Maker-Breaker Domination Number

Valentin Gledel

CGTC 3, Lisboa
January 24, 2019

Joint work with Vesna lršič and Sandi Klavžar

L!̣ís

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.
S dominates G if all vertices of G are in S or adjacent to a vertex of S.

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.
S dominates G if all vertices of G are in S or adjacent to a vertex of S.

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.
S dominates G if all vertices of G are in S or adjacent to a vertex of S.

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.

S dominates G if all vertices of G are in S or adjacent to a vertex of S.

The objective is to find $\gamma(G)$, the size of a minimum dominating set in G

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.

S dominates G if all vertices of G are in S or adjacent to a vertex of S.

The objective is to find $\gamma(G)$, the size of a minimum dominating set in G

Domination Game

(Brešar, Klavžar and Rall, 2010)

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
γ_{g} : Size of the obtained dominating set

Domination Game

(Brešar, Klavžar and Rall, 2010)

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
γ_{g} : Size of the obtained dominating set

Domination Game

(Brešar, Klavžar and Rall, 2010)

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
γ_{g} : Size of the obtained dominating set

Domination Game

(Brešar, Klavžar and Rall, 2010)

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
γ_{g} : Size of the obtained dominating set

Domination Game

(Brešar, Klavžar and Rall, 2010)

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
γ_{g} : Size of the obtained dominating set

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

Definition

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

- A variant of the general Maker-Breaker games (see J. Beck 2008 for a survey)
- Solved for the union and the join
- PSPACE-complete on bipartite and split graphs
- Polynomial on trees and cographs

Maker-Breaker Domination Game

(Duchêne, G, Parreau and Renault, 2018+)

- A variant of the general Maker-Breaker games (see J. Beck 2008 for a survey)
- Solved for the union and the join
- PSPACE-complete on bipartite and split graphs
- Polynomial on trees and cographs

One open question that we will cover today: How many moves are needed to win?

Maker-Breaker Domination Number

Can Dominator win on this graph? If yes in how many moves ?

Maker-Breaker Domination Number

Can Dominator win on this graph? If yes in how many moves ?

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

$$
\gamma_{M B}(G)=2
$$

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

$$
\gamma_{M B}(G)=2
$$

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

$$
\gamma_{M B}(G)=2
$$

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

$$
\gamma_{M B}(G)=2
$$

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

Maker-Breaker Domination Number

Can Dominator win on this graph ? If yes in how many moves ?
There are three 2-dominating sets

$$
\begin{aligned}
& \gamma_{M B}(G)=2 \\
& \gamma_{M B}^{\prime}(G)=3
\end{aligned}
$$

Possible outcomes

Theorem
Let G be a $\operatorname{graph}, \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}^{\prime}(G)$

Assume that Dominator has a strategy to achieve $\gamma_{M B}^{\prime}(G)=a$

Possible outcomes

Theorem
Let G be a $\operatorname{graph}, \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}^{\prime}(G)$

Assume that Dominator has a strategy to achieve $\gamma_{\mathrm{MB}}^{\prime}(G)=a$

Possible outcomes

Theorem
Let G be a graph, $\gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}^{\prime}(G)$

Assume that Dominator has a strategy to achieve $\gamma_{\mathrm{MB}}^{\prime}(G)=a$

Possible outcomes

Theorem
Let G be a graph, $\gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}^{\prime}(G)$

Assume that Dominator has a strategy to achieve $\gamma_{\mathrm{MB}}^{\prime}(G)=a$

Possible outcomes

Theorem
Let G be a graph, $\gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}^{\prime}(G)$

Assume that Dominator has a strategy to achieve $\gamma_{\mathrm{MB}}^{\prime}(G)=a$

Possible outcomes

Theorem
Let G be a $\operatorname{graph}, \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}^{\prime}(G)$

Assume that Dominator has a strategy to achieve $\gamma_{\mathrm{MB}}^{\prime}(G)=a$

Possible outcomes

Theorem
Let G be a graph, $\gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}^{\prime}(G)$

Assume that Dominator has a strategy to achieve $\gamma_{\mathrm{MB}}^{\prime}(G)=a$

Possible outcomes

Theorem
Let G be a graph, $\gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}^{\prime}(G)$

Assume that Dominator has a strategy to achieve $\gamma_{M B}^{\prime}(G)=a$

What are the possible values?

Theorem
For any $2 \leq r \leq s \leq t$, there exists a graph G such that $\gamma(G)=r, \gamma_{\mathrm{MB}}(G)=s$, and $\gamma_{\mathrm{MB}}^{\prime}(G)=t$.

What are the possible values?

Theorem
For any $2 \leq r \leq s \leq t$, there exists a graph G such that $\gamma(G)=r, \gamma_{\mathrm{MB}}(G)=s$, and $\gamma_{\mathrm{MB}}^{\prime}(G)=t$.

$$
\gamma(G)=r
$$

What are the possible values?

Theorem
For any $2 \leq r \leq s \leq t$, there exists a graph G such that $\gamma(G)=r, \gamma_{\mathrm{MB}}(G)=s$, and $\gamma_{\mathrm{MB}}^{\prime}(G)=t$.

$$
\gamma(G)=r
$$

What are the possible values?

Theorem
For any $2 \leq r \leq s \leq t$, there exists a graph G such that $\gamma(G)=r, \gamma_{\mathrm{MB}}(G)=s$, and $\gamma_{\mathrm{MB}}^{\prime}(G)=t$.

$$
\gamma(G)=r
$$

What are the possible values?

Theorem
For any $2 \leq r \leq s \leq t$, there exists a graph G such that $\gamma(G)=r, \gamma_{\mathrm{MB}}(G)=s$, and $\gamma_{\mathrm{MB}}^{\prime}(G)=t$.

$$
\gamma(G)=r \quad \gamma_{\mathrm{MB}}(G)=s
$$

What are the possible values?

Theorem
For any $2 \leq r \leq s \leq t$, there exists a graph G such that $\gamma(G)=r, \gamma_{\mathrm{MB}}(G)=s$, and $\gamma_{\mathrm{MB}}^{\prime}(G)=t$.

$$
\gamma(G)=r \quad \gamma_{\mathrm{MB}}(G)=s
$$

What are the possible values?

Theorem
For any $2 \leq r \leq s \leq t$, there exists a graph G such that $\gamma(G)=r, \gamma_{\mathrm{MB}}(G)=s$, and $\gamma_{\mathrm{MB}}^{\prime}(G)=t$.

$$
\gamma(G)=r \quad \gamma_{\mathrm{MB}}(G)=s
$$

What are the possible values?

Theorem
For any $2 \leq r \leq s \leq t$, there exists a graph G such that $\gamma(G)=r, \gamma_{\mathrm{MB}}(G)=s$, and $\gamma_{\mathrm{MB}}^{\prime}(G)=t$.

$$
\gamma(G)=r \quad \gamma_{\mathrm{MB}}(G)=s \quad \gamma_{\mathrm{MB}}^{\prime}(G)=t
$$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$\gamma_{\mathrm{MB}}\left(C_{n}\right) \leq \gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$

Maker-Breaker domination number on cycles

Theorem
Let $n \geq 3, \gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

$$
\gamma_{\mathrm{MB}}\left(C_{n}\right)=\gamma_{\mathrm{MB}}^{\prime}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor
$$

Residual graphs

Idea : Reducing the graph by removing P_{2} 's.

Residual graphs

Idea : Reducing the graph by removing P_{2} 's.

Residual graphs

Idea : Reducing the graph by removing P_{2} 's.

Residual graphs

Idea : Reducing the graph by removing P_{2} 's.

Residual graphs

Idea : Reducing the graph by removing P_{2} 's.

