Valentin Gledel

CGTC 3, Lisboa January 24, 2019

Joint work with Vesna Iršič and Sandi Klavžar

Let G = (V, E) be a graph and $S \subseteq V$. S dominates G if all vertices of G are in S or adjacent to a vertex of S.

Let G = (V, E) be a graph and $S \subseteq V$. S dominates G if all vertices of G are in S or adjacent to a vertex of S.

Let G = (V, E) be a graph and $S \subseteq V$. S dominates G if all vertices of G are in S or adjacent to a vertex of S.

Let G = (V, E) be a graph and $S \subseteq V$. S dominates G if all vertices of G are in S or adjacent to a vertex of S.

The objective is to find $\gamma(G)$, the size of a minimum dominating set in G

Let G = (V, E) be a graph and $S \subseteq V$. S dominates G if all vertices of G are in S or adjacent to a vertex of S.

The objective is to find $\gamma(G)$, the size of a minimum dominating set in G

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
- $\gamma_{\it g}$: Size of the obtained dominating set

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
- $\gamma_{\rm g}$: Size of the obtained dominating set

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
- $\gamma_{\it g}$: Size of the obtained dominating set

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
- $\gamma_{\rm g}$: Size of the obtained dominating set

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex.
- Dominator wants the dominating set to be small.
- Staller wants it to be large.
- $\gamma_{\rm g}$: Size of the obtained dominating set

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

(Duchêne, G, Parreau and Renault, 2018+)

- Dominator selects vertices
- Staller selects vertices that Dominator cannot select
- If the vertices selected by Dominator form a dominating set, he wins.
- If he is unable to create a dominating set, Staller wins.

Maker-Breaker Domination Game (Duchêne, <u>G</u>, Parreau and Renault, 2018+)

- A variant of the general Maker-Breaker games (see J. Beck 2008 for a survey)
- Solved for the union and the join
- PSPACE-complete on bipartite and split graphs
- Polynomial on trees and cographs

Maker-Breaker Domination Game (Duchêne, <u>G</u>, Parreau and Renault, 2018+)

- A variant of the general Maker-Breaker games (see J. Beck 2008 for a survey)
- Solved for the union and the join
- PSPACE-complete on bipartite and split graphs
- Polynomial on trees and cographs

One open question that we will cover today : How many moves are needed to win ?

Can Dominator win on this graph ? If yes in how many moves ?

Can Dominator win on this graph ? If yes in how many moves ?

Can Dominator win on this graph ? If yes in how many moves ? There are three 2-dominating sets

 $\gamma_{MB}(G) = 2$

$$\gamma_{MB}(G) = 2$$

$$\gamma_{MB}(G) = 2$$

$$\gamma_{MB}(G) = 2$$

Can Dominator win on this graph ? If yes in how many moves ? There are three 2-dominating sets

 $\gamma_{MB}(G) = 2$

Can Dominator win on this graph ? If yes in how many moves ? There are three 2-dominating sets

 $\gamma_{MB}(G) = 2$

Can Dominator win on this graph ? If yes in how many moves ? There are three 2-dominating sets

 $\gamma_{MB}(G) = 2$

Can Dominator win on this graph ? If yes in how many moves ? There are three 2-dominating sets

$$\gamma'_{MB}(G) = 3$$

Theorem For any $2 \le r \le s \le t$, there exists a graph G such that $\gamma(G) = r$, $\gamma_{\rm MB}(G) = s$, and $\gamma'_{\rm MB}(G) = t$.

Theorem For any $2 \le r \le s \le t$, there exists a graph G such that $\gamma(G) = r$, $\gamma_{\rm MB}(G) = s$, and $\gamma'_{\rm MB}(G) = t$.

Theorem For any $2 \le r \le s \le t$, there exists a graph G such that $\gamma(G) = r$, $\gamma_{\rm MB}(G) = s$, and $\gamma'_{\rm MB}(G) = t$.

 $\gamma(G) = r$

Theorem For any $2 \le r \le s \le t$, there exists a graph G such that $\gamma(G) = r$, $\gamma_{\rm MB}(G) = s$, and $\gamma'_{\rm MB}(G) = t$.

 $\gamma(G) = r$

Theorem For any $2 \le r \le s \le t$, there exists a graph G such that $\gamma(\mathcal{G}) = \mathit{r}, \; \gamma_{\mathrm{MB}}(\mathcal{G}) = \mathit{s}, \; \mathsf{and} \; \gamma'_{\mathrm{MB}}(\mathcal{G}) = t.$ t - r + 1s - r + 1. -00 X) X S D

 $\gamma(G) = r$ $\gamma_{\rm MB}(G) = s$

Theorem For any $2 \le r \le s \le t$, there exists a graph G such that $\gamma(G) = r$, $\gamma_{\rm MB}(G) = s$, and $\gamma'_{\rm MB}(G) = t$.

 $\gamma(G) = r$ $\gamma_{\rm MB}(G) = s$

Theorem For any $2 \le r \le s \le t$, there exists a graph G such that $\gamma(G) = r$, $\gamma_{\rm MB}(G) = s$, and $\gamma'_{\rm MB}(G) = t$.

Theorem For any $2 \le r \le s \le t$, there exists a graph G such that $\gamma(G) = r$, $\gamma_{\mathrm{MB}}(G) = s$, and $\gamma'_{\mathrm{MB}}(G) = t$. t - r + 1s - r + 1. s X1 Л

 $\gamma(G) = r$ $\gamma_{\rm MB}(G) = s$ $\gamma'_{\rm MB}(G) = t$

Let $n \ge 3$, $\gamma_{\rm MB}(C_n) = \gamma'_{\rm MB}(C_n) = \lfloor \frac{n}{2} \rfloor$.

Theorem Let $n \geq 3$, $\gamma_{\mathrm{MB}}(C_n) = \gamma'_{\mathrm{MB}}(C_n) = \lfloor \frac{n}{2} \rfloor$.

Theorem Let $n \ge 3$, $\gamma_{\rm MB}(C_n) = \gamma'_{\rm MB}(C_n) = \lfloor \frac{n}{2} \rfloor$.

 $\gamma_{\mathrm{MB}}(C_n) \leq \gamma_{\mathrm{MB}}'(C_n) \leq \left|\frac{n}{2}\right|$

 $\gamma_{\mathrm{MB}}(C_n) \leq \gamma_{\mathrm{MB}}'(C_n) \leq \left|\frac{n}{2}\right|$

 $\gamma_{\mathrm{MB}}(\mathcal{C}_n) \leq \gamma_{\mathrm{MB}}'(\mathcal{C}_n) \leq \left\lfloor \frac{n}{2} \right\rfloor$

Theorem Let $n \geq 3$, $\gamma_{\rm MB}(C_n) = \gamma'_{\rm MB}(C_n) = \lfloor \frac{n}{2} \rfloor$.

$$\gamma_{\mathrm{MB}}(C_n) \leq \gamma'_{\mathrm{MB}}(C_n) = \lfloor \frac{n}{2} \rfloor$$

$$\gamma_{\mathrm{MB}}(\mathcal{C}_n) \leq \gamma_{\mathrm{MB}}'(\mathcal{C}_n) = \lfloor \frac{n}{2} \rfloor$$

$$\gamma_{\mathrm{MB}}(\mathcal{C}_n) \leq \gamma_{\mathrm{MB}}'(\mathcal{C}_n) = \lfloor \frac{n}{2} \rfloor$$

 $\gamma_{\mathrm{MB}}(\mathcal{C}_n) \leq \gamma_{\mathrm{MB}}'(\mathcal{C}_n) = \left\lfloor \frac{n}{2} \right\rfloor$

 $\gamma_{\mathrm{MB}}(\mathcal{C}_n) \leq \gamma_{\mathrm{MB}}'(\mathcal{C}_n) = \left\lfloor \frac{n}{2} \right\rfloor$

$$\gamma_{\mathrm{MB}}(\mathcal{C}_n) \leq \gamma_{\mathrm{MB}}'(\mathcal{C}_n) = \lfloor \frac{n}{2} \rfloor$$

$$\gamma_{\mathrm{MB}}(\mathcal{C}_n) \leq \gamma_{\mathrm{MB}}'(\mathcal{C}_n) = \lfloor \frac{n}{2} \rfloor$$

 $\gamma_{\mathrm{MB}}(C_n) \leq \gamma_{\mathrm{MB}}'(C_n) = \left\lfloor \frac{n}{2} \right\rfloor$

Definition

Let G be a graph. The **residual graph** of G, R(G), is the graph obtained by iteraltely removing pendant P_2 's from G.

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } \mathcal{G} \text{ be a graph, } \gamma'_{\mathrm{MB}}(\mathcal{G}) = \gamma'_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2}, \\ \\ \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} - 1 \leq \gamma_{\mathrm{MB}}(\mathcal{G}) \leq \gamma_{\mathrm{MB}}(\mathcal{R}(\mathcal{G})) + \frac{|\mathcal{V}(\mathcal{H})|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } G \text{ be a graph, } \gamma'_{\mathrm{MB}}(G) = \gamma'_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2}, \\ \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} - 1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } G \text{ be a graph, } \gamma'_{\mathrm{MB}}(G) = \gamma'_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2}, \\ \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} - 1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } G \text{ be a graph, } \gamma'_{\mathrm{MB}}(G) = \gamma'_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2}, \\ \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} - 1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } G \text{ be a graph, } \gamma'_{\text{MB}}(G) = \gamma'_{\text{MB}}(R(G)) + \frac{|V(H)|}{2}, \\ \gamma_{\text{MB}}(R(G)) + \frac{|V(H)|}{2} - 1 \leq \gamma_{\text{MB}}(G) \leq \gamma_{\text{MB}}(R(G)) + \frac{|V(H)|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } G \text{ be a graph, } \gamma'_{\mathrm{MB}}(G) = \gamma'_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2}, \\ \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} - 1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } G \text{ be a graph, } \gamma'_{\mathrm{MB}}(G) = \gamma'_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2}, \\ \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} - 1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } G \text{ be a graph, } \gamma'_{\mathrm{MB}}(G) = \gamma'_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2}, \\ \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} - 1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } G \text{ be a graph, } \gamma'_{\mathrm{MB}}(G) = \gamma'_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2}, \\ \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} - 1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} \end{array}$$

$$\begin{array}{c} \hline \text{Theorem} \\ \text{Let } G \text{ be a graph, } \gamma'_{\mathrm{MB}}(G) = \gamma'_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2}, \\ \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} - 1 \leq \gamma_{\mathrm{MB}}(G) \leq \gamma_{\mathrm{MB}}(R(G)) + \frac{|V(H)|}{2} \end{array}$$

The lower bound is reached when $\gamma'_{\mathrm{MB}}({\mathcal{G}}|u)=\gamma_{\mathrm{MB}}({\mathcal{G}})-1.$

The lower bound is reached when $\gamma'_{\mathrm{MB}}({\mathcal{G}}|u)=\gamma_{\mathrm{MB}}({\mathcal{G}})-1.$

The lower bound is reached when $\gamma_{\mathrm{MB}}'({\mathcal{G}}|u)=\gamma_{\mathrm{MB}}({\mathcal{G}})-1.$

The lower bound is reached when $\gamma_{\mathrm{MB}}'({\mathcal{G}}|u)=\gamma_{\mathrm{MB}}({\mathcal{G}})-1.$

Perspectives

- Maker-Breaker domination numbers of cographs ?
- Maker-Breaker domination numbers of cartesian products or other operations on graphs ?
- A parameter from the point of view of Staller ?

Perspectives

- Maker-Breaker domination numbers of cographs ?
- Maker-Breaker domination numbers of cartesian products or other operations on graphs ?
- A parameter from the point of view of Staller ?

