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Data

voxel sets in 3d digital images
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Digital surfaces

pros/cons

+ efficient spatial data structures
set operations (union, intersection, ... )

+
+ integer-only, exact computations
_|_

— poor geometry
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Analysis of digital surfaces

» enhance the geometry by estimating normal vectors

= applications: measurements, deformation for simulation or
tracking, surface fairing, rendering...
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A lot of methods

fitting,

Voronoi diagram,
integral invariants,
convolution,

energy minimization,

probabilistic approaches,
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Flaw

Existing methods are not quite satisfactory

» parameter required (= width of a neighborhood)
» that parameter is hard to pick

> get decent estimates in flat/smooth parts
» preserve sharp features
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Challenge

Desiderata

» parameter-free method
> theoretical guarantees

» exact on flat parts
P converge on smooth parts as resolution increases

Key idea
» bound neighborhoods by their thickness instead of their width

> digitized planes have a thickness bounded by a small constant
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Plane-probing algorithms

Definition
Given a digitized plane P and a starting point p € P, a
plane-probing algorithm computes the normal vector of P by

sparsely probing it with the predicate “is x € P?7".

Hand R @ [LPR2017] J-O. L., X. P., T. R. Two Plane-Probing Algorithms for the Computation
of the Normal Vector to a Digital Plane. J. Math. Imaging Vis., 59(1):23-39, 2017.

R]- @ [LR2019] T. R., J-O. L., An efficient and quasi linear worst-case time algorithm for
digital plane recognition, DGCI'19, LNCS, vol. 11414, p.380-393, 2019.

PH PR PRl @ [LMR2020] J-O. L., J. M., T. R. An Optimized Framework for Plane-Probing
1 1
Algorithms, J. Math. Imaging Vis., 62(5):718-736, 2020.

Implemented in Eital (dgtal.org)
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dgtal.org

Outline

Plane-probing algorithms
Generalized Euclidean algorithm

9 /41



One of the oldest algorithms

Euclidean algorithm
Given a couple of integers,
» subtract the smaller from the larger one, and repeat

» until both numbers are equal.

Example
step |0]1]2]|3|4

a
b |8|5|2|2]|1

w
w
—_
—_

we focus on the sequence of subtractions, assume ged (a, b) =1
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One geometrical interpretation of the Euclidean algorithm
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One geometrical interpretation of the Euclidean algorithm

m; = (1,0), mq - N
-N

3
my = (_171)v my 5
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b

11/ 41



One geometrical interpretation of the Euclidean algorithm

m; = (1,0), mq - N
-N

3
my = (_27 1)v my 2

a
b

11/ 41



One geometrical interpretation of the Euclidean algorithm

m; = (3,—1), mq - N=a=
m2:(—2,1), m2-N:b:
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One geometrical interpretation of the Euclidean algorithm

m; = (3, —1), mq - N=a=
m2:(—5,2), m2-N:b:
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An algorithm to compute N

N is unknown, but a predicate IsBlack is given
IsBlack(my — m>)? IsBlack(my — my)?
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Extension to 3d

No unique extension to the Euclidean algorithm!

Assuming 0 < a< b<c:
» Brun: (a,b,c) — (a,b,c — b);
» Selmer. (a,b,c) — (a,b,c — a);
» Farey: (a,b,c) — (a,b— a,c);
» Fully-Subtractive: (a,b,c) — (a,b— a,c — a);
» Poincaré: (a,b,c) — (a,b— a,c — b).

> ...

Note: the same operation is done at each step
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A class of generalized Euclidean algorithms

Given three positive numbers (a, b, ¢), with ged (a, b, c) =1,
» while they are not all equal to 1,

> subtract from a number x € {a, b, c} a strictly smaller
number y € {a, b, c}, y < x.

Example
m1:(1,0,0) m1-N:a:1
my =(0,1,0), my-N=bH=2
m3:(0,0,1) m3~N:c:3
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Digital plane

Let N € Z3 whose components (a, b, ¢) are coprime integers s.t.
0<a<b<eg,

Pni={x€Z3|0<x-N<|N|}

_] il

N
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Interpretation of a generalized Euclidean algorithm

Internals

> (ml,mg,mg,) = (61,62,83), q = (]., ]., 1) §é PN
= triangle (@ —my,q —my,q — m3)
= hexagon {q+m; —m; | i,j € {1,2,3},i #j}
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= a plane-probing algorithm

M:={Pn|NcZ3\0}

Input
» P < I1 described by the predicate InPlane: “is x € P?"
> a starting point p s.t. InPlane(p), q:=p+(1,1,1)

Main trick

» Assume p-N =0 (= q-N = ||N||1), where N, the normal of
P

» InPlane(x) < (x —q) - N < 0.
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Properties of generalized Euclidean algorithms

At each step
P1 p and q both project into triangle (@ — m;,q — my,q — m3)
along (1,1,1)

P2 matrix M := [m1, mz, m3] is unimodular, i.e. det(M) =1

Termination
» number of steps < |[N||; — 3 (6 calls to InPlane per step)

> attheend, if p-N=0(=q-N=|N|)
Yk e {1,2,3}, mg-N=1
= the normal of triangle (g — m1,q —my,q —m3) is N

whichever the subtraction we choose
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Example

Digital plane of normal (5,2, 3)
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Example

Digital plane of normal (5,2, 3)
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Example

Digital plane of normal (5,2, 3)
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Example

Digital plane of normal (5,2, 3)
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All possible final triangles

Digital plane of normal (2,3, 5)
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About final triangles

> vertices € A := {x € Z% | x- N = ||N[|; — 1}
» do not contain any other point of A (P2)
» projection of p along (1,1,1) (P1)

Digital plane of normal (2,2,5)
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Towards a selection criterion

» The Delaunay triangulation of A gives acute triangles

» p projects into one of them (if no co-circularity)

Digital plane of normal (2,2,5)

22 / 41



Towards a selection criterion

» The Delaunay triangulation of A gives acute triangles

» p projects into one of them (if no co-circularity)

Digital plane of normal (2,2,5)

22 / 41



Algorithm H (candidates in an hexagon)

At each step:
» consider a candidate set S
» filter S through InPlane

» pick a closest point s*:
the circumsphere of T U s*
doesn’t contain any other

» update T with this point

The last triangle is very often acute, but not always
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Algorithm R (candidates along rays)

AVARS

©

» same algorithm as before, only S differs

» S is infinite but the filtering by InPlane gives a finite point set
» O(||NJ|1) steps, O(log(||N||1)) calls to InPlane per step

» the last triangle is always acute

24 / 41



Example

Digital plane of normal (2,3,9)
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Algorithm R!

Features
» has the same output as R
» but O(||NJ|1) calls to InPlane instead of O(||N||1log]||N||1)

How?
1. local probing: 6 rays — at most 2 rays and 1 point
2. geometrical study: 2 rays — 1 ray and 1 point
3. efficient algorithm: 1 ray and 1 point — a closest point
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Example

Digital plane of normal (67,1,91)
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Example

Digital plane of normal (1,73,100)
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Recap

Main features
» N from a pointps.t. p-N=0
P by sparse and local computations:

P p projects into all triangles
» with R and R!, the current triangle is acute every two steps,
always acute at the end

» O(||N||1) calls to InPlane with H and R?,
O([INJ|1 log (||Nf1)) with R

Drawbacks
1. do not retrieve N from any point

2. do not retrieve all triangles of the lattice A

29 / 41



Problem #1: starting from any point

Input
» P of normal N
» InPlane: “is x € P?"

Equivalence used so far

» assume q- N = ||N||;
» InPlane(x) < (x—q)-N <0

Generalized equivalence
» assume q-N > [|N||;
» 3/ e Nst. InPlane(q+ /(x —q)) < (x—q) - N < 0.
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Predicate NotAbove

Data: InPlane, q and an integer L > 2||N||;
Input: A point x € Z®sit. q-N — ||N|l; <x-N
Output: True iff (x —q) - N < 0 in O(log (L)) calls to InPlane
u<x—q;// direction
[+ 1;
while / < L do
if InPlane(q + /u) then return True ;
if InPlane(q — /u) then return False ;
|+ 21I;

7 return False;

S s W N =

u

P
X

\J

A

q

it is enough to use NotAbove instead of InPlane
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Problem #2: retrieving all triangles

Triangle — Parallelepiped
> top point q
» upper triangle (@ — m1,q — my,q — m3)
» lower triangle (@ — my —m3,q — m3 —my, g — m; —my)

» bottom point q — >, my
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Staying close to the digital plane

Update rule
» when the parallelepiped has less than 4 vertices in P,
= the lower triangle is updated (top moves, not bottom)
» otherwise
= the upper triangle is updated (bottom moves, not top)

» invariant: at least one point in P (bottom), one not (top)

Generalized versions of H, R and R!
For each X € {H,R,R'}, PX uses a parallelepiped and the above
update rule with NotAbove instead of InPlane.
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Recap

Main features
» N from any point p such that InPlane(p),
> all triangles of the lattice A= {x € Z3 | x- N = ||N||; — 1}

» PH and PR! require O(||N||1) calls to NotAbove
= O(||NJ|1 log (|IN]|1)) calls to InPlane.
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Outline

Application to digital surfaces
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A similar algorithm for a digital surface S

Input
» a predicate InSurface : x € § 7

» a starting square face s in S

Additional constraints

» find an origin and a basis from s

» stop if non-planar configurations
(parallelepiped /hexagon /rays)

oo [
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Example: flat parts and sharp edges
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Example: convex shapes
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Example: convex shapes
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Example: convex shapes
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not convex shapes

Example
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Example: not convex shapes
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Perspectives

Digital planes
> What piece of digital plane is enough to find N7

Digital surfaces

» try all candidates, obtuse triangles may be interesting
» perform a dense probing to process non-convex parts
P estimator: multigrid convergence, experimental comparison

» reconstruction: find of way of gluing triangles together
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The end

My first answer:
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