PhD defense:
Vertex covering under constraints

Valentin Gledel

under the supervision of Éric Duchêne and Aline Parreau

24/09/2019
Why you are all here

Pictures are non-contractual. Actual buffet might differ.
A mathematical problem

How can I satisfy everybody?
A mathematical problem

How can I satisfy everybody?

What is the minimum number of meals that can be selected so that everyone has something to eat?
A mathematical problem

How can I satisfy everybody?

What is the minimum number of meals that can be selected so that everyone has something to eat?
A mathematical problem

How can I satisfy everybody?

What is the minimum number of sets that can be selected so that every points is inside one set?
Set cover

Given a hypergraph $\mathcal{H} = (X, \mathcal{F})$, the goal is to find a minimal subset \mathcal{F}' of \mathcal{F} such that every vertex of X is in one hyperedge of \mathcal{F}'.

Set cover

This problem is NP-complete (Karp, 1972).
Set cover

Given a hypergraph $\mathcal{H} = (X, \mathcal{F})$, the goal is to find a minimal subset \mathcal{F}' of \mathcal{F} such that every vertex of X is in one hyperedge of \mathcal{F}'.

This problem is NP-complete (Karp, 1972).
Set cover

Given a hypergraph $\mathcal{H} = (X, \mathcal{F})$, the goal is to find a minimal subset \mathcal{F}' of \mathcal{F} such that every vertex of X is in one hyperedge of \mathcal{F}'.
Set cover

Given a hypergraph $\mathcal{H} = (X, \mathcal{F})$, the goal is to find a minimal subset \mathcal{F}' of \mathcal{F} such that every vertex of X is in one hyperedge of \mathcal{F}'.

- This problem is NP-complete (Karp, 1972)
Set cover is a very general problem, we can often restrict ourselves to a more constraint structure.
Structure

Set cover is a very general problem, we can often restrict ourselves to a more constraint structure.

Graph structure

![Graph structure diagram]
Structure

Set cover is a very general problem, we can often restrict ourselves to a more constraint structure.

Graph structure

- hyperedges are edges of the graph (edge cover)
Set cover is a very general problem, we can often restrict ourselves to a more constraint structure.

- hyperedges are edges of the graph (edge cover)
- hyperedges are closed neighborhoods of the graph (domination)
Set cover is a very general problem, we can often restrict ourselves to a more constraint structure.

Graph structure

- hyperedges are edges of the graph (edge cover)
- hyperedges are closed neighborhoods of the graph (domination)

Geometric structure
Set cover is a very general problem, we can often restrict ourselves to a more constraint structure.

Graph structure
- hyperedges are edges of the graph (edge cover)
- hyperedges are closed neighborhoods of the graph (domination)

Geometric structure
Structure

Set cover is a very general problem, we can often restrict ourselves to a more constraint structure.

Graph structure

- hyperedges are edges of the graph (edge cover)
- hyperedges are closed neighborhoods of the graph (domination)

Geometric structure

- hyperedges are sets of points that can be covered by the same disk
My PhD

Set cover

Structure:
- Graphs
- Geometric

Variation:
- Propagation
- Game
- Identification

Strong geodetic number
Maker-Breaker domination game
Power Domination
Identification of points using disks
My PhD

Set cover

Structure:
- Graphs
- Geometric

Variation:
- Propagation
- Game
- Identification

- Strong geodetic number
- Maker-Breaker domination game
- Power Domination
- Identification of points using disks
Maker-Breaker Domination Game
Domination in graphs (Ore, 1961)

Let $G = (V, E)$ be a graph and S be a subset of V. S dominates G if all vertices of G are in S or adjacent to a vertex of S.

![Graph Diagram]

8/49
Domination in graphs (Ore, 1961)

Let $G = (V, E)$ be a graph and S be a subset of V. S dominates G if all vertices of G are in S or adjacent to a vertex of S.
Let $G = (V, E)$ be a graph and S be a subset of V. S dominates G if all vertices of G are in S or adjacent to a vertex of S.
Domination in graphs (Ore, 1961)

Let $G = (V, E)$ be a graph and S be a subset of V. S dominates G if all vertices of G are in S or adjacent to a vertex of S.

![Graph diagram with vertex subset highlighted in red]
Domination games

<table>
<thead>
<tr>
<th>Game domination number</th>
<th>Domination game</th>
<th>Disjoint domination number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Alon et al., 2002)</td>
<td>(Brešar et al., 2010)</td>
<td>(Bujtás et Tuza, 2014)</td>
</tr>
</tbody>
</table>

- **Game domination number**
 - Two players: Dominator and Staller
 - Alternate select a vertex of the graph that dominates at least one new vertex
 - Dominator wants the dominating set to be small
 - Staller wants it to be large

Determining the number of moves in an optimal game of the domination game is **PSPACE-complete** (Brešar et al., 2016).
Domination games

<table>
<thead>
<tr>
<th>Game domination number</th>
<th>Domination game</th>
<th>Disjoint domination number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Alon et al., 2002)</td>
<td>(Brešar et al., 2010)</td>
<td>(Bujtás et Tuza, 2014)</td>
</tr>
</tbody>
</table>

- **Domination game**: Two players: Dominator and Staller. They alternately select a vertex of the graph that dominates at least one new vertex. The Dominator wants the dominating set to be small, and the Staller wants it to be large.

