Power Domination in triangular grids

Prosenjit Bose ${ }^{1} \quad$ Valentin Gledel ${ }^{2} \quad$ Claire Pennarun ${ }^{3}$ Sander Verdonschot ${ }^{1}$

${ }^{1}$ School of Computer Science, Carleton University, Canada
${ }^{2}$ LIRIS, Université Lyon 1, France
${ }^{3}$ LIRMM, CNRS \& Univ. Montpellier, France

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.
S dominates G if all vertices of G are in S or adjacent to a vertex of S.

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.
S dominates G if all vertices of G are in S or adjacent to a vertex of S.

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.
S dominates G if all vertices of G are in S or adjacent to a vertex of S.

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.

S dominates G if all vertices of G are in S or adjacent to a vertex of S.

The objective is to find $\gamma(G)$, the size of a minimum dominating set in G

Domination in graphs

Let $G=(V, E)$ be a graph and $S \subseteq V$.

S dominates G if all vertices of G are in S or adjacent to a vertex of S.

The objective is to find $\gamma(G)$, the size of a minimum dominating set in G

Power Domination

Let $G=(V, E)$ be a graph and $S \subseteq V$.
At first $M=N[S]$. A vertex u propagates to a vertex v if $(u v) \in E$ and $N[u] \backslash\{v\} \subseteq M$.
S is a power dominating set of G if at some point $M=V$.

Power Domination

Let $G=(V, E)$ be a graph and $S \subseteq V$.
At first $M=N[S]$. A vertex u propagates to a vertex v if $(u v) \in E$ and $N[u] \backslash\{v\} \subseteq M$.
S is a power dominating set of G if at some point $M=V$.

Power Domination

Let $G=(V, E)$ be a graph and $S \subseteq V$.
At first $M=N[S]$. A vertex u propagates to a vertex v if $(u v) \in E$ and $N[u] \backslash\{v\} \subseteq M$.
S is a power dominating set of G if at some point $M=V$.

Power Domination

Let $G=(V, E)$ be a graph and $S \subseteq V$.
At first $M=N[S]$. A vertex u propagates to a vertex v if $(u v) \in E$ and $N[u] \backslash\{v\} \subseteq M$.
S is a power dominating set of G if at some point $M=V$.

Power Domination

Let $G=(V, E)$ be a graph and $S \subseteq V$.
At first $M=N[S]$. A vertex u propagates to a vertex v if $(u v) \in E$ and $N[u] \backslash\{v\} \subseteq M$.
S is a power dominating set of G if at some point $M=V$.

Power Domination

Let $G=(V, E)$ be a graph and $S \subseteq V$.
At first $M=N[S]$. A vertex u propagates to a vertex v if $(u v) \in E$ and $N[u] \backslash\{v\} \subseteq M$.
S is a power dominating set of G if at some point $M=V$.

Power Domination

Let $G=(V, E)$ be a graph and $S \subseteq V$.
At first $M=N[S]$. A vertex u propagates to a vertex v if $(u v) \in E$ and $N[u] \backslash\{v\} \subseteq M$.
S is a power dominating set of G if at some point $M=V$.

Power Domination

- Introduced in the context of monitoring power grids
- Mili, Baldwin and Adapa (1990)
- Baldwin, Mili, Boisen and Adapa (1993)

Power Domination

- Introduced in the context of monitoring power grids
- Mili, Baldwin and Adapa (1990)
- Baldwin, Mili, Boisen and Adapa (1993)
- Reformulated in graph terms and proven to be NP-complete
- Haynes, Hedetniemi, Hedetniemi and Henning (2002)

Power Domination

- Introduced in the context of monitoring power grids
- Mili, Baldwin and Adapa (1990)
- Baldwin, Mili, Boisen and Adapa (1993)
- Reformulated in graph terms and proven to be NP-complete
- Haynes, Hedetniemi, Hedetniemi and Henning (2002)
- Solved on square grids and other products of paths
- Doring and Henning (2006)
- Dorbec, Mollard, Klavžar and Špacapan (2008)
- Solved on hexagonal grids
- Ferrero, Varghese and Vijayakuma (2011)

Result on hexagonal shaped grid H_{k}

Theorem
Let H_{k} be a triangular grid with a regular hexagonal-shaped border of length $k-1$. Then, $\gamma_{P}\left(H_{k}\right)=\left\lceil\frac{k}{3}\right\rceil$.

Result on hexagonal shaped grid H_{k}

Theorem
Let H_{k} be a triangular grid with a regular hexagonal-shaped border of length $k-1$. Then, $\gamma_{P}\left(H_{k}\right)=\left\lceil\frac{k}{3}\right\rceil$.

Result on hexagonal shaped grid H_{k}

Theorem
Let H_{k} be a triangular grid with a regular hexagonal-shaped border of length $k-1$. Then, $\gamma_{P}\left(H_{k}\right)=\left\lceil\frac{k}{3}\right\rceil$.

Result on hexagonal shaped grid H_{k}

Theorem
Let H_{k} be a triangular grid with a regular hexagonal-shaped border of length $k-1$. Then, $\gamma_{P}\left(H_{k}\right)=\left\lceil\frac{k}{3}\right\rceil$.

Result on hexagonal shaped grid H_{k}

Theorem
Let H_{k} be a triangular grid with a regular hexagonal-shaped border of length $k-1$. Then, $\gamma_{P}\left(H_{k}\right)=\left\lceil\frac{k}{3}\right\rceil$.

Result on hexagonal shaped grid H_{k}

Theorem
Let H_{k} be a triangular grid with a regular hexagonal-shaped border of length $k-1$. Then, $\gamma_{P}\left(H_{k}\right)=\left\lceil\frac{k}{3}\right\rceil$.

Result on hexagonal shaped grid H_{k}

Theorem
Let H_{k} be a triangular grid with a regular hexagonal-shaped border of length $k-1$. Then, $\gamma_{P}\left(H_{k}\right)=\left\lceil\frac{k}{3}\right\rceil$.

Result on triangular shaped grid T_{k}

Theorem

Let T_{k} be a triangular grid with an equilateral triangular-shaped border of length $k-1$. Then, $\gamma_{P}\left(T_{k}\right)=\left\lceil\frac{k}{4}\right\rceil$.

Lower Bound

The proof of the lower bound follows these steps :

Lower Bound

The proof of the lower bound follows these steps :

- We define a function Q on M

Lower Bound

The proof of the lower bound follows these steps :

- We define a function Q on M
- We show that at the beginning $Q(N[S]) \leq 12|S|$

Lower Bound

The proof of the lower bound follows these steps :

- We define a function Q on M
- We show that at the beginning $Q(N[S]) \leq 12|S|$
- We show that Q is non-increasing

Lower Bound

The proof of the lower bound follows these steps :

- We define a function Q on M
- We show that at the beginning $Q(N[S]) \leq 12|S|$
- We show that Q is non-increasing
- We show that at the end, if the grid is fully monitored, $Q(M)=3 k$

Lower Bound

The proof of the lower bound follows these steps :

- We define a function Q on M
- We show that at the beginning $Q(N[S]) \leq 12|S|$
- We show that Q is non-increasing
- We show that at the end, if the grid is fully monitored, $Q(M)=3 k$
This prove that we must have $|S| \geq \frac{k}{4}$

Tip edges and base edges

- An edge ($u v$) is a tip edge if u and v are monitored but their neighbor in the direction of the tip is not.

Tip edges and base edges

- An edge (uv) is a tip edge if u and v are monitored but their neighbor in the direction of the tip is not.
- An edge ($u v$) is a base edge if u and v are monitored but their neighbor in the direction of the base is not.

Tip edges and base edges

- An edge (uv) is a tip edge if u and v are monitored but their neighbor in the direction of the tip is not.
- An edge ($u v$) is a base edge if u and v are monitored but their neighbor in the direction of the base is not.

Tip edges and base edges

- An edge $(u v)$ is a tip edge if u and v are monitored but their neighbor in the direction of the tip is not.
- An edge ($u v$) is a base edge if u and v are monitored but their neighbor in the direction of the base is not.

Holes

- A hole is a connected component of $V \backslash(M)$ that does not contain points of the border of the grid.

Holes

- A hole is a connected component of $V \backslash(M)$ that does not contain points of the border of the grid.

The quantity Q

We define the function Q as follows:

$$
Q(M)=2 T+B+3 C-3 H
$$

Where :

- T is the number of tip edges
- B is the number of base edges
- C is the number of connected components of M
- H is the number of holes

At the end

We know the value of Q when all vertices are monitored :

At the end

We know the value of Q when all vertices are monitored :

What remains to do :

- Proving that Q is non-increasing
- Finding the starting value of Q with respect to S

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.

We prove this statement by looking at every case:

$$
Q^{\prime}=Q-2-1+\ldots
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.

We prove this statement by looking at every case:

$$
\begin{aligned}
Q^{\prime} & =Q-2-1+2+1 \\
& =Q
\end{aligned}
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.

We prove this statement by looking at every case:

$$
Q^{\prime}=Q-2 \times 2-1+\ldots
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.

We prove this statement by looking at every case:

$$
\begin{aligned}
Q^{\prime} & =Q-2 \times 2-1+2 \times 1 \\
& =Q-3
\end{aligned}
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.

We prove this statement by looking at every case:

$$
Q^{\prime}=Q-2-1+\ldots
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.

We prove this statement by looking at every case:

$$
\begin{aligned}
Q^{\prime} & =Q-2-1+2 \times 2+2 \times 1 \ldots \\
& =Q
\end{aligned}
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.

We prove this statement by looking at every case:

$$
\begin{aligned}
Q^{\prime} & =Q-2-1+2 \times 2+2 \times 1-3 \\
& =Q
\end{aligned}
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.

We prove this statement by looking at every case:

$$
Q^{\prime}=Q-2-1+\ldots
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.

We prove this statement by looking at every case:

$$
\begin{aligned}
Q^{\prime} & =Q-2-1+2 \times 2+2 \times 1-3 \\
& =Q
\end{aligned}
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.
We prove this statement by looking at every case:

$$
Q^{\prime}=Q-2+\ldots
$$

Q is non increasing

Lemma

Q does not increase when new vertices are monitored.
We prove this statement by looking at every case:

$$
\begin{aligned}
Q^{\prime} & =Q-2+2 \times 1 \\
& =Q
\end{aligned}
$$

Starting value of Q

Lemma

At the beginning, $Q(N[S]) \leq 12|S|$
We suppose here that $N[S]$ is connected.
We define $G_{S}=\left(V_{S}, E_{S}\right)$ as follows :

- $V_{S}=S$
- $(x y) \in E_{S}$ if x and y form a bridge or a double-bridge :

bridge

double-bridge

Starting value of Q

Lemma

G_{S} is planar

We can apply Euler's formula:

$$
\left|E_{S}\right|-f\left(G_{S}\right)+1=\left|V_{S}\right|-c\left(G_{S}\right)
$$

Starting value of Q

Lemma

G_{S} is planar

We can apply Euler's formula:

$$
\left|E_{S}\right|-f\left(G_{S}\right)+1=\left|V_{S}\right|-c\left(G_{S}\right)
$$

We can notice that:

- $\left|V_{S}\right|=|S|$
- $c\left(G_{S}\right) \geq 1$
- $f\left(G_{S}\right)-1 \leq H$

Starting value of Q

Lemma

G_{S} is planar

We can apply Euler's formula:

$$
\left|E_{S}\right|-f\left(G_{S}\right)+1=\left|V_{S}\right|-c\left(G_{S}\right)
$$

We can notice that:

- $\left|V_{S}\right|=|S|$
- $c\left(G_{S}\right) \geq 1$
- $f\left(G_{S}\right)-1 \leq H$

$$
\left|E_{S}\right|-H+1 \leq|S|
$$

Use of a discharging method

Lemma

At the beginning, $2 T+B \leq 9|S|+3\left|E_{S}\right|$

We give:

- a weight of 9 to each vertex of S
- a weight of 3 to each bridge and double-bridge

Use of a discharging method

Lemma

At the beginning, $2 T+B \leq 9|S|+3\left|E_{S}\right|$

We give:

- a weight of 9 to each vertex of S
- a weight of 3 to each bridge and double-bridge

At the end we want:

- A weight of 2 on each tip edge
- A weight of 1 on each base edge
- A non-negative weight on each vertex

Use of a discharging method

- If u is in S, then it gives a weight of 1.5 to each of its neighbors

Use of a discharging method

- If u is in S, then it gives a weight of 1.5 to each of its neighbors
- If u is incident to a tip edge, then it gives it a weight of 1

Use of a discharging method

- If u is in S, then it gives a weight of 1.5 to each of its neighbors
- If u is incident to a tip edge, then it gives it a weight of 1
- If u is incident to a base edge, then it gives it a weight of 0.5

Use of a discharging method

- If u is in S, then it gives a weight of 1.5 to each of its neighbors
- If u is incident to a tip edge, then it gives it a weight of 1
- If u is incident to a base edge, then it gives it a weight of 0.5
- Otherwise, it gives 0.5 to each of its neighbors that it shares with a vertex of S.

Use of a discharging method

- If u is in S, then it gives a weight of 1.5 to each of its neighbors
- If u is incident to a tip edge, then it gives it a weight of 1
- If u is incident to a base edge, then it gives it a weight of 0.5
- Otherwise, it gives 0.5 to each of its neighbors that it shares with a vertex of S.
- Bridges and double-bridges give 2 to their tip edge and 1 to their base edge

Use of a discharging method

All tip edges and base edges have the good weight. We have to make sure that no vertex has a negative weight.

Use of a discharging method

All tip edges and base edges have the good weight. We have to make sure that no vertex has a negative weight.

The only possible issue is when a vertex is adjacent to two tip edges.

One of the neighbor of v is in S

Use of a discharging method

All tip edges and base edges have the good weight. We have to make sure that no vertex has a negative weight.

The only possible issue is when a vertex is adjacent to two tip edges.

Use of a discharging method

All tip edges and base edges have the good weight. We have to make sure that no vertex has a negative weight.

The only possible issue is when a vertex is adjacent to two tip edges.

Use of a discharging method

All tip edges and base edges have the good weight. We have to make sure that no vertex has a negative weight.

The only possible issue is when a vertex is adjacent to two tip edges.

Use of a discharging method

All tip edges and base edges have the good weight. We have to make sure that no vertex has a negative weight.

The only possible issue is when a vertex is adjacent to two tip edges.

Use of a discharging method

All tip edges and base edges have the good weight. We have to make sure that no vertex has a negative weight.

The only possible issue is when a vertex is adjacent to two tip edges.

Use of a discharging method

All tip edges and base edges have the good weight. We have to make sure that no vertex has a negative weight.

The only possible issue is when a vertex is adjacent to two tip edges.

double bridge

Starting value of Q

We have seen that:

- $2 T+B \leq 9|S|+3\left|E_{S}\right|$
- $\left|E_{S}\right|-H+1 \leq|S|$
so

$$
2 T+B \leq 9|S|+3|S|+3 H-3
$$

this is true for each connected component so

$$
Q=2 T+B+3 C-3 H \leq 12|S|
$$

Conclusion

- At the beginning, $Q \leq 12|S|$
- At the end, $Q=3 k$
- Q is non-increasing
so :

$$
|S| \geq \frac{k}{4}
$$

Conclusion

- At the beginning, $Q \leq 12|S|$
- At the end, $Q=3 k$
- Q is non-increasing
so:

$$
|S| \geq \frac{k}{4}
$$

This gives us the lower bound and we can reach it so:

Theorem

$$
\gamma_{P}\left(T_{k}\right)=\left\lceil\frac{k}{4}\right\rceil
$$

