Subtraction Arc-Kayles

Nicolas Bousquet, Antoine Dailly, Valentin Gledel and Marc Heinrich

Université de Lyon

CGTC - January the 27th, 2017

Arc-Kayles

Arc-Kayles

Arc-Kayles: Schaefer, 1978

- This game is played on a graph $G=(V, E)$.
- At each turn the current player chooses an edge.
- Its endpoints are deleted.
- The game ends when there is no more edges to play.

Arc-Kayles

Arc-Kayles: Schaefer, 1978

- This game is played on a graph $G=(V, E)$.
- At each turn the current player chooses an edge.
- Its endpoints are deleted.
- The game ends when there is no more edges to play.

Arc-Kayles

Arc-Kayles: Schaefer, 1978

- This game is played on a graph $G=(V, E)$.
- At each turn the current player chooses an edge.
- Its endpoints are deleted.
- The game ends when there is no more edges to play.

Arc-Kayles

Arc-Kayles: Schaefer, 1978

- This game is played on a graph $G=(V, E)$.
- At each turn the current player chooses an edge.
- Its endpoints are deleted.
- The game ends when there is no more edges to play.

Arc-Kayles

- Solved on paths (Guy and Smith, 1956)
- Solved on equimatchable graphs, cycles, wheels and generalized star graphs with three branches (Huggan and Stevens, 2016)
- FPT (Lampis and Mitsou, 2014)

Subtraction Arc-Kayles

Subtraction Arc-Kayles

Subtraction Arc-Kayles

- This game is played on a graph $G=(V, E)$ with a weight function $\omega: V \rightarrow \mathbb{N}$.
- At each step the current player choose an edge.
- The weight of both endpoints is decreased by 1 .
- Vertices with weight zero are
 removed.
- The game ends when there is no more edges to play.

Subtraction Arc-Kayles

Subtraction Arc-Kayles

- This game is played on a graph $G=(V, E)$ with a weight function $\omega: V \rightarrow \mathbb{N}$.
- At each step the current player choose an edge.
- The weight of both endpoints is decreased by 1 .
- Vertices with weight zero are
 removed.
- The game ends when there is no more edges to play.

Subtraction Arc-Kayles

Subtraction Arc-Kayles

- This game is played on a graph $G=(V, E)$ with a weight function $\omega: V \rightarrow \mathbb{N}$.
- At each step the current player choose an edge.
- The weight of both endpoints is decreased by 1 .
- Vertices with weight zero are
 removed.
- The game ends when there is no more edges to play.

Example

Example

Example

Example

Example

Non-attacking rooks in a holed chessboard

The game

Inspired by the non-attacking queens game(Noon and Van Brummelen, 2006)

The game

The game

The game

Reduction to Subtraction Arc-Kayles

First results

All weights are even

Lemma

If all weights are even, then the outcome is \mathcal{P}

All weights are even

Lemma

If all weights are even, then the outcome is \mathcal{P}

All weights are even

Lemma

If all weights are even, then the outcome is \mathcal{P}

Reduction lemmas

Twin vertices lemma

If two vertices have the same neighbors and either have both loops or none of them have loops, then the following reduction holds:

Reduction lemmas

Twin vertices lemma

If two vertices have the same neighbors and either have both loops or none of them have loops, then the following reduction holds:

Reduction lemmas

Heavy vertex lemma

If there is a vertex without loop and such that its weight is greater than the sum of all of its neighbors' weight, then the following reduction holds:

Reduction lemmas

Heavy vertex lemma

If there is a vertex without loop and such that its weight is greater than the sum of all of its neighbors' weight, then the following reduction holds:

Reduction lemmas

Useless vertex lemma

If there is a vertex without loop and such that all its neighbors have loops then the following reduction holds:

Back to Arc-Kayles

Subtraction Arc-Kayles
Arc-Kayles

Solving simple cases

Simple cases

○
The game is already ended.

The grundy value is m modulo 2 .

Simple cases

The game is \mathcal{P} when both m and n are even.

Simple cases

Simple cases

Simple cases

First difficulty

First difficulty

General method

General method

General method

General method

Main results

Periodicity

Periodicity theorem

The function $x \rightarrow$ outcome $\left(G\left(x, \omega_{2}, \ldots \omega_{n}\right)\right)$ is ultimately 2-periodic with preperiod at most $2 \sum_{i \geq 2} \omega_{i}$.

Conclusion

Results

- Introduction of a generalisation of Arc-Kayles
- Application to non-attacking rooks on a holed chessboard
- Complete characterisation of trees of depth 2
- Periodicity for one vertex

Perspectives

- Solving more complex graphs
- Solving the general case of rooks on a holed chessboard
- Studying the complexity of the game

