
Now that Agile methods have become mainstream in software 
development, working code and automated tests are being 
considered as the most important team artifacts. Is modeling 
obsolete? Is UML dead? 
I don’t think so.  In this article, I’ll explore the spaces where modeling fits and plays an 
important role in this Agile age, especially when development scales to multiple teams 
and a shared understanding of the system’s “Big Picture” becomes essential.

Modeling in the Agile Age:
What to Keep Next to 

Code to Scale Agile Teams

Kenji Hiranabe, Change Vision, Inc
.

Where is “Design” in Agile 
“While code is the truth, it is not the whole truth.” 

-Grady Booch

To begin with, let’s describe a minimal process 
of an Agile team using Scrum. Figure 1 shows 
an intentionally simplified process with the only 
essential artifacts left explicit.

Figure. 1 Simple Scrum framework
•The “User Requirements” are listed as a
“Product Backlog”.

•The development team picks items from the
list and implements them within a short itera-
tion (or “Sprint”). 

•After each Sprint, the team produces
“Working Software” (or “Increments”) as 
“Product Code” and  “Test Code”.



2

In this minimum framework, the input to the 
team is “User Requirements” as “Product 
Backlog” and the output is “Working Software” 
as code (“Product Code” and “Test Code”). No 
other design artifacts between them are explic-
itly described here. All the design intentions 
generated during the Sprint will hopefully have 
been deployed into the working codebase as 
assets of the team, but there will be information 
which cannot be expressed directly as code. 
Scrum is a process-framework and intention-
ally mentions nothing about design, but we still 
have design and design activities in our team.

As Grady Booch says, “The code is the truth, 
but it is not the whole truth.” [Booch99] So if 
there is information which cannot be expressed 
or communicated by the code, where can we 
keep these information assets? That is the 
question this article attempts to answer.

Documentation is not Agile?
“Model to have a conversation.”

–Craig Larman and Bas Vodde

“In our minds!” would be one answer to the pre-
vious question. Daily meetings, pair program-
ming, design workshops, and other social prac-
tices act as synchronization and continuous 
integration of the minds of the team members. 
But when the team gets bigger, geographically 
distributed, and people leave the team, “mod-
els in minds” will quickly evaporate. We need 
to maintain the shared understanding of the 
system somewhere as documentation to share 
information which is not well communicated 
and retained only by the code.

One point that Agile makes clear is the value 
shift from documentation to conversation, so 
writing heavy design documentation (which of-
ten duplicates information from the code) is not 
the right approach. Documentation that makes 
conversations effective is the approach that we 

should take, and it should be the simplest pos-
sible set of models which works complemen-
tary to the code.

One aspect where models have an advantage 
over code is visual expression. In other words, 
text is a poor medium of communication in a 
certain context. The image above1 shows how 
textual communication can fail miserably. 

This “wreck” was likely caused by a message 
left on the answering machine of the cake shop. 
If the caller had used a simple picture with text, 
he or she could have easily avoided the wreck. 
Sometimes, “a picture is worth 1,000 words.”

So what models can be effectively used, and 
for what purpose in Agile teams?

Agile Modeling and Two 
Categories of Models
“Let’s keep the modeling baby but throw out 
the bureaucracy bathwater”

– Scott Ambler

“Agile Modeling” is a set of practices you can 
use within your Agile teams for effective model-
ing and documentation [Ambler05]. This meth-
od aligns with Agile values and principles and 
still helps you benefit from the power of model-
ing. The emphasis is on models for conversa-
tion, not for handovers.

3

Figure 2  Agile Modeling with 
“Keeps” and “Temps”



2 3

We have been using the practices and princi-
ples in Agile Modeling with our software devel-
opment team and found that the most important 
role of models is to visually communicate the 
“Big Picture” or the “Bird’s-eye View” of the 
system design, which is difficult to accomplish 
via code. Without it, the team would be “four 
blind men touching the elephant”2. Each man 
feels only the part he is touching, and it takes 
a long time to unify the parts into a meaningful 
whole - the elephant.

My recommendation of the “Big Picture” mod-
els to keep maintained consists of:

1. “Architecture” of the system for the team to
get a rough idea of the whole system structure.

2. “Domain Model” to help the team under-
stand the concepts used in the problem do-
main.

3. “Key Use Cases”3 to help the team under-
stand the concepts used in the problem do-
main.

