} \cdot \mathbf{N} \geq \|\mathbf{N}\|_1$
- ▶ $\exists I \in \mathbb{N}$ s.t. $InPlane(\mathbf{q} + I(\mathbf{x} \mathbf{q})) \Leftrightarrow (\mathbf{x} \mathbf{q}) \cdot \mathbf{N} < 0$.

Predicate NotAbove

```
Data: InPlane, q and an integer L > 2 \|\mathbf{N}\|_1
   Input: A point \mathbf{x} \in \mathbb{Z}^3 s.t. \mathbf{q} \cdot \mathbf{N} - \|\mathbf{N}\|_1 < \mathbf{x} \cdot \mathbf{N}
  Output: True iff (\mathbf{x} - \mathbf{q}) \cdot \mathbf{N} < 0 in O(\log(L)) calls to InPlane
1 \mathbf{u} \leftarrow \mathbf{x} - \mathbf{q}; // direction
2 l ← 1:
3 while l < L do
        if InPlane(q + lu) then return True;
if InPlane(q - lu) then return False;
       1 \leftarrow 21;
7 return False:
```

 \mathbf{q}

 \mathbf{x}

it is enough to use NotAbove instead of InPlane

Predicate NotAbove

```
Data: InPlane, q and an integer L > 2 \|\mathbf{N}\|_1
   Input: A point \mathbf{x} \in \mathbb{Z}^3 s.t. \mathbf{q} \cdot \mathbf{N} - \|\mathbf{N}\|_1 < \mathbf{x} \cdot \mathbf{N}
  Output: True iff (\mathbf{x} - \mathbf{q}) \cdot \mathbf{N} < 0 in O(\log(L)) calls to InPlane
1 \mathbf{u} \leftarrow \mathbf{x} - \mathbf{q}; // direction
2 l ← 1:
3 while l < L do
        if InPlane(q + lu) then return True;
if InPlane(q - lu) then return False;
       1 \leftarrow 21;
7 return False:
```

 \mathbf{q}

 \mathbf{x}

it is enough to use NotAbove instead of InPlane

- ▶ top point **q**
- ightharpoonup upper triangle $(\mathbf{q} \mathbf{m}_1, \mathbf{q} \mathbf{m}_2, \mathbf{q} \mathbf{m}_3)$
- lower triangle $(\mathbf{q} \mathbf{m}_2 \mathbf{m}_3, \mathbf{q} \mathbf{m}_3 \mathbf{m}_1, \mathbf{q} \mathbf{m}_1 \mathbf{m}_2)$
- **b** bottom point $\mathbf{q} \sum_k \mathbf{m}_k$

- ▶ top point q
- ightharpoonup upper triangle $(\mathbf{q} \mathbf{m}_1, \mathbf{q} \mathbf{m}_2, \mathbf{q} \mathbf{m}_3)$
- lower triangle $(\mathbf{q} \mathbf{m}_2 \mathbf{m}_3, \mathbf{q} \mathbf{m}_3 \mathbf{m}_1, \mathbf{q} \mathbf{m}_1 \mathbf{m}_2)$
- **b** bottom point $\mathbf{q} \sum_k \mathbf{m}_k$

- ▶ top point **q**
- ightharpoonup upper triangle $(\mathbf{q} \mathbf{m}_1, \mathbf{q} \mathbf{m}_2, \mathbf{q} \mathbf{m}_3)$
- lower triangle $(\mathbf{q} \mathbf{m}_2 \mathbf{m}_3, \mathbf{q} \mathbf{m}_3 \mathbf{m}_1, \mathbf{q} \mathbf{m}_1 \mathbf{m}_2)$
- **b** bottom point $\mathbf{q} \sum_k \mathbf{m}_k$

- ▶ top point q
- ightharpoonup upper triangle $(\mathbf{q} \mathbf{m}_1, \mathbf{q} \mathbf{m}_2, \mathbf{q} \mathbf{m}_3)$
- lower triangle $(\mathbf{q} \mathbf{m}_2 \mathbf{m}_3, \mathbf{q} \mathbf{m}_3 \mathbf{m}_1, \mathbf{q} \mathbf{m}_1 \mathbf{m}_2)$
- **b** bottom point $\mathbf{q} \sum_k \mathbf{m}_k$

Staying close to the digital plane

Update rule

- ▶ when the parallelepiped has less than 4 vertices in **P**,
 - ⇒ the lower triangle is updated (top moves, not bottom)
- otherwise
 - ⇒ the upper triangle is updated (bottom moves, not top)
- ▶ invariant: at least one point in **P** (bottom), one not (top)

Generalized versions of H, R and R¹

For each $X \in \{H, R, R^1\}$, PX uses a parallelepiped and the above update rule with NotAbove instead of InPlane.

Recap

Main features

- ▶ **N** from any point **p** such that InPlane(**p**),
- ▶ all triangles of the lattice $\Lambda = \{\mathbf{x} \in \mathbb{Z}^3 \mid \mathbf{x} \cdot \mathbf{N} = \|\mathbf{N}\|_1 1\}$
- ▶ PH and PR¹ require $O(\|\mathbf{N}\|_1)$ calls to NotAbove $\Rightarrow O(\|\mathbf{N}\|_1 \log (\|\mathbf{N}\|_1))$ calls to InPlane.

Recap

Main features

- ▶ **N** from any point **p** such that InPlane(**p**),
- ▶ all triangles of the lattice $\Lambda = \{ \mathbf{x} \in \mathbb{Z}^3 \mid \mathbf{x} \cdot \mathbf{N} = \|\mathbf{N}\|_1 1 \}$
- ▶ PH and PR¹ require $O(\|\mathbf{N}\|_1)$ calls to NotAbove $\Rightarrow O(\|\mathbf{N}\|_1 \log (\|\mathbf{N}\|_1))$ calls to InPlane.

Outline

Context and motivation

Plane-probing algorithms

Generalized Euclidean algorithm

Delaunay triangulation

Generalization

Application to digital surfaces

A similar algorithm for a digital surface S

Input

- ▶ a predicate InSurface : $\mathbf{x} \in S$?
- \triangleright a starting square face s in S

Additional constraints

▶ find an origin and a basis from s

stop if non-planar configurations (parallelepiped/hexagon/rays)

A similar algorithm for a digital surface S

Input

- ▶ a predicate InSurface : $\mathbf{x} \in S$?
- \triangleright a starting square face s in S

Additional constraints

▶ find an origin and a basis from s

stop if non-planar configurations (parallelepiped/hexagon/rays)

Example: convex shapes

Example: convex shapes

Example: convex shapes

Example: not convex shapes

Example: not convex shapes

Perspectives

Digital planes

▶ What piece of digital plane is enough to find **N**?

Digital surfaces

- try all candidates, obtuse triangles may be interesting
- perform a dense probing to process non-convex parts
- estimator: multigrid convergence, experimental comparison
- reconstruction: find of way of gluing triangles together

The end

My first answer:

