

Parameter-free analysis of digital surfaces with plane-probing algorithms

Advisors: David Coeurjolly, Tristan Roussillon

PhD student: Jui-Ting Lu

Université de Lyon, INSA Lyon, LIRIS, France

21 December 2023

Outline of talk

- Introduction
 - Context
 - Plane-probing algorithms
- 2 L-algorithm
 - L-Neighborhood
 - Complexity
 - Delaunay Property
- Normal vector estimation
 - Estimation and evaluation
 - Convergence on selected surfels
 - Comparing plane-probing with other methods
- 4 Conclusion

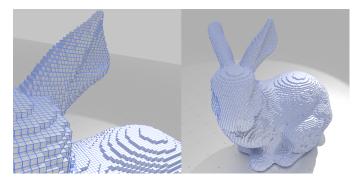
Table of Contents

- Introduction
 - Context
 - Plane-probing algorithms
- 2 L-algorithm
 - L-Neighborhood
 - Complexity
 - Delaunay Property
- 3 Normal vector estimation
 - Estimation and evaluation
 - Convergence on selected surfels
 - Comparing plane-probing with other methods
- 4 Conclusion

Digital volume

Context

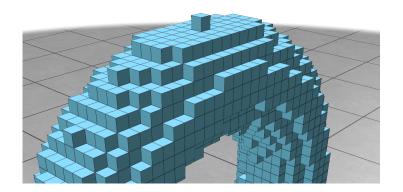
A digital volume can be defined as a collection of identical small cubes that share the sames axes of direction



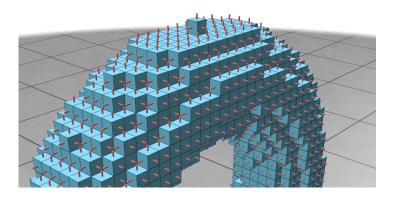
- Efficient spatial data structures.
- Calculation using integers.

Digital surface

We consider digital surfaces as boundary of digital volumes.

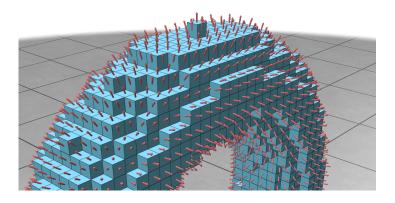


Characteristics of digital surfaces



The normal vector of a surfel always aligns with one of the axes.

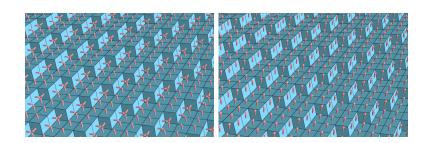
Geometry processing on digital surface



Objective: analyze digital surfaces ¹. For example: estimate normal vectors.

¹ANR project: PARameter-free Analysis of DIgital Surfaces

Special case: digital plane



Digital plane

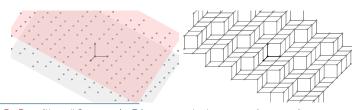
Definition

Given a normal vector $\mathbf{N} \in \mathbb{Z}^3 \setminus \{\mathbf{0}\}$ and a shift vector $\mu \in \mathbb{Z}$, a standard and rational digital plane ² is an infinite digital set:

$$\mathbf{P}_{\mu,\mathbf{N}} := \{ \mathbf{x} \in \mathbb{Z}^3 \mid \mu \le \mathbf{x} \cdot \mathbf{N} < \mu + ||\mathbf{N}||_1 \}. \tag{1}$$

Here, we suppose that $\mu=0$ and $\mathbf{N}\in\mathbb{N}^3\setminus\{\mathbf{0}\}$.

$$\mathbf{P} := \{ \mathbf{x} \in \mathbb{Z}^3 \mid 0 \le \mathbf{x} \cdot \mathbf{N} < ||\mathbf{N}||_1 \}. \tag{2}$$

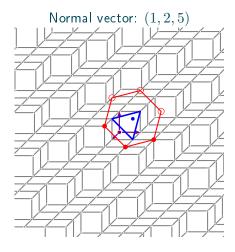


²J-P. Reveillès. "Géométrie Discrète, calculs en nombres entiers et algorithmique". Thèse d'Etat. Université Louis Pasteur, 1991

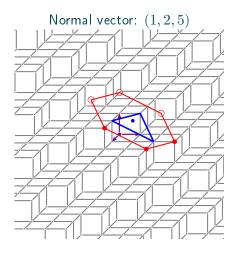
Plane-probing algorithm

Given a digital plane ${\bf P}$ and a starting point ${\bf p}\in {\bf P}$, a plane-probing algorithm³ computes the normal vector of ${\bf P}$ by sparsely probing it with the predicate "is ${\bf x}\in {\bf P}$ "?

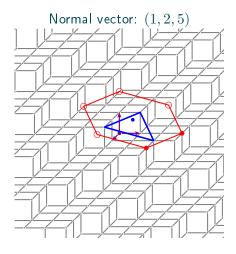
³ Jacques-Olivier Lachaud, Xavier Provençal, and Tristan Roussillon. "Computation of the normal vector to a digital plane by sampling signicant points". In: 19th IAPR International Conference on Discrete Geometry for Computer Imagery. Nantes, France, Apr. 2016.