Figure 2  Agile Modeling with 
“Keeps” and “Temps”

1. Thanks to Jeff Patton for this funny example. See http://www.cakewrecks.com/
2. From “The Blind Men and the Elephant,” by John Godfrey Saxe. The first man said “it is a wall”, the second “snake”, the third “tree“,
and the forth “rope. [Evans 05].”
3. User Story is used more widely in Agile, but I prefer to use Use Cases in larger development.



4

These are all essential to establish understand-
ing of the system as a whole. Without models, 
how would you accomplish this understanding? 
If you have a large codebase, and make a “Big 
Picture” assumption based on a small incom-
plete view of it, you will make some poor choic-
es on how to maintain that codebase. The “Big 
Picture” not only comprises the team’s men-
tal model of the system but also supports the 
vocabulary they use in the conversation and 
in the code that they program, i.e. the struc-
tures of the code as well as detailed naming of 
the programming constructs such as classes, 
methods, variables, fields, data, and configura-
tion. In other words, these models are not only 
important for the team to establish a shared un-
derstanding of the system as a whole, but also 
for the team to keep the codebase consistent 
and maintainable.

On the other hand, there are also temporary 
models which will be thrown away once the 
information is programmed into the code. Ca-
sual class diagrams with few classes and se-
quence diagrams describing the interaction of 
them (usually drawn on whiteboards) fall into 
this categories. Those models are also impor-
tant to encourage conversation and to burn the 
information to the codebase before the mod-
els are thrown away. So the core of the idea 
is to categorize the models into two types -- 
models to keep and maintain as assets and 
models to draw temporarily to have effective 
conversation. We call the former “keep mod-
els” or “Keeps”, and the latter ”temp models” or 
“Temps,” as described by the illustration in fig-
ure 2 on page 3. Please note that the “Keeps” 
are not meant to be “frozen”, but are meant to 
be maintained and changed over time. In the 
next section, I’ll propose three “Keeps” for Ag-
ile teams.

4. We use mainly UML because it includes standardized
diagrams and there are a lot of educational materials pub-
lished. ERD (Entity-Relation Diagram) and DFD (Data Flow 
Diagram) for data and processes are also used sometimes 
for the same reasons.

Models to Keep
Depending on the context (the number of peo-
ple, criticality of the system, stability of require-
ments, whether it is an enterprise system or 
embedded), the “Keeps” models will vary. But 
here are good candidates for “Keeps”4  from 
my experience.

1. Architecture As Class/Package Diagrams

2. Domain Model As Class Diagram/ER
Diagrams

3. Key Use Cases As Use Case Diagrams +
Sequence/Communication Diagrams

We mainly use UML, but you don’t have to stick 
to strict UML specifications. We use it because 
it includes sufficient standardized diagrams 
and there are many published educational 
materials. ERD (Entity-Relation Diagram) and 
DFD (Data Flow Diagram) for data and pro-
cesses are also used sometimes for the same 
reasons.

5

Figure 3  Architecture, Domain Model and Key Use Cases



4 5

On the last page, Figure 3 illustrates the roles of 
the three “Keeps” models as a picture. In a nut-
shell, “Architecture” shows the structure, “Do-
main Model” shows the core concepts of the 
problem space, and “Key Use Cases” shows 
examples of the usage of the system.

Here are the three “Keeps” models using con-
crete examples.

1. Architectures As Class/Package
Diagrams

The architecture is a structural presentation 
of the whole system. It is often described by 
class or package diagrams typically to show 
global tiers (layers). For example, in an appli-
cation with UI and database, tiers are usually 
set horizontally from UI to database, and one 
Use Case walks through them to accomplish 
its goal.

Other architecture patterns like “MVC” (Model-
View-Controller) can also be chosen as a glob-
al architecture. Figure 4 is an example of an 
architecture drawn as a package diagram

Figure 3  Architecture, Domain Model and Key Use Cases Figure 4  Architecture As Class/Package Diagram

based on MVC architecture.

Everyone in the team should understand the 
roles and meanings of the components of the 
architecture so that team members can write 
code which fits in the right place in the archi-
tecture consistently.

“Dependencies” are often expressed in this 
diagram between packages to avoid unwanted 
couplings or circular dependencies. From an 
architectural view point, inter-package circular 
dependencies are the evilest problem, and re-
sult in harder testing and a longer build time.

2. Domain Models As Class Diagrams or
ER/Diagrams

A Domain Model describes the concept tax-
onomy of the problem space in which the ap-
plication works. In the human communication 
level, the vocabulary of this domain model is to 
become the “Ubiquitous Language”[Evans04] 
used in the whole stakeholder community in-
cluding the users, domain experts, business 
analysts, testers and developers.

In the programming level, the Domain Model is 
also essential for selecting names of program-
ming constructs such as classes, data, meth-
ods, and other conventions. A large part of the 
concept taxonomy (often called “entities”) is 
mapped into a persistent data structure in the 
database and often has a longer life than the 

application itself. Typically, the 
domain model (or entities) re-
sides in the “M” package in the 
logical architecture if you choose 
an “MVC” architecture for your 
application. In a RubyOnRails 
type of applications, an ER dia-
gram is more suitable for ex-
pressing an domain model be-
cause it is tied more directly to 
relational databases.



6 7

Figure 5 Domain Model as a Class Diagram

Also note that this domain model grows 
over time. Because domain is at the heart 
of understanding and communication of the 
problem, maintaining the growing domain 
models in the team (or broader, in the com-
munity) is one big topic that is fully discussed 
in Eric Evans’s DDD (Domain-Driven Devel-
opment) [Evans04].

Figure 5 is an example of a Domain Model ex-
pressed as a class diagram which presents the 
domain in one picture.

3. Key Use Cases as Use Case Diagrams
and Sequence/Communication Diagrams

Key Use Cases are typical usages of the 
system, from the user’s viewpoint. There 
are two reasons why we include them in the 
“Keeps”. The first is that developers often go 
into the solution and forget who the users of 
the system are and what they want to accom-
plish with the system. Use Cases help them 
recall the users’ viewpoints and are a good 
way to have conversations with users, as 
other documents are usually difficult for users 
to understand.

The other reason is that Key Use Cases, and 
their mechanics described as sequence or 
communication diagrams, work as educational 
examples for developers. They describe how 
several objects in the system in different tiers 

in the architecture work together to accom-
plish the user goal. Draw a concrete example 
of a vertical slice from UI to database and 
illustrate how you implement the Use Case in 
the architecture. 

The Key Use Cases don’t have to be complete 
or cover all situations. Just pick the typical 
ones and keep them simple.

Figure 6 is an example Use Case diagram 
which shows the typical users and usage

Figure 6 Key Use Cases as 
a Use Case Diagram 



6 7

of the system. It doesn’t need to be compre-
hensive, but should capture the context of the 
system. The yellow Use Case (“Create Class 
Diagram”) is chosen as an example Use Case, 
and the design breakdown is diagrammed as a 
communication diagram in Figure 7 . With this 
example, the team can share an understand-
ing of how the Architecture and Domain Model 
(diagrammed in Figure 4 and Figure 5) actually 
work to accomplish the features described as 
Key Use Cases. See Figure 3 for the relation-
ship.

You can use tools to draw these diagrams to 
make maintenance easier, and to print them on 
a large piece of paper to have posted on the 
wall. The wall will then become a discussion 
place of modeling workshops (as I will soon 
discuss in a later section).

Scaling

“Rather than divide and conquer, an XP team 
conquers and divides.”

– Kent Beck

With a small team of less than 10 developers, 
you may not have to maintain any models next 
to the codebase. As the development scales to 
multiple teams, you will need to get more ben-
efits from modeling.

Figure 5 Domain Model as a Class Diagram

Figure 7 Key Use Case Mechanics as Communication Diagram

But remember, don’t invest too much time to 
prepare heavy documentation (with ZERO im-
plementation) just to hand it over to someone 
you don’t know.

Even when the team gets bigger, you need to 
try to create a thin vertical slice of your imple-
mentation to accomplish the Key Use Cases 
first to make an architecture seed, and then 

share the knowledge with sub teams us-
ing the working code and “Keeps” 
models. In other words, don’t try 
to “divide and conquer” by divid-
ing the problem on the desk and 
throwing the specification over 
the wall to make sub-teams con-
quer. [Larman10]

Below, I describe how multiple teams com-
municate the “Big Picture” using the “Keeps.” 
The first “conquer” should be tried by less than 
10 people in one team called the “Tiger Team” 
at one location. After the first conquer, all the 
“Keeps” described above can be used as good 
documentation to communicate the under-
standing of the system. In Sprint 1, the Tiger 
Team conquers the Key Use Cases first to es-
tablish the first “seed” architecture and makes 
version 1.0 of the “Keeps” as SAD (Software 
Architecture Document).  

Think of these models not as a specification, 
but as common ground to create understand-
ing. And again, do not just hand the document 
over to the sub teams.

The best way to communicate design intention 
and create shared understanding is to facili-
tate a Modeling Workshop with the sub teams 
as displayed in Figure 8, on the next page. 