 - Determining the number of moves in an optimal game of the domination game is PSPACE-complete (Brešar et al., 2016).
Domination games

<table>
<thead>
<tr>
<th>Game domination number</th>
<th>Domination game</th>
<th>Disjoint domination number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Alon et al., 2002)</td>
<td>(Brešar et al., 2010)</td>
<td>(Bujtás et Tuza, 2014)</td>
</tr>
</tbody>
</table>

- **Two players:** **Dominator** and **Staller**
- Alternately select a vertex of the graph that dominates at least one new vertex
- **Dominator** wants the dominating set to be small
- **Staller** wants it to be large

Determining the number of moves in an optimal game of the domination game is PSPACE-complete (Brešar et al., 2016).
Domination games

- Game domination number (Alon et al., 2002)
- Domination game (Brešar et al., 2010)
- Disjoint domination number (Bujtás et Tuza, 2014)

- Two players: Dominator and Staller
- Alternately select a vertex of the graph that dominates at least one new vertex
- Dominator wants the dominating set to be small
- Staller wants it to be large

![Diagram of a graph with vertex D dominating other vertices]
Domination games

- Two players: **Dominator** and **Staller**
- Alternately select a vertex of the graph that dominates at least one new vertex
- **Dominator** wants the dominating set to be small
- **Staller** wants it to be large
Domination games

<table>
<thead>
<tr>
<th>Game domination number</th>
<th>Domination game</th>
<th>Disjoint domination number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Alon et al., 2002)</td>
<td>(Brešar et al., 2010)</td>
<td>(Bujtás et Tuza, 2014)</td>
</tr>
</tbody>
</table>

- Two players: **Dominator** and **Staller**
- Alternately select a vertex of the graph that dominates at least one new vertex
- **Dominator** wants the dominating set to be small
- **Staller** wants it to be large

Determining the number of moves in an optimal game of the domination game is PSPACE-complete (Brešar et al., 2016).
Domination games

<table>
<thead>
<tr>
<th>Game domination number (Alon et al., 2002)</th>
<th>Domination game (Brešar et al., 2010)</th>
<th>Disjoint domination number (Bujtás et Tuza, 2014)</th>
</tr>
</thead>
</table>

- Two players: **Dominator** and **Staller**
- Alternately select a vertex of the graph that dominates at least one new vertex
- **Dominator** wants the dominating set to be small
- **Staller** wants it to be large

Determining the number of moves in an optimal game of the domination game is **PSPACE**-complete (Brešar et al., 2016).
Maker-Breaker domination game
(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.
Maker-Breaker domination game

(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.
Maker-Breaker domination game

(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.
Maker-Breaker domination game

(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.

```
G = (V, E)

V = {D, S, D}
E = {{D, S}, {S, D}}
```
Maker-Breaker domination game
(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph \(G = (V, E) \)
- Two players: Dominator and Staller
- They alternately select vertices of \(V \).
- Dominator wins if and only if the vertices that he selected induce a dominating set.
Maker-Breaker domination game
(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.
Maker-Breaker domination game
(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.
Maker-Breaker domination game
(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.
Maker-Breaker domination game
(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.

![Diagram of Maker-Breaker domination game]
Maker-Breaker domination game
(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.
Maker-Breaker domination game

(Duchêne, G., Parreau and Renault, 2018+)

- Played on a graph $G = (V, E)$
- Two players: Dominator and Staller
- They alternately select vertices of V.
- Dominator wins if and only if the vertices that he selected induce a dominating set.
The problem

The goal is to decide which player has a winning strategy.
The problem

The goal is to decide which player has a winning strategy.

The possible outcomes are the following:

<table>
<thead>
<tr>
<th></th>
<th>Staller starts</th>
<th>Dominator wins</th>
<th>Staller wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominator starts</td>
<td>\mathcal{D}</td>
<td></td>
<td>\mathcal{N}</td>
</tr>
<tr>
<td>Staller wins</td>
<td>\mathcal{P}</td>
<td></td>
<td>\mathcal{S}</td>
</tr>
</tbody>
</table>
Maker-Breaker games

- Played on an hypergraph \((X, \mathcal{F})\).
- Two players: Maker and Breaker.
- They alternately select vertices of \(X\).
- Maker wins if and only if he selected all the vertices of a hyperedge \(A \in \mathcal{F}\).

- Hex
 - Maker has a winning strategy (Nash, 1952)
Maker-Breaker games

- Played on an hypergraph (X, \mathcal{F}).
- Two players: Maker and Breaker.
- They alternately select vertices of X.
- Maker wins if and only if he selected all the vertices of a hyperedge $A \in \mathcal{F}$.

- Hex
 - Maker has a winning strategy (Nash, 1952)

The Maker-Breaker Domination game is a Maker Breaker game.
Maker-Breaker games

- Played on an hypergraph \((X, \mathcal{F})\).
- Two players: Maker and Breaker.
- They alternately select vertices of \(X\).
- Maker wins if and only if he selected all the vertices of a hyperedge \(A \in \mathcal{F}\).

- Hex
 - Maker has a winning strategy (Nash, 1952)

The Maker-Breaker Domination game is a Maker Breaker game.

- \(\mathcal{F} = \{\text{the dominating sets}\}\),
 - Dominator = Maker.
Maker-Breaker games

- Played on an hypergraph \((X, F)\).
- Two players: **Maker** and **Breaker**.
- They alternately select vertices of \(X\).
- **Maker** wins if and only if he selected all the vertices of a hyperedge \(A \in F\).

- Hex
 - **Maker** has a winning strategy (Nash, 1952)

The Maker-Breaker Domination game is a Maker Breaker game.

- \(F = \{\text{the dominating sets}\}\),
 - **Dominator** = **Maker**.
- \(F = \{\text{the closed neighborhoods}\}\),
 - **Staller** = **Maker**.
Maker-Breaker games

Theorem (Folklore)

If **Maker** wins the Maker-Breaker game on \((X, F)\) as the second player, then he also wins as first player.
Maker-Breaker games

Theorem (Folklore)

If **Maker** wins the Maker-Breaker game on \((X, \mathcal{F})\) as the second player, then he also wins as first player.

→ It is never interesting to pass
→ There is no game of outcome \(\mathcal{P}\)
Maker-Breaker games

Theorem (Folklore)

If Maker wins the Maker-Breaker game on \((X, \mathcal{F})\) as the second player, then he also wins as first player.

→ It is never interesting to pass
→ There is no game of outcome \(\mathcal{P}\)

Theorem (Schaefer, 1978)

Deciding the outcome of Maker-Breaker is a PSPACE-complete problem.
There exist graphs for the three possible outcomes.

- Dominator starts
- Staller starts
Outcomes

There exist graphs for the three possibles outcomes.

- Dominator starts
- Staller starts
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th>Dominator starts</th>
<th>Dominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staller starts</td>
<td></td>
</tr>
</tbody>
</table>

14/49
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th>Dominator starts</th>
<th>Dominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staller starts</td>
<td></td>
</tr>
</tbody>
</table>

14/49
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th>Dominator starts</th>
<th>Dominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staller starts</td>
<td>Staller</td>
</tr>
</tbody>
</table>

\mathcal{N}
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th>Dominator starts</th>
<th>Dominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staller starts</td>
<td>Staller</td>
</tr>
</tbody>
</table>

\[\mathcal{N} \]
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th>Dominator starts</th>
<th>Dominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staller starts</td>
<td>Staller</td>
</tr>
</tbody>
</table>

\[N \]
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th>Dominator starts</th>
<th>Dominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staller starts</td>
<td>Staller</td>
</tr>
</tbody>
</table>

\mathcal{N}
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th></th>
<th>Dominator starts</th>
<th>Staller starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominator</td>
<td>Dominator</td>
<td>Staller</td>
</tr>
<tr>
<td>Staller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th></th>
<th>Dominator starts</th>
<th>Staller starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominator</td>
<td>Dominator</td>
<td>Staller</td>
</tr>
<tr>
<td>Staller</td>
<td>Dominator</td>
<td>Dominator</td>
</tr>
</tbody>
</table>

\[
\mathcal{N} \quad \mathcal{D}
\]
There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th></th>
<th>Dominator starts</th>
<th>Staller starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominator</td>
<td>Dominator</td>
<td>Staller</td>
</tr>
<tr>
<td>Staller</td>
<td>Dominator</td>
<td>Dominator</td>
</tr>
</tbody>
</table>

\[
\mathcal{N} \quad \mathcal{D}
\]
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th></th>
<th>Dominator starts</th>
<th>Staller starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominator</td>
<td>Dominator</td>
<td>Staller</td>
</tr>
<tr>
<td>Dominator</td>
<td>Dominator</td>
<td>Dominator</td>
</tr>
</tbody>
</table>

\[N \quad D \]
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th></th>
<th>Dominator starts</th>
<th>Staller starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominator</td>
<td>Dominator</td>
<td>Staller</td>
</tr>
<tr>
<td>Dominator</td>
<td></td>
<td>Dominator</td>
</tr>
</tbody>
</table>

\[N \quad D \]
There exist graphs for the three possible outcomes.

\[\begin{array}{ccc}
\text{Dominator starts} & \text{Dominator} & \text{Dominator} \\
\text{Staller starts} & \text{Staller} & \text{Dominator}
\end{array} \]

\(N \quad D\)
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th></th>
<th>Dominator starts</th>
<th>Staller starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominator starts</td>
<td>Dominator</td>
<td>Staller</td>
</tr>
<tr>
<td>Staller starts</td>
<td>Staller</td>
<td>Dominator</td>
</tr>
</tbody>
</table>

\(\mathcal{N} \quad \mathcal{D} \)
Outcomes

There exist graphs for the three possible outcomes.

<table>
<thead>
<tr>
<th>Dominator starts</th>
<th>Dominator</th>
<th>Dominator</th>
<th>Staller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staller starts</td>
<td>Staller</td>
<td>Dominator</td>
<td>Staller</td>
</tr>
</tbody>
</table>

\[N \quad D \quad S \]
A winning condition for Dominator

Lemma

If a graph can be partitioned into cliques of size at least 2 then its outcome is \mathcal{D}.
A winning condition for Dominator

Lemma

If a graph can be partitioned into cliques of size at least 2 then its outcome is D.

$K_2 \times K_2 \times K_4 \times 15/49$
A winning condition for Dominator

Lemma

If a graph can be partitioned into cliques of size at least 2 then its outcome is \mathcal{D}.

A winning condition for Dominator

Lemma

If a graph can be partitioned into cliques of size at least 2 then its outcome is \mathcal{D}.

$K_2 \times K_2 \times K_4$
A winning condition for Dominator

Lemma

If a graph can be partitioned into cliques of size at least 2 then its outcome is \mathcal{D}.

[Diagram showing a graph partitioned into cliques K_4 and K_2.]
A winning condition for Dominator

Lemma

If a graph can be partitioned into cliques of size at least 2 then its outcome is D.
A winning condition for Dominator

Lemma

If a graph can be partitioned into cliques of size at least 2 then its outcome is \mathcal{D}.
A winning condition for Dominator

If a graph can be partitioned into cliques of size at least 2 then its outcome is \mathcal{D}.

Lemma

If a graph can be partitioned into cliques of size at least 2 then its outcome is \mathcal{D}.
A winning condition for Dominator

Lemma

If a graph can be partitioned into cliques of size at least 2 then its outcome is D.

![Diagram](image-url)
Pairing dominating sets

Definition (Duchêne, G., Parreau, Renault, 2018+)

A set of pairs of vertices \(\{(u_1, v_1), \ldots, (u_k, v_k)\} \) is a pairing dominating set if:

- all vertices are distinct,
- \(V = \bigcup_{i=1}^{k} N[u_i] \cap N[v_i] \).

\(G \) has a pairing dominating set \(\iff \) \(G \) has outcome \(\mathcal{D} \).
Pairing dominating sets

Theorem
Deciding if a graph admits a pairing dominating set is an NP-complete problem.

The proof uses a reduction from SAT.

Gadget for a variable
Pairing dominating sets

There exist graphs of outcome D that do not admit pairing dominating sets.
Deciding the outcome of a Maker-Breaker domination game position is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which are PSPACE-complete (Schaeffer, 1978).
Complexity

Theorem

Deciding the outcome of a Maker-Breaker domination game position is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which are PSPACE-complete (Schaeffer, 1978).

Dominator follows Breaker’s strategy
Complexity

Theorem

Deciding the outcome of a Maker-Breaker domination game position is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which are PSPACE-complete (Schaeffer, 1978).

![Diagram of Maker-Breaker game with nodes and edges illustrating the strategy of Dominator following Breaker's strategy.](image)

Dominator follows Breaker’s strategy
Deciding the outcome of a Maker-Breaker domination game position is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which are PSPACE-complete (Schaeffer, 1978).

Dominator follows Breaker’s strategy
Deciding the outcome of a Maker-Breaker domination game position is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which are PSPACE-complete (Schaeffer, 1978).

Dominator follows Breaker’s strategy
Deciding the outcome of a Maker-Breaker domination game position is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which are PSPACE-complete (Schaeffer, 1978).

Dominator follows Breaker’s strategy
Complexity

Theorem

Deciding the outcome of a Maker-Breaker domination game position is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which are PSPACE-complete (Schaeffer, 1978).

Dominator follows Breaker’s strategy
Deciding the outcome of a Maker-Breaker domination game position is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which are PSPACE-complete (Schaeffer, 1978).

Dominator follows Breaker’s strategy
Complexity

Theorem

Deciding the outcome of a Maker-Breaker domination game position is a PSPACE-complete problem.

This result is proved by reduction from Maker-Breaker games which are PSPACE-complete (Schaeffer, 1978).

Staller follows Maker's strategy
Complexity

- Graphs
- Bipartite graphs
- Chordal graphs
- Split graphs
- Paths

PSPACE-c
Complexity

Graphs

Bipartite graphs

Chordal graphs

Split graphs

Trees

Paths

PSPACE-c

P
For paths, removing P_2’s preserves the outcome.
For paths, removing P_2's preserves the outcome.

\[P_5 \rightarrow P_3 \]
For paths, removing P_2’s preserves the outcome.

Is it still true for other graphs?
Glue operator

We "glue" two graphs on a vertex.
Glue operator

We "glue" two graphs on a vertex.
Glue operator

We want to find the couples \((G, u)\) such that for all \(H\),
\[G_u \cong H \equiv H: \]

\[G \quad u \]

\[G \quad u \equiv H \equiv H: \]
A graph \((G, u)\) is neutral for the glue operator if and only if

- \(G\) has outcome \(\mathcal{N}\)
- \(G \setminus \{u\}\) has outcome \(\mathcal{D}\)
A graph \((G, u)\) is neutral for the glue operator if and only if
- \(G\) has outcome \(\mathcal{N}\)
- \(G \setminus \{u\}\) has outcome \(\mathcal{D}\)
Theorem

Maker-Breaker Domination Game is polynomial on trees.

Removing pendant P_2’s can be done in polynomial time.
Theorem

Maker-Breaker Domination Game is polynomial on trees.

Removing pendant P_2’s can be done in polynomial time.
Theorem

Maker-Breaker Domination Game is polynomial on trees.

Removing pendant P_2’s can be done in polynomial time.
Mak er-Break er Domination Game is polynomial on trees.

Removing pendant P_2’s can be done in polynomial time.
Maker-Breaker Domination Game is polynomial on trees.

Removing pendant P_2’s can be done in polynomial time.
Theorem

Maker-Breaker Domination Game is polynomial on trees.

Removing pendant P_2's can be done in polynomial time.
Trees

Theorem

Maker-Breaker Domination Game is polynomial on trees.

Any tree can be reduced to one of the following configurations:

- \emptyset (empty graph)
- $K_{1,0}$
- $K_{1,n}$
- T
Trees

Theorem

Maker-Breaker Domination Game is polynomial on trees.

Any tree can be reduced to one of the following configurations:

- \(\emptyset \) empty graph
- \(K_{1,0} \)
- \(K_{1,n} \)
- \(T \)
- \(S \)
Complexity

- Graphs
 - Bipartite graphs
 - Trees
 - Paths
 - Chordal graphs
 - Split graphs

- PSPACE-c

- P

PDS property: Having outcome $D \iff$ having a pairing dominating set
Complexity

Graphs

- Cographs: P
- Bipartite graphs: PSPACE-c
- Trees: P
- Paths: P

Chordal graphs: PSPACE-c

Split graphs: PSPACE-c
Complexity

- Cographs
- Bipartite graphs
- Trees
- Paths
- Chordal graphs
- Split graphs
- Interval graphs
- k-Trees

PSPACE-c

P

P

P

?
PDS property(*): Having outcome \mathcal{D} \iff having a pairing dominating set
PDS property(*): Having outcome $\mathcal{D} \iff$ having a pairing dominating set
Other works and perspectives

Other works

- The Maker-Breaker domination numbers
 (G., Iršič and Klavžar, 2019)
 - The difference between the "Dominator starts" and the "Staller starts" values are unbounded
 - PSPACE-complete
 - Solved for cycles and trees

- The Maker-Breaker total domination game
 (Henning, G., Iršič and Klavžar, 2019)
 - Solved on cacti

- The Avoider-Enforcer domination game
 - Solved on trees
Other works and perspectives

Other works

• The Maker-Breaker domination numbers
 (G., Iršič and Klavžar, 2019)
 ▶ The difference between the "Dominator starts" and the "Staller starts" values are unbounded
 ▶ PSPACE-complete
 ▶ Solved for cycles and trees

• The Maker-Breaker total domination game
 (Henning, G., Iršič and Klavžar, 2019)
 ▶ Solved on cacti

• The Avoider-Enforcer domination game
 ▶ Solved on trees

Perspectives

• Maker-Breaker domination numbers of cographs
• Study of the pairing dominating sets
Identification of points using disks
Set cover

Structure:
- Graphs
- Geometric

Variation:
- Propagation
- Game
- Identification

Strong geodetic number
Maker-Breaker domination game
Power Domination
Identification of points using disks
Back to the post-defense buffet

I found a plate. Who does it belong to?
Back to the post-defense buffet

I found a plate. Who does it belong to?
I found a plate. Who does it belong to?

We can **identify** the right guest.
Identification in hypergraphs

Two goals:

- Covering
- Separation
Identification in hypergraphs

Two goals:

- Covering
- Separation
Linked problems

- Test cover (Moret and Shapiro, 1985)

- Identifying codes in graphs (Karpovsky, Chakrabarty and Levitin, 1998)
 - Unit disk graphs (Müller and Sereni, 2009)
 - Unit interval graphs (Foucaud, Mertzios, Naserasr, Parreau and Valicov, 2015).
Identification of points with disks
(G. and Parreau, 2019)

Input of the problem

A set \mathcal{P} of points in the plane

Output

A set \mathcal{D} of closed disks verifying:
- Every point of \mathcal{P} must belong to at least one disk of \mathcal{D}. (Covering)
- Two points of \mathcal{P} must belong to two different subsets of \mathcal{D}. (Separation)

$\gamma_D^{ID}(\mathcal{P})$: Minimal number of disks necessary to identify \mathcal{P}.

Separation of points using convex sets (Gerbner and Toth, 2012)
Separation of points using lines parallels to the axis (Calinescu, Dumitrescu, Karlo and Wan, 2005)
Identification of points with disks
(G. and Parreau, 2019)

Input of the problem
A set \mathcal{P} of points in the plane

Output
A set \mathcal{D} of closed disks verifying:
- Every point of \mathcal{P} must belong to at least one disk of \mathcal{D}. (Covering)
- Two points of \mathcal{P} must belong to two different subsets of \mathcal{D}. (Separation)

$\gamma_{ID}^{D}(\mathcal{P})$: Minimal number of disks necessary to identify \mathcal{P}.
Identification of points with disks
(G. and Parreau, 2019)

Input of the problem
A set \mathcal{P} of points in the plane

Output
A set \mathcal{D} of closed disks verifying:
- Every point of \mathcal{P} must belong to at least one disk of \mathcal{D}. (Covering)
- Two points of \mathcal{P} must belong to two different subsets of \mathcal{D}. (Separation)

$\gamma_D^{ID}(\mathcal{P})$: Minimal number of disks necessary to identify \mathcal{P}.

Separation of points using convex sets (Gerbner and Toth, 2012)
Separation of points using lines parallels to the axis (Calinescu, Dumitrescu, Karlo and Wan, 2005)
Identification of points with disks

(G. and Parreau, 2019)

Input of the problem

A set \(\mathcal{P} \) of points in the plane

Output

A set \(\mathcal{D} \) of closed disks verifying:

- Every point of \(\mathcal{P} \) must belong to at least one disk of \(\mathcal{D} \). (Covering)
- Two points of \(\mathcal{P} \) must belong to two different subsets of \(\mathcal{D} \). (Separation)

\(\gamma_{ID}^{D}(\mathcal{P}) \): Minimal number of disks necessary to identify \(\mathcal{P} \).

- Separation of points using convex sets (Gerbner and Toth, 2012)
- Separation of points using lines parallels to the axis (Calinescu, Dumitrescu, Karloff and Wan, 2005)
Lower bound

Theorem (Folklore)

Putting k disks in the plane defines at most $k^2 - k + 1$ intersection areas.
Lower bound

Theorem (Folklore)

Putting k disks in the plane defines at most $k^2 - k + 1$ intersection areas.