Residual graphs

Idea : Reducing the graph by removing P_{2} 's.

Residual graphs

Idea : Reducing the graph by removing P_{2} 's.

Residual graphs

Idea : Reducing the graph by removing P_{2} 's.

Residual graphs

Definition

Let G be a graph. The residual graph of $G, R(G)$, is the graph obtained by iteraltely removing pendant P_{2} 's from G.

Residual graphs

Theorem

Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem

Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem

Let G be a graph, $\gamma_{M B}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem

Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem

Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem

Let G be a graph, $\gamma_{M B}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem

Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem

Let G be a graph, $\gamma_{M B}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem

Let G be a graph, $\gamma_{M B}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem

Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem
Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem
Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem
Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem
Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem
Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem
Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem
Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem
Let G be a graph, $\gamma_{\mathrm{MB}}^{\prime}(G)=\gamma_{\mathrm{MB}}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

Theorem
Let G be a graph, $\gamma_{\text {MB }}^{\prime}(G)=\gamma_{\text {MB }}^{\prime}(R(G))+\frac{|V(H)|}{2}$,

$$
\gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}-1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G))+\frac{|V(H)|}{2}
$$

Residual graphs

The lower bound is reached when $\gamma_{\mathrm{MB}}^{\prime}(G \mid u)=\gamma_{\mathrm{MB}}(G)-1$.

Residual graphs

The lower bound is reached when $\gamma_{\mathrm{MB}}^{\prime}(G \mid u)=\gamma_{\mathrm{MB}}(G)-1$.

Residual graphs

The lower bound is reached when $\gamma_{\mathrm{MB}}^{\prime}(G \mid u)=\gamma_{\mathrm{MB}}(G)-1$.

Residual graphs

The lower bound is reached when $\gamma_{\mathrm{MB}}^{\prime}(G \mid u)=\gamma_{\mathrm{MB}}(G)-1$.

Trees

Maker-Breaker domination number for trees:

Trees

Maker-Breaker domination number for trees:

$R(T)$	\emptyset		0	0
$K_{1,0}$	0	0		
$\gamma_{\mathrm{MB}}(T)$	$\frac{\|V(T)\|}{2}$			
$\gamma_{\mathrm{MB}}^{\prime}(T)$	$\frac{\|V(T)\|}{2}$			

Trees

Maker-Breaker domination number for trees:

$R(T)$	\emptyset		0	0
$\gamma_{\mathrm{MB}}(T)$	$\frac{\|V(T)\|}{2}$	$\left\lfloor\frac{\|V(T)\|}{2}\right\rfloor$		
$\gamma_{\mathrm{MB}}^{\prime}(T)$	$\frac{\|V(T)\|}{2}$	∞		

Trees

Maker-Breaker domination number for trees:

$R(T)$	\emptyset		0	
$\gamma_{\mathrm{MB}}(T)$	$\frac{\|V(T)\|}{2}$	$\left\lfloor\frac{\|V(T)\|}{2}\right\rfloor$	$\frac{\|V(T)\|-n+1}{2}$	
$\gamma_{\mathrm{MB}}^{\prime}(T)$	$\frac{\|V(T)\|}{2}$	∞	∞	

Trees

Maker-Breaker domination number for trees:

$R(T)$	\emptyset	0	0	∞
$\gamma_{\mathrm{MB}}(T)$	$\frac{\|V(T)\|}{2}$	$\left\lfloor\frac{\|V(T)\|}{2}\right\rfloor$	$\frac{\|V(T)\|-n+1}{2}$	∞
$\gamma_{1,0}^{\prime}$	∞			

Perspectives

- Maker-Breaker domination numbers of cographs ?
- Maker-Breaker domination numbers of cartesian products or other operations on graphs ?
- A parameter from the point of view of Staller?

Perspectives

- Maker-Breaker domination numbers of cographs ?
- Maker-Breaker domination numbers of cartesian products or other operations on graphs ?
- A parameter from the point of view of Staller ?