In the modeling Workshops, one member of the 
Tiger Team (Ken, in Figure 8) first explains the 
SAD and walks through the models. With ca-
sual Q & A’s, he communicates the core ideas 
and the structure of the system. He can use 
the Key Use Cases to explain how the system 



8

Hold workshops repeatedly. Grow understand-
ing by “modeling,” not by the models. Remem-
ber, use “model” as a verb and “Model to have 
a conversation” [Larman10].

Modeling Tips
With the ideas and experience described ear-
lier, here are some final tips for you to use in 
daily modeling sessions or workshops.

• “Reverse and Model”
A lot of UML tools support “reverse engineer-
ing” features that visualize the codebase in a 
just-in-time manner. Some of them have a nice 
“Drag&Drop” from source code and even from 
Github repository URLs. With the packages 
and classes which you reverse-engineered 
from the codebase as a foundation, you can 
start casual modeling not only with the “Keeps” 

9

components works together to accomplish a 
user goal. And he jointly designs one or two of 
their Use Cases with them, using “Temps” mod-
els and maybe pair-programming.

Don’t try to make the SAD 
complete. Use workshops 
as a way to establish a 
common understanding by 
having a rich conversation 
and without handovers. 

An important part of the 
sub-team workshop is 
feedback. In Figure 8, Ken 
in Sub Team 1 and Tom 
in Sub Team 2 bring the 
feedback to the Tiger Team 
and discuss with the other 
members how to make the “Keeps” models bet-
ter. The image below is a printed diagram with 
notes during the workshop. It includes notes for 
understanding and also notes for feedback.

Figure 8  Tiger team and Sub teams



8 9

models, but also with models made directly 
from the codebase.

• “Print and Draw”
As described earlier, good interactive modeling 
workshops are facilitated with big paper post-
ers on the wall (or on the table) and by having 
the conversation with them. Draw notes and 
comments directly on the printed diagram

•“Projector and Whiteboard overlay”
Another way of sharing models in workshops is 
using an overhead projector and a whiteboard 
together to simulate “Print and Draw”. Use a 
overhead projector to project the “Keeps” on a 
whiteboard and draw comments or put sticky 
notes on it.

Conclusions
In this article, I explained how modeling fits into 
an Agile development framework like Scrum, 
and proposed the models you could keep 
throughout the lifecycle of the product. And I 
recommended facilitating a modeling work-
shop to communicate design intentions and to 
establish a shared understanding of the sys-
tem. These practices become more important 
when the team scales into many sub teams.

Acknowledgement
I’d like to thank Hiroki Kondo 
and Alex Papadimoulis for 
comments and Ben Linders 
and Scott Reece for reviewing 
and editing my article. Special 
thanks to Craig Larman who 
first described the importance of 
modeling workshops (or “mod-
el” as a verb) and spent his time 
on an airplane to give me fun-
damental suggestions on this 
article

Further Readings
The discussion of design in the Agile context is old. 
See Martin Fowler’s and Jack Reeves’s classics.

• Martin Fowler, 2004 , “Is Design Dead?”
http://martinfowler.com/articles/designDead.html

• Martin Fowler, 1997 , “The Almighty Thud”
http://martinfowler.com/distributedComputing/thud.html

• Jack Reeves, 1992 , “What is Software Design?”
http://www.developerdotstar.com/mag/articles/reeves_
design.html

The concept of Agile Modeling is first discussed in 
the book “Agile Modeling”. And 3rd edition of “Ap-
plying UML and Patterns” covers the topics again.

• Scott Ambler, 2002, “Agile Modeling”, John Wiley &
Sons Ltd.
http://www.amazon.com/Agile-Modeling-Effective-Prac-
tices-Programming/dp/0471202827/

• Craig Larman, 2007,“Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design and 
Iterative Development”
http://www.amazon.com/Applying-UML-Patterns-Intro-
duction-Object-Oriented/dp/0131489062/

Another InfoQ article that addresses the same prob-
lem and context. Still waiting for the part two.

• Lee Ackerman, 2011, ”Agile Modeling: Enhancing
Communication and Understanding, 
http://www.infoq.com/articles/agile-modeling-part-one

Wider topics on Agile and Architecture.

• Bill Opdyke, Dennis Mancl, Steve Fraser, “Architecture
in an Agile world, 2010”, SPLASH workshop
http://mysite.verizon.net/dennis.mancl/splash10/

Thanks for reading, learn more about Agile 
modeling and Astah on our site.

http://astah.net

Figure 8  Tiger team and Sub teams

http://astah.net