Corollary

Let \mathcal{P} be a set of n points in the plane

$$\gamma^ID_P(\mathcal{P}) \geq \left\lceil \frac{1 + \sqrt{1 + 4(n-1)}}{2} \right\rceil \sim \sqrt{n}.$$
Upper bound

Theorem (Adapted from Gerbner and Toth, 2012)

Let \mathcal{P} be a set of n points in the plane, $\gamma_D^\text{ID}(\mathcal{P}) \leq \lceil \frac{n+1}{2} \rceil$.
Upper bound

Theorem (Adapted from Gerbner and Toth, 2012)

Let \(\mathcal{P} \) be a set of \(n \) points in the plane, \(\gamma_D^{ID}(\mathcal{P}) \leq \lceil \frac{n+1}{2} \rceil. \)
Upper bound

Theorem (Adapted from Gerbner and Toth, 2012)

Let \(\mathcal{P} \) be a set of \(n \) points in the plane, \(\gamma_D^I(\mathcal{P}) \leq \lceil \frac{n+1}{2} \rceil \).
Upper bound

Theorem (Adapted from Gerbner and Toth, 2012)

Let \mathcal{P} be a set of n points in the plane, $\gamma_D^I(\mathcal{P}) \leq \lceil \frac{n+1}{2} \rceil$.

![Diagram](image-url)
Let \mathcal{P} be a set of n points in the plane, $\gamma_D^*(\mathcal{P}) \leq \lceil \frac{n+1}{2} \rceil$.

Theorem (Adapted from Gerbner and Toth, 2012)
Upper bound

Theorem (Adapted from Gerbner and Toth, 2012)

Let \mathcal{P} be a set of n points in the plane, $\gamma_D^{ID}(\mathcal{P}) \leq \lceil \frac{n+1}{2} \rceil$.
Upper bound

Theorem (Adapted from Gerbner and Toth, 2012)

Let \mathcal{P} be a set of n points in the plane, $\gamma_D^I(\mathcal{P}) \leq \lceil \frac{n+1}{2} \rceil$.
Upper bound

Theorem (Adapted from Gerbner and Toth, 2012)

Let \mathcal{P} be a set of n points in the plane, $\gamma_{D}^{\text{ID}}(\mathcal{P}) \leq \left\lfloor \frac{n+1}{2} \right\rfloor$.
Upper bound

Theorem (Adapted from Gerbner and Toth, 2012)

Let \mathcal{P} be a set of n points in the plane, $\gamma_{D}^{ID}(\mathcal{P}) \leq \left\lceil \frac{n+1}{2} \right\rceil$.
Let \mathcal{P} be a set of n points in the plane, $\gamma_D^D(\mathcal{P}) \leq \left\lceil \frac{n+1}{2} \right\rceil$.

Theorem (Adapted from Gerbner and Toth, 2012)
Let \mathcal{P} be a set of n points in the plane, $\gamma_D^L(\mathcal{P}) \leq \lceil \frac{n+1}{2} \rceil$.

Theorem (Adapted from Gerbner and Toth, 2012)
The points are colinear

Let \mathcal{P} be a set of n collinear points, $\gamma_{D}^{ID}(\mathcal{P}) = \lceil \frac{n+1}{2} \rceil$.

The disks go through $n+1$ areas on the same line to cover each point and separate each pair of points.
The points are colinear

Theorem

Let \(\mathcal{P} \) be a set of \(n \) colinear points, \(\gamma_D^I(\mathcal{P}) = \lceil \frac{n+1}{2} \rceil \).

The disks go through \(n + 1 \) areas on the same line to cover each point and separate each pair of points.
Upper bound in general configuration

The previous upper bound is tight for colinear and cocyclic sets of points.

Theorem

Let \mathcal{P} be a set of n points such that no three points are colinear and no four points are cocyclic, $\gamma^\text{ID}_D(\mathcal{P}) \leq 2\lceil \frac{n}{6} \rceil + 1$.
Principle

Same principle as the previous proof:

• Separating the points into equal size areas using lines
• Iteratively separating points from each area with disks
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
 - Use of Delaunay’s triangulation
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
 - Use of Delaunay’s triangulation
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
 - Use of Delaunay’s triangulation
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
 - Use of Delaunay’s triangulation
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
 - Use of Delaunay’s triangulation
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
 - Use of Delaunay’s triangulation
Principle

Same principle as the previous proof:

- Separating the points into equal size areas using lines
- Iteratively separating points from each area with disks
 - Use of Delaunay’s triangulation
Upper bound in the general case

Theorem (J. G. Ceder, 1964)

Let \mathcal{P} be a set of n points in the plane such that no three points are colinear. Using three concurrent lines, it is possible to divide the plane into six areas containing between $\lceil \frac{n}{6} \rceil - 1$ and $\lceil \frac{n}{6} \rceil$ points.
Upper bound in the general case

Theorem (J. G. Ceder, 1964)

Let \mathcal{P} be a set of n points in the plane such that no three points are collinear. Using three concurrent lines, it is possible to divide the plane into six areas containing between $\lceil \frac{n}{6} \rceil - 1$ and $\lceil \frac{n}{6} \rceil$ points.
Upper bound in the general case

Theorem (J. G. Ceder, 1964)

Let \mathcal{P} be a set of n points in the plane such that no three points are collinear. Using three concurrent lines, it is possible to divide the plane into six areas containing between $\lceil \frac{n}{6} \rceil - 1$ and $\lceil \frac{n}{6} \rceil$ points.
Upper bound in the general case

Theorem (J. G. Ceder, 1964)

Let \mathcal{P} be a set of n points in the plane such that no three points are collinear. Using three concurrent lines, it is possible to divide the plane into six areas containing between $\lceil \frac{n}{6} \rceil - 1$ and $\lceil \frac{n}{6} \rceil$ points.
Complexity

<table>
<thead>
<tr>
<th>Centers</th>
<th>Points in the plane</th>
<th>Points on a line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radii</td>
<td>Any values</td>
<td>Fixed to the same value</td>
</tr>
<tr>
<td>Anywhere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed on the points</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Unit disk graph: NP-complete
- Unit interval graph: ?

- Müller and Sereni, 2009
- Foucaud, Mertzios, Naserasr, Parreau and Valicov, 2015
Complexity

<table>
<thead>
<tr>
<th></th>
<th>Points in the plane</th>
<th>Points on a line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radii</td>
<td>Any values</td>
<td>Fixed to the same value</td>
</tr>
<tr>
<td>Centers</td>
<td>Fixed to the same value</td>
<td>Any values</td>
</tr>
<tr>
<td>Anywhere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed on the points</td>
<td>Unit disk graph</td>
<td>Unit interval graph</td>
</tr>
<tr>
<td></td>
<td>NP-complete</td>
<td>?</td>
</tr>
</tbody>
</table>

- Müller and Sereni, 2009
- Foucaud, Mertzios, Naserasr, Parreau and Valicov, 2015
Complexity

<table>
<thead>
<tr>
<th></th>
<th>Points in the plane</th>
<th>Points on a line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radii Centers</td>
<td>Any values</td>
<td>Fixed to the same value</td>
</tr>
<tr>
<td></td>
<td>Fixed to the same value</td>
<td>Any values</td>
</tr>
<tr>
<td></td>
<td>Any values</td>
<td>Fixed to the same value</td>
</tr>
<tr>
<td>Anywhere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed on the points</td>
<td>Unit disk graph</td>
<td>Unit interval graph</td>
</tr>
<tr>
<td></td>
<td>Unit disk graph NP-complete</td>
<td></td>
</tr>
</tbody>
</table>

- Müller and Sereni, 2009
- Foucaud, Mertzios, Naserasr, Parreau and Valicov, 2015
Complexity

<table>
<thead>
<tr>
<th>Radii</th>
<th>Points in the plane</th>
<th>Points on a line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centers</td>
<td>Any values</td>
<td>Fixed to the same value</td>
</tr>
<tr>
<td>Anywhere</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Fixed on the points</td>
<td>?</td>
<td>Unit disk graph NP-complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit interval graph</td>
</tr>
</tbody>
</table>

- Müller and Sereni, 2009
- Foucaud, Mertzios, Naserasr, Parreau and Valicov, 2015
Complexity

<table>
<thead>
<tr>
<th>Radii</th>
<th>Centers</th>
<th>Points in the plane</th>
<th>Points on a line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any values</td>
<td>Fixed to the same value</td>
<td>Any values</td>
</tr>
<tr>
<td>Anywhere</td>
<td>?</td>
<td>?</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Fixed on the points</td>
<td>?</td>
<td>Unit disk graph (NP-complete)</td>
<td>?</td>
</tr>
</tbody>
</table>

- Müller and Sereni, 2009
- Foucaud, Mertzios, Naserasr, Parreau and Valicov, 2015
The following problem is NP-complete:

Instance: A set \mathcal{P} of points in the plane and a number $k \in \mathbb{N}$.

Question: Is it possible to identify the points of \mathcal{P} using k disks of radius 1?

The proof uses a reduction from P_3-partition in grid graphs, a NP-complete problem. The P_3’s become the following structure:
<table>
<thead>
<tr>
<th></th>
<th>Points in the plane</th>
<th>Points on a line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radii</td>
<td>Any values</td>
<td>Fixed to the same value</td>
</tr>
<tr>
<td>Centers</td>
<td></td>
<td>Any values</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed to the same value</td>
</tr>
<tr>
<td>Anywhere</td>
<td>?</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Fixed on the points</td>
<td>?</td>
<td>Unit disk graph</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>Unit interval graph</td>
</tr>
<tr>
<td></td>
<td>Points in the plane</td>
<td>Points on a line</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Radii</td>
<td>Any values</td>
<td>Fixed to the same value</td>
</tr>
<tr>
<td>Centers</td>
<td>Fixed to the same value</td>
<td>Any values</td>
</tr>
<tr>
<td>Anywhere</td>
<td>?</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Fixed on the points</td>
<td>?</td>
<td>Unit disk graph NP-complete</td>
</tr>
</tbody>
</table>
Colinear points and fixed radius

Theorem

The following problem can be solved in linear time:

Instance: A set \(\mathcal{P} \) of colinear points and a number \(k \in \mathbb{N} \).

Question: Is it possible to identify the points of \(\mathcal{P} \) using \(k \) disks of radius 1?
The following problem can be solved in linear time:

Instance: A set \mathcal{P} of colinear points and a number $k \in \mathbb{N}$.

Question: Is it possible to identify the points of \mathcal{P} using k disks of radius 1?
Theorem

The following problem can be solved in linear time:

Instance: A set \mathcal{P} of colinear points and a number $k \in \mathbb{N}$.

Question: Is it possible to identify the points of \mathcal{P} using k disks of radius 1?