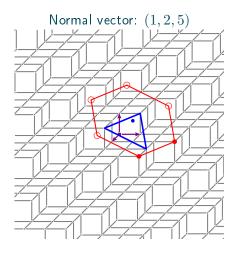
- \blacksquare A predicate InPlane: $x \in \mathbf{P}$?
- At each iteration:
 - Consider a **neighborhood** \mathcal{N} .
 - Choose a point from $\mathcal{N} \cap \mathbf{P}$.
 - Update one vertex of the base triangle.
- Termination: $\mathcal{N} \cap \mathbf{P} = \emptyset$, with $N(\mathbf{T}) = \mathbf{N}$.



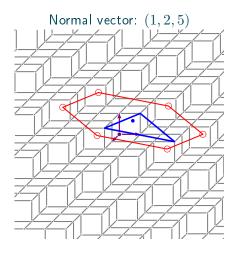
- **A** predicate InPlane: $x \in \mathbf{P}$?
- At each iteration:
 - Consider a **neighborhood** \mathcal{N} .
 - Choose a point from $\mathcal{N} \cap \mathbf{P}$.
 - Update one vertex of the base triangle.
- Termination: $\mathcal{N} \cap \mathbf{P} = \emptyset$, with $N(\mathbf{T}) = \mathbf{N}$.



- **A** predicate InPlane: $x \in \mathbf{P}$?
- At each iteration:
 - Consider a **neighborhood** \mathcal{N} .
 - Choose a point from $\mathcal{N} \cap \mathbf{P}$.
 - Update one vertex of the base triangle.
- lacksquare Termination: $\mathcal{N} \cap \mathbf{P} = \emptyset$, with $N(\mathbf{T}) = \mathbf{N}$.



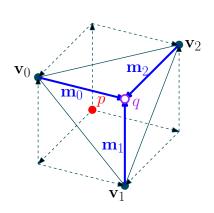
- **A** predicate InPlane: $x \in \mathbf{P}$?
- At each iteration:
 - Consider a **neighborhood** \mathcal{N} .
 - Choose a point from $\mathcal{N} \cap \mathbf{P}$.
 - Update one vertex of the base triangle.
- Termination: $\mathcal{N} \cap \mathbf{P} = \emptyset$, with $N(\mathbf{T}) = \mathbf{N}$.



- **A** predicate InPlane: $x \in \mathbf{P}$?
- At each iteration:
 - Consider a **neighborhood** \mathcal{N} .
 - Choose a point from $\mathcal{N} \cap \mathbf{P}$.
 - Update one vertex of the base triangle.
- Termination: $\mathcal{N} \cap \mathbf{P} = \emptyset$, with $N(\mathbf{T}) = \mathbf{N}$.

Initialization

- \blacksquare Given $\mathbf{p} \in \mathbf{P}$
- Define $\mathbf{T}^{(0)}:=(\mathbf{v}_k^{(0)})_{k\{0,1,2\}}$ such that $(\forall k)$ $\mathbf{v}_k^{(0)}:=\mathbf{p}+\mathbf{e}_k+\mathbf{e}_{k+1}\in\mathbf{P},$ where $(\mathbf{e}_0,\mathbf{e}_1,\mathbf{e}_2)$ is the canonical basis.
- $\mathbf{\bar{q}} := \mathbf{p} + \mathbf{e}_0 + \mathbf{e}_1 + \mathbf{e}_2 \notin \mathbf{P}.$
- $\forall k, \mathbf{m}_k^{(i)} = \mathbf{q} \mathbf{v}_k^{(i)}$



Neighborhood of existing plane-probing algorithms

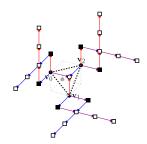
Let Σ be the set of all possible permutation of $\{0,1,2\}$.

The H-algorithm explores a hexagonal neighborhood,

$$\mathcal{N}_{H} = \left\{ \mathbf{v}_{\sigma(0)}^{(i)} + \mathbf{m}_{\sigma(1)}^{(i)} \mid \sigma \in \Sigma \right\}$$
 (3)

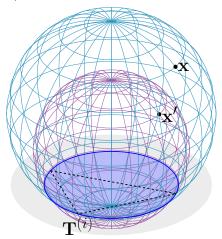
The R-algorithm explores a neighborhood that includes 6 rays,

$$\mathcal{N}_{R} = \left\{ \mathbf{v}_{\sigma(0)}^{(i)} + \mathbf{m}_{\sigma(1)}^{(i)} + \lambda \mathbf{m}_{\sigma(2)}^{(i)} \mid \lambda \in \mathbb{N}; \sigma \in \Sigma \right\}$$
(4)



Introduction L-algorithm Normal vector estimation Conclusion Context Plane-probing algorithms

We favor a point that, with the three vertices of the triangle, defines a sphere that occupies the smallest area above the triangle.



We say \mathbf{x}' is closer than \mathbf{x} and we note $\mathbf{x}' \leq_{\mathbf{T}} \mathbf{x}$.

Plane-probing algorithms on digital planes

```
: The predicate \operatorname{InPlane} := "Is a point \mathbf{x} \in \mathbf{P}?", a point \mathbf{p} \in \mathbf{P} and
                           the type of neighborhood \mathcal{N} \in \{\mathcal{N}_H, \mathcal{N}_R\}
      Output: A normal vector \hat{N}
 1 Function normalEstimation():
               \mathbf{q} \leftarrow \mathbf{p} + (1, 1, 1) ; \mathbf{T}^{(0)} \equiv (\mathbf{v}_k^{(0)})_{k \in \{0, 1, 2\}} \leftarrow (\mathbf{q} - \mathbf{e}_k)_{k \in \{0, 1, 2\}} ; i \leftarrow 0 ;
  2
                while \mathcal{N}^{(i)} \cap \{\mathbf{x} \mid \operatorname{InPlane}(\mathbf{x})\} \neq \emptyset do
  3
                        Let (k, \alpha, \beta) be such that, for all \mathbf{y} \in \mathcal{N}^{(i)} \cap \{\mathbf{x} \mid \text{InPlane}(\mathbf{x})\}\,
  4
                      \mathbf{v}_{h}^{(i)} + \alpha \mathbf{m}_{h+1}^{(i)} + \beta \mathbf{m}_{h+2}^{(i)} <_{\mathbf{r}(i)} \mathbf{v}_{h}
                       \mathbf{v}_{h}^{(i+1)} \leftarrow \mathbf{v}_{h}^{(i)} + \alpha \mathbf{m}_{h+1}^{(i)} + \beta \mathbf{m}_{h+2}^{(i)}
                  \forall l \in \{0,1,2\} \setminus k, \mathbf{v}_{l}^{(i+1)} \leftarrow \mathbf{v}_{l}^{(i)} // \mathbf{T}^{(i)} \text{ updated to } \mathbf{T}^{(i+1)}
               i \leftarrow i + 1;
  7
                B \leftarrow \{\mathbf{v}_{0}^{(i)} - \mathbf{v}_{1}^{(i)}, \mathbf{v}_{1}^{(i)} - \mathbf{v}_{2}^{(i)}, \mathbf{v}_{2}^{(i)} - \mathbf{v}_{0}^{(i)}\};
  8
                Let \mathbf{b}_1 and \mathbf{b}_2 be the shortest and second shortest vectors of B;
                return \mathbf{b}_1 \times \mathbf{b}_2
10
```

Termination 4

Invariants

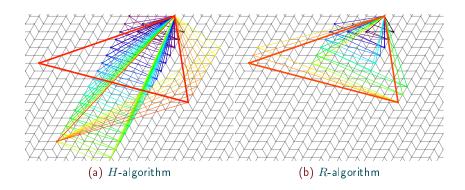
- \blacksquare Height of \mathbf{m}_k : For all $i \in \{0, \dots, n\}$, $\forall k \in \mathbb{Z}/3\mathbb{Z}$, $\mathbf{m}_k^{(i)} \cdot \mathbf{N} > 0$.
- Unimodularity: For all $i \in \{0,\ldots,n\}$, $\det(\mathbf{m}_0^{(i)},\mathbf{m}_1^{(i)},\mathbf{m}_2^{(i)})=1$.

Termination

- The number of iterations is $O(\|\mathbf{N}\|_1)$.
- ightharpoonup If $\mathbf{p} \cdot \mathbf{N} = 0$, the normal vector of the last triangle $\mathbf{T}^{(n)}$ is equal to \mathbf{N} .

⁴ Jacques-Olivier Lachaud, X. Provençal, and Tristan Roussillon. "Two Plane-Probing Algorithms for the Computation of the Normal Vector to a Digital Plane". In: *J. Math. Imaging Vis.* 59.1 (2017), pp. 23–39

Locality



Existing plane-probing algorithms

We note R1 an optimized version of R.

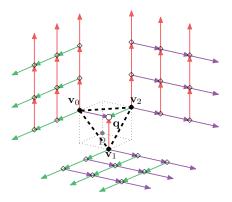
Comparison among H, R and R1								
	Н	R	R1					
Neighborhood size	$ \mathcal{N}_H = 6$	$ \mathcal{N}_R > 6$	$ \mathcal{N}_{R1} = \mathcal{N}_{R} $					
Complexity	$\bar{O}(\bar{\ \mathbf{N}\ _1})^{-1}$	$O(\ \mathbf{N}\ _1 \log \ \mathbf{N}\ _1)$	$O(\ \mathbf{N}\ _1)$					
The last triangle is always not obtuse	X	$\checkmark_{exp.}$	$\checkmark_{exp.}$					

Table of Contents

- Introduction
 - Context
 - Plane-probing algorithms
- 2 L-algorithm
 - L-Neighborhood
 - Complexity
 - Delaunay Property
- 3 Normal vector estimation
 - Estimation and evaluation
 - Convergence on selected surfels
 - Comparing plane-probing with other methods
- 4 Conclusion

Neighborhood

L-Neighborhood

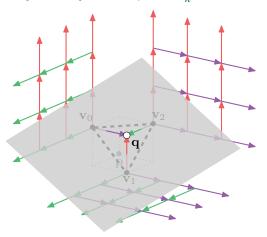


$$\mathcal{N}_{L} = \left\{ \mathbf{v}_{\sigma(0)}^{(i)} + \alpha \mathbf{m}_{\sigma(1)}^{(i)} + \beta \mathbf{m}_{\sigma(2)}^{(i)} \mid \alpha, \beta \in \mathbb{N}; \sigma \in \Sigma \right\}$$
(5)

Lemma

The set $\mathcal{N}_L \cap \mathbf{P}$ is finite.

Idea: For all $i\in\{0,\dots,n\}$, $\forall k\in\mathbb{Z}/3\mathbb{Z}$, $\mathbf{m}_k^{(i)}\cdot\mathbf{N}>0$.



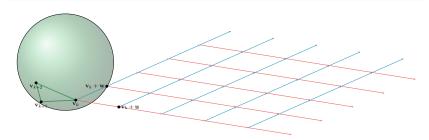
Plane-probing algorithms on digital planes

```
: The predicate \operatorname{InPlane} := "Is a point \mathbf{x} \in \mathbf{P}?", a point \mathbf{p} \in \mathbf{P} and
                           the type of neighborhood \mathcal{N} \in \{\mathcal{N}_H, \mathcal{N}_R, \mathcal{N}_L\}
      Output: A normal vector \hat{N}
 1 Function normalEstimation():
               \mathbf{q} \leftarrow \mathbf{p} + (1, 1, 1) ; \mathbf{T}^{(0)} \equiv (\mathbf{v}_k^{(0)})_{k \in \{0, 1, 2\}} \leftarrow (\mathbf{q} - \mathbf{e}_k)_{k \in \{0, 1, 2\}} ; i \leftarrow 0 ;
  2
                while \mathcal{N}^{(i)} \cap \{\mathbf{x} \mid \operatorname{InPlane}(\mathbf{x})\} \neq \emptyset do
  3
                         Let (k, \alpha, \beta) be such that, for all \mathbf{y} \in \mathcal{N}^{(i)} \cap \{\mathbf{x} \mid \operatorname{InPlane}(\mathbf{x})\}.
  4
                      \mathbf{v}_{h}^{(i)} + \alpha \mathbf{m}_{h+1}^{(i)} + \beta \mathbf{m}_{h+2}^{(i)} <_{\mathbf{r}(i)} \mathbf{v}_{h}
                       \mathbf{v}_{h}^{(i+1)} \leftarrow \mathbf{v}_{h}^{(i)} + \alpha \mathbf{m}_{h+1}^{(i)} + \beta \mathbf{m}_{h+2}^{(i)}
                  \forall l \in \{0,1,2\} \setminus k, \mathbf{v}_{l}^{(i+1)} \leftarrow \mathbf{v}_{l}^{(i)} // \mathbf{T}^{(i)} \text{ updated to } \mathbf{T}^{(i+1)}
               i \leftarrow i+1;
  7
                B \leftarrow \{\mathbf{v}_{0}^{(i)} - \mathbf{v}_{1}^{(i)}, \mathbf{v}_{1}^{(i)} - \mathbf{v}_{2}^{(i)}, \mathbf{v}_{2}^{(i)} - \mathbf{v}_{0}^{(i)}\};
  8
                Let \mathbf{b}_1 and \mathbf{b}_2 be the shortest and second shortest vectors of B;
                return \mathbf{b}_1 \times \mathbf{b}_2
10
```

Comparison among H, R1 and L							
	Н	R1	L				
Neighborhood size	$ \mathcal{N}_H = 6$	$ \mathcal{N}_R > 6$	$ \mathcal{N}_L > \mathcal{N}_R $				
Complexity	$\bar{O}(\ \bar{\mathbf{N}}\ _1)$	$\bar{O}(\ \mathbf{N}\ _1)$?				
The last triangle is a	-	\checkmark_{exp} .	?				
ways not obtuse		- exp.	·				

Lemma

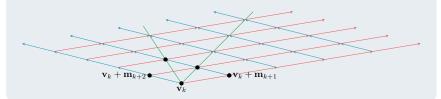
For all $k \in \mathbb{Z}/3\mathbb{Z}$, let Λ_k be the set $\{\mathbf v_k + \alpha \mathbf u + \beta \mathbf w \mid (\alpha, \beta) \in \mathbb N^2 \setminus \{0\}\}$, where $\mathbf u$, $\mathbf w$ are any two non-zero vectors of \mathbb{Z}^3 such that $\mathbf{v}_k + \mathbf{u}, \mathbf{v}_k + \mathbf{w} \in \mathcal{H}_+$. If $\mathbf{u} \cdot \mathbf{w} \geq 0$, we have either $\mathbf{v}_k + \mathbf{u} \leq_{\mathbf{T}} \mathbf{x}$ for all $\mathbf{x} \in \Lambda_k$ or $\mathbf{v}_k + \mathbf{w} \leq_{\mathbf{T}} \mathbf{x}$ for all $\mathbf{x} \in \Lambda_k$.



Reduction of candidate set

Smaller candidate set

We partition the neighborhood into sectors with acute angle. Instead of exploring an infinite lattice, the L-algoithm only needs to look into a finite set of representative points (•) of these sections.



Complexity

Complexity for the search of updated point

The number of calls to predicate InPlane at each iteration is in $O(\log(\|\mathbf{N}\|_1))$.

⁵ Jui-Ting Lu, Tristan Roussillon, and David Coeurjolly. "A New Lattice-based Plane-probing Algorithm". en. In: Second International Conference on Discrete Geometry and Mathematical Morphology (DGMM 2022). Ed. by Etienne Baudrier et al. Lecture Notes in Computer Science. Springer Verlag, 2022

Complexity

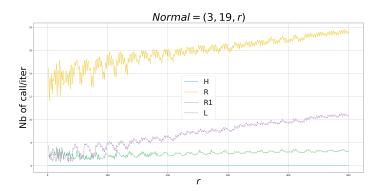


Figure: Number of calls to predicate **per iteration** for normal vectors of form $\{(3, 19, r), 1 \le r \le 500\}$.

Complexity

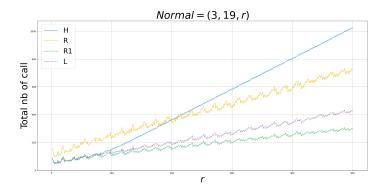
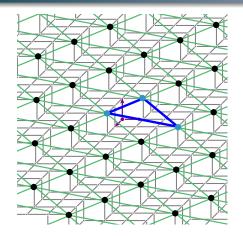


Figure: Number of calls to predicate in total for normal vectors of form $\{(3, 19, r), 1 \le r \le 500\}.$

Comparison among H, R1 and L							
		Н	R1	L			
	Neighborhood size	$ \mathcal{N}_H = 6$	$ \mathcal{N}_R > 6$	$ \mathcal{N}_L > \mathcal{N}_R $			
	Complexity	$ar{O}(ar{\ ar{\mathbf{N}}\ _1})$	$\bar{O}(\ \bar{\mathbf{N}}\ _1)$	$O(\ \mathbf{N}\ _1 \log \ \mathbf{N}\ _1)$			
	The last triangle is always not obtuse	Х	$\checkmark_{exp.}$?			

Delaunay triangulation



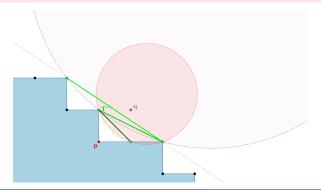
When the last triangle is non-obtuse, it belongs to the Delaunay triangulation of the lattice $\{\mathbf{x} \in \mathbb{Z}^3 \mid \mathbf{x} \cdot \mathbf{N} = ||\mathbf{N}||_1 - 1\}$.

The Delaunay Property

For all $i \in \{0, ..., n\}$, let $\mathcal{B}^{(i)}$ be the ball uniquely determined by the four distinct points of two consecutive triangles.

Theorem: Delaunay property for L-algorithm

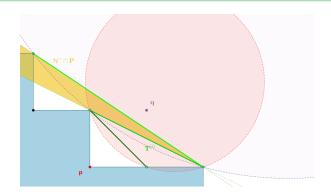
For all $i \in \{0, ..., n\}$, the ball $\mathcal{B}^{(i)}$ does not contain any point of \mathbf{P} in its interior.



Let $\mathcal{H}_{+}^{(i)}$ be the half-space delimited by $\mathbf{T}^{(i)}$ that includes \mathbf{q} .

Lemma

For all $i \in \{0, \dots, n-1\}$, if the interior of $\mathcal{B}^{(i)}$ contains no point of \mathbf{P} , then the interior of $\mathcal{B}^{(i+1)}$ contains no point of $\mathbf{P} \cap \mathcal{H}^{(i)}_{\perp}$.



Outline of the proof

Since $(\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2)$ is unimodular, we can represent all point of \mathbb{Z}^3 as

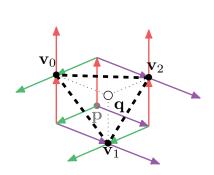
$$\mathbf{x} = \mathbf{p} + \sum_{k} c_k \mathbf{m}_k.$$

Points that lie in the plane that passes $\mathbf{T}^{(i)}$ satisfy:

$$\sum_{k} c_k = 2.$$

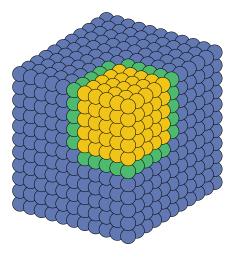
Then, points that lies in $\mathcal{H}_{+}^{(i)}$ satisfy:

$$\sum_{k} c_k \ge 2.$$

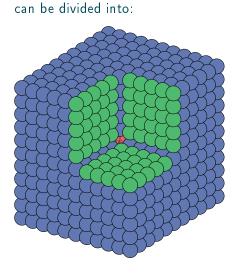


$$\{\mathbf{p} + \sum_k c_k \mathbf{m}_k\} \sim \mathbb{Z}^3$$
 can be divided into:

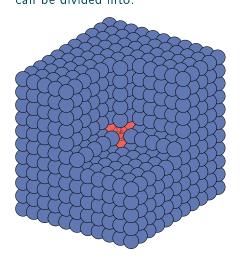
L-Neighborhood



- 1. the points are not in the plane so not considered by the lemma.

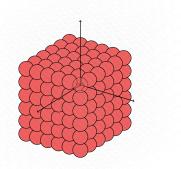


- 2. these points are exactly the ones probed in the L-algorithm

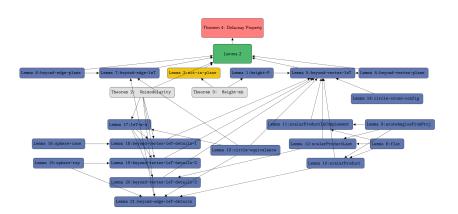


- 3. these points are farthest than specific green points.

$$\{\mathbf{p} + \sum_k c_k \mathbf{m}_k\} \sim \mathbb{Z}^3$$
 can be divided into:

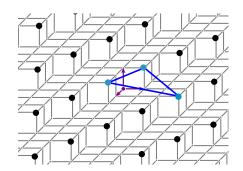


- 4. the red one is discarded because none of its points lie in $\mathcal{H}_{\perp}^{(i)}$



Consequence 1: Last triangle

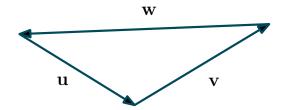
The last triangle returned by the L-algorithm is always acute or straight.



Consequence 2: Minimal basis

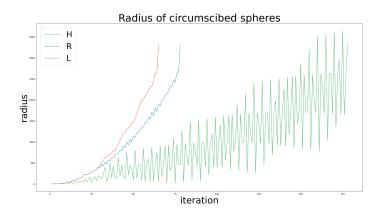
Let L be a rank-two integral lattice. A basis (\mathbf{x}, \mathbf{y}) of L is minimal if and only if $\|\mathbf{x}\|_2, \|\mathbf{y}\|_2 \leq \|\mathbf{x} - \mathbf{y}\|_2 \leq \|\mathbf{x} + \mathbf{y}\|_2$, where $\|\cdot\|_2$ denotes the Euclidean norm.

The two shortest edges of the final triangle form a minimal basis of the lattice $\{\mathbf{x} \in \mathbb{Z}^3 \mid \mathbf{x} \cdot \mathbf{N} = \|\mathbf{N}\|_1 - 1\}$.



Consequence 3: Increasing ball radius

$$N = (198, 195, 193)$$



Evolution of basis of the tetrahedron (N = (2, 5, 156))

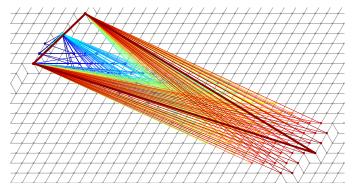


Figure: H-algorithm

Evolution of basis of the tetrahedron (N = (2, 5, 156))

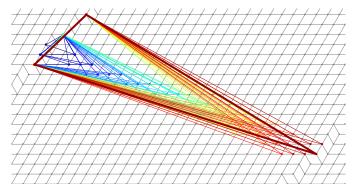


Figure: R-algorithm

Evolution of basis of the tetrahedron (N = (2, 5, 156))

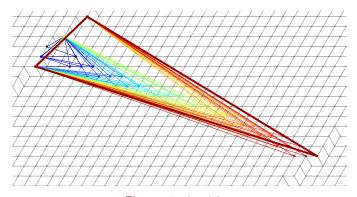


Figure: L-algorithm

Summary

Comparison among H, R1 and L					
	Н	R1	L		
Neighborhood size	$ \mathcal{N}_H = 6$	$ \mathcal{N}_R > 6$	$ \mathcal{N}_L > \mathcal{N}_R $		
Complexity	$O(\ ar{\mathbf{N}}\ _1)$	$\bar{O}(\ \bar{\mathbf{N}}\ _1)$	$O(\ \mathbf{N}\ _1 \log \ \mathbf{N}\ _1)$		
The Delaunay property	X	X	✓		
The last triangle is al-	v		/		
ways not obtuse	^	ightharpoonup exp.	V		

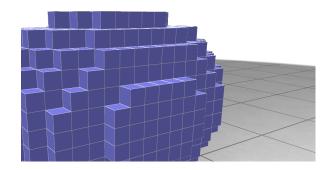
Table of Contents

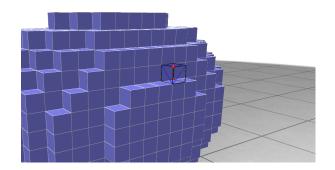
- Introduction
 - Context
 - Plane-probing algorithms
- 2 L-algorithm
 - L-Neighborhood
 - Complexity
 - Delaunay Property
- 3 Normal vector estimation
 - Estimation and evaluation
 - Convergence on selected surfels
 - Comparing plane-probing with other methods
- 4 Conclusion

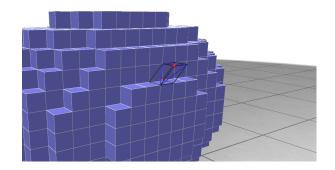
Introduction L-algorithm Normal vector estimation Conclusion

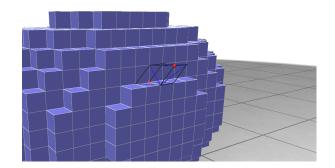
Estimation and evaluation Convergence on selected surfels Comparing plane-probing with other methods

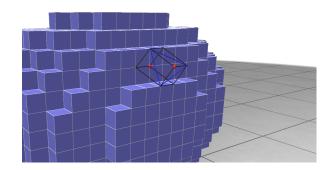
What happens when launching a plane-probing algorithm on a digital surface ?

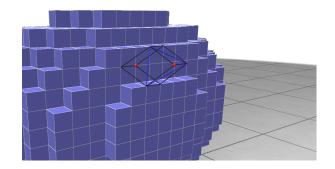


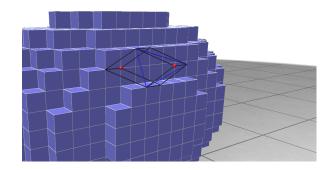


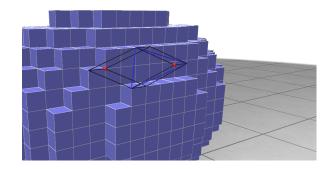


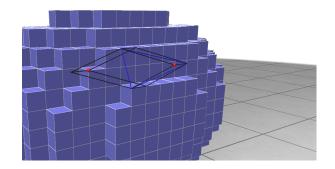












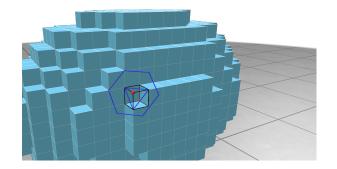
Plane-probing algorithms on digital surfaces

```
: The predicate InSurface := "Is a point x \in S?", an octant
                      \mathbf{s} \in \{\pm 1, \pm 1, \pm 1\}, a point \mathbf{p} \in \mathbf{S} and the type of neighborhood
                      \mathcal{N} \in \{\mathcal{N}_H, \mathcal{N}_R, \mathcal{N}_L\}
    Output: A normal vector \hat{N}.
    Function normalEstimation():
           \mathbf{q} \leftarrow \mathbf{p} + \mathbf{s} : \mathbf{T}^{(0)} \equiv (\mathbf{v}_{k}^{(0)})_{k \in \mathbb{Z}/3\mathbb{Z}} \leftarrow (\mathbf{q} - \mathbf{e}_{k})_{k \in \mathbb{Z}/3\mathbb{Z}};
2
           i \leftarrow 0:
            while \mathcal{N}^{(i)} \cap \{\mathbf{x} \mid \operatorname{InSurface}(\mathbf{x})\} \neq \emptyset do
                    compute \mathbf{T}^{(i+1)}, updated copy of \mathbf{T}^{(i)};
            i \leftarrow i + 1;
            B \leftarrow \{\mathbf{v}_{0}^{(i)} - \mathbf{v}_{1}^{(i)}, \mathbf{v}_{1}^{(i)} - \mathbf{v}_{2}^{(i)}, \mathbf{v}_{2}^{(i)} - \mathbf{v}_{0}^{(i)}\};
7
            Let \mathbf{b}_1 and \mathbf{b}_2 be the shortest and second shortest vectors of B;
            return \mathbf{b}_1 \times \mathbf{b}_2
```

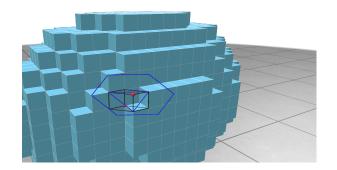
Plane-probing algorithms on digital surfaces

```
: The predicate NotAbove, an octant s \in \{\pm 1, \pm 1, \pm 1\}, a point
                        \mathbf{p} \in \mathbf{S} and the type of neighborhood \mathcal{N} \in \{\mathcal{N}_H, \mathcal{N}_R, \mathcal{N}_L\}
     Output: A normal vector \hat{N}.
     Function normalEstimation():
             \mathbf{q} \leftarrow \mathbf{p} + \mathbf{s} : \mathbf{T}^{(0)} \equiv (\mathbf{v}_{k}^{(0)})_{k \in \mathbb{Z}/3\mathbb{Z}} \leftarrow (\mathbf{q} - \mathbf{e}_{k})_{k \in \mathbb{Z}/3\mathbb{Z}} :
 2
             i \leftarrow 0:
             while \mathcal{N}^{(i)} \cap \{\mathbf{x} \mid \text{NotAbove}(\mathbf{x})\} \neq \emptyset do
                      compute \mathbf{T}^{(i+1)}, updated copy of \mathbf{T}^{(i)} :
                     if Card(\{\mathbf{x} \in \mathbf{\Pi}^{(i)} \mid NotAbove(\mathbf{x})\}) < 4 then
                    compute \mathbf{q}^{(i+1)}, translated copy of \mathbf{q}^{(i)};
               i \leftarrow i + 1:
 8
              B \leftarrow \{\mathbf{v}_{0}^{(i)} - \mathbf{v}_{1}^{(i)}, \mathbf{v}_{1}^{(i)} - \mathbf{v}_{2}^{(i)}, \mathbf{v}_{2}^{(i)} - \mathbf{v}_{0}^{(i)}\};
 9
              Let \mathbf{b}_1 and \mathbf{b}_2 be the shortest and second shortest vectors of B;
10
              return \mathbf{b}_1 \times \mathbf{b}_2
11
```

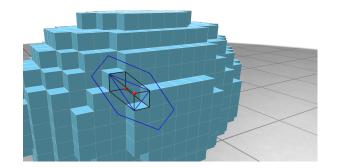
Example with fixed \mathbf{q}



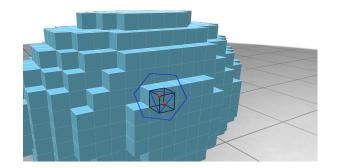
Example with fixed \mathbf{q}



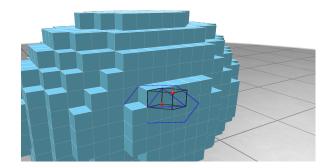
Example with fixed q



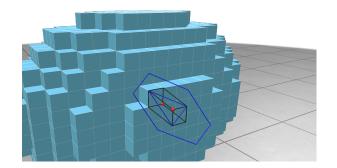
Example with moving q



Example with moving q



Example with moving q



Equations of Euclidean shapes for experimental evaluation

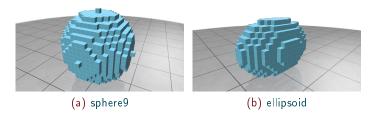


Figure: Visualization when h=1

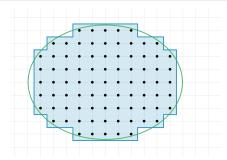
Shape	DGtal name	Equation
Sphere	sphere9	$x^2 + y^2 + z^2 - 9^2 = 0$
Ellipse	ellipse	$90 - 3x^2 - 2y^2 - z^2 = 0$

Gauss digitization

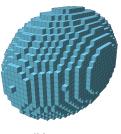
Definition

Let $X \subset \mathbb{R}^3$ be a compact simply connected volume. The *Gauss digitization* of X with grid step h > 0, denoted by $\mathbf{DS}(X)_h$, is the set of all discete points $p \in h(\mathbb{Z}^3)$ lying in X. In other words,

$$\mathbf{DS}(X)_h = X \cap h(\mathbb{Z}^3). \tag{6}$$

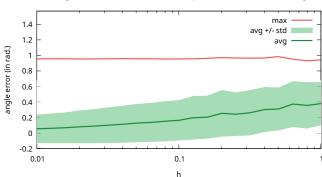


Multigrid convergence

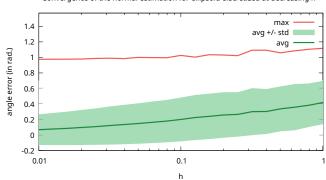


(c)
$$h = 0.1$$

Plane-probing algorithm



Plane-probing algorithm



Selection of starting surfels

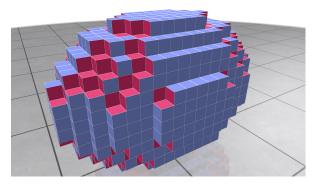
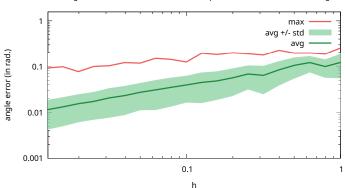


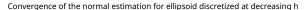
Figure: Illustration of the reentrant corners (red) on a digital ellipsoid.

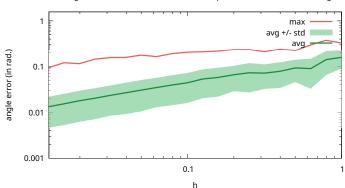
- 1. A reentrant corner exists in the initial parallelepiped (unique octant).
- 2. The point $\mathbf{q}^{(i)}$ does not translate throughout iterations.

Multigrid convergence on selected surfels



Multigrid convergence on selected surfels





Digital methods for normal estimations

There are three methods that are multigrid convergent:

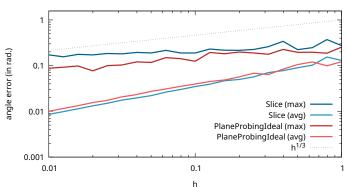
- Slice method⁶ computes the cross product of two 2D tangent vectors of two perpendicular slices.
- Voronoi covariance measure⁷ is a covariance tensor that requires two parameters: offset radius and kernel radius.
- Integral invariant compute integrals on the intersection between the shape and the convolution kernel, that has a specific radius.

⁶Lachaud and Vialard, "Geometric Measures on Arbitrary Dimensional Digital Surfaces".

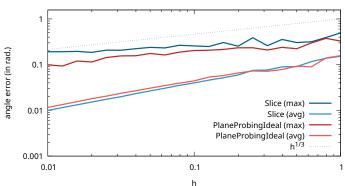
⁷Cuel et al., "Robust Geometry Estimation Using the Generalized Voronoi Covariance Measure".

⁸Levallois, Coeurjolly, and Lachaud, "Parameter-free and Multigrid Convergent Digital Curvature Estimators".

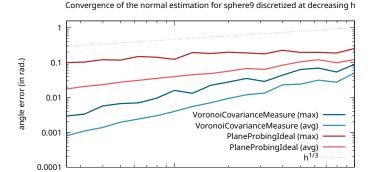
Slice method



Slice method



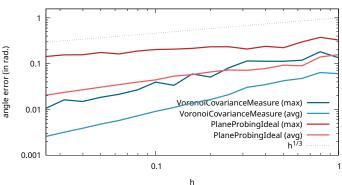
Voronoi Covariance Measure (VCM)



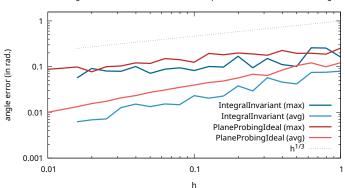
0.1

h

Voronoi Covariance Measure (VCM)



Integral Invariant



Integral Invariant

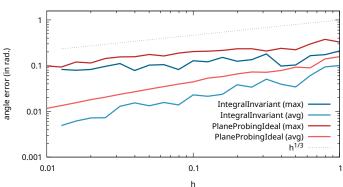


Table of Contents

- Introduction
 - Context
 - Plane-probing algorithms
- 2 L-algorithm
 - L-Neighborhood
 - Complexity
 - Delaunay Property
- 3 Normal vector estimation
 - Estimation and evaluation
 - Convergence on selected surfels
 - Comparing plane-probing with other methods
- 4 Conclusion

A new plane-probing algorithm

We introduce a new plane-probing algorithm, the L-algorithm.

- If $\mathbf{p} \cdot \mathbf{N} = 0$, it return the exact normal vector and stops in $O(\|\mathbf{N}\|_1)$ steps.
- It requires theoretically $O(\|\mathbf{N}\|_1 \log \|\mathbf{N}\|_1)$ calls to predicate in total.

Geometrical properties:

- The Delaunay property: the interior of $\mathcal{B}^{(i)}$ does not include any point of \mathbf{P} .
- lacksquare The sequence of radius of the balls $\mathcal{B}^{(i)}$ is non decreasing.
- Always returns a non obtuse triangle (experimentally verified for R-algorithm).

Perspectives for plane-probing algorithms

- Understand why R-algorithm also returns a non obtuse triangle.
- Improve the complexity of the L-algorithm.
- Other approaches, such as: select multiple points to update at each iteration.

Normal vector estimation

A parallelepipedic version of the L-algorithm can be applied for normal vector estimation on digital surfaces:

- The current method does not converge on all surfels
- On some selected surfels, there is convergence.

Future work:

- Provide a proof for the multigrid convergence on selected surfels:
- Identify the surfels where there is no convergence.
- Study the estimation of normal vectors on other shapes (for example, non convex).