The proof has two steps:

- Showing that there always exists a minimum identifying set of disks in normal form,
- Using a greedy algorithm to find such a set.
Colinear points and fixed radius

Theorem

The following problem can be solved in linear time:

Instance: A set \mathcal{P} of colinear points and a number $k \in \mathbb{N}$.

Question: Is it possible to identify the points of \mathcal{P} using k disks of radius 1?

The proof has two steps:

- Showing that there always exists a minimum identifying set of disks in **normal form**,
- Using a greedy algorithm to find such a set.
A set of disk is in **normal form** if each connected component of \mathcal{P} is of odd size k and:

- the first and last disks contain exactly two points,
- all the other disks contain exactly three points.
Colinear points and fixed radius

Each minimum identifying set of disks can be transformed:
Colinear points and fixed radius

Each minimum identifying set of disks can be transformed:

- By showing that we can divide the connected component so that they are of odd size and identified by $\frac{k+1}{2}$ disks,
Colinear points and fixed radius

Each minimum identifying set of disks can be transformed:

- By showing that we can divide the connected component so that they are of odd size and identified by $\frac{k+1}{2}$ disks,
- Then showing that each of these connected component can be in normal form.
Complexity

<table>
<thead>
<tr>
<th></th>
<th>Points in the plane</th>
<th>Points on a line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centers</td>
<td>Any values</td>
<td>Any values</td>
</tr>
<tr>
<td>Fixed to the</td>
<td>Fixed to the</td>
<td>Fixed to the</td>
</tr>
<tr>
<td>same value</td>
<td>same value</td>
<td>same value</td>
</tr>
<tr>
<td>Anywhere</td>
<td>?</td>
<td>O(1)</td>
</tr>
<tr>
<td></td>
<td>NP-complete</td>
<td>Linear</td>
</tr>
<tr>
<td>Fixed on the</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>points**</td>
<td>Unit disk graph</td>
<td>Unit interval</td>
</tr>
<tr>
<td></td>
<td>NP-complete</td>
<td>graph ?</td>
</tr>
</tbody>
</table>
Complexity

<table>
<thead>
<tr>
<th>Radii</th>
<th>Points in the plane</th>
<th>Points on a line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centers</td>
<td>Any values</td>
<td>Fixed to the same value</td>
</tr>
<tr>
<td>Anywhere</td>
<td>?</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Fixed on the points</td>
<td>?</td>
<td>Unit disk graph NP-complete</td>
</tr>
</tbody>
</table>
Perspectives

- Random disposition of points
- Validity of the results for other shapes or for higher dimensions
General conclusion

<table>
<thead>
<tr>
<th>Strong geodetic number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maker-Breaker domination game</td>
</tr>
<tr>
<td>Power Domination</td>
</tr>
<tr>
<td>Identification of points using disks</td>
</tr>
</tbody>
</table>
General conclusion

- G. and Iršič,
 Strong geodetic number of complete bipartite graphs, crown graphs and hypercubes,
 To be published, 2018.

- G., Iršič and Klavžar,
 Strong geodetic cores and Cartesian product graphs,
 Applied Mathematics and Computation, 2019
General conclusion

Strong geodetic number
Maker-Breaker domination game
Power Domination
Identification of points using disks

- G. and Iršič,
 Strong geodetic number of complete bipartite graphs, crown graphs and hypercubes,
 To be published, 2018.
- G., Iršič and Klavžar,
 Strong geodetic cores and Cartesian product graphs,
 Applied Mathematics and Computation, 2019
- Duchêne, G., Parreau and Renault,
 Maker-Breaker domination game,
- G., Iršič and Klavžar,
 Maker-Breaker domination number,
 Bulletin of the Malaysian Mathematical Sciences Society, 2019
- Henning, G., Iršič and Klavžar,
 Maker-Breaker total domination game,
 To be published, 2019
General conclusion

Strong geodetic number
Maker-Breaker domination game
Power Domination
Identification of points using disks

- G. and Iršič,
 Strong geodetic number of complete bipartite graphs, crown graphs and hypercubes,
 To be published, 2018.

- G., Iršič and Klavžar,
 Strong geodetic cores and Cartesian product graphs,
 Applied Mathematics and Computation, 2019

- Bose, G., Pennarun and Verdonschot,
 Power domination on triangular grids with triangular and hexagonal shape,

- Duchêne, G., Parreau and Renault,
 Maker-Breaker domination game,

- G., Iršič and Klavžar,
 Maker-Breaker domination number,
 Bulletin of the Malaysian Mathematical Sciences Society, 2019

- Henning, G., Iršič and Klavžar,
 Maker-Breaker total domination game,
 To be published, 2019
General conclusion

Strong geodetic number

Maker-Breaker domination game

Power Domination

Identification of points using disk

- G. and Iršič,
 Strong geodetic number of complete bipartite graphs, crown graphs and hypercubes,
 To be published, 2018.

- G., Iršič and Klavžar,
 Strong geodetic cores and Cartesian product graphs,
 Applied Mathematics and Computation, 2019

- Bose, G., Pennarun and Verdonschot,
 Power domination on triangular grids with triangular and hexagonal shape,

- Duchêne, G., Parreau and Renault,
 Maker-Breaker domination game,

- G., Iršič and Klavžar,
 Maker-Breaker domination number,
 Bulletin of the Malaysian Mathematical Sciences Society, 2019

- Henning, G., Iršič and Klavžar,
 Maker-Breaker total domination game,
 To be published, 2019

- G. and Parreau,
 Identification of points using disks,
Thank